Prevalence and characterisation of quinolone resistance mechanisms in Salmonella spp
The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were...
Saved in:
Published in | Veterinary microbiology Vol. 171; no. 3-4; pp. 307 - 314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
16.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-1135 1873-2542 1873-2542 |
DOI | 10.1016/j.vetmic.2014.01.040 |
Cover
Abstract | The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N=22; →Leu, →Phe, →Tyr), Asp87 (N=22; →Asn, →Gly, →Tyr) and parC (Thr57Ser, N=23; Ala141Ser, N=1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N=50) and qnrB19 (or qnrB10; N=24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6′)-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N=82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance. |
---|---|
AbstractList | The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N = 22; arrow right Leu, arrow right Phe, arrow right Tyr), Asp87 (N = 22; arrow right Asn, arrow right Gly, arrow right Tyr) and parC (Thr57Ser, N = 23; Ala141Ser, N = 1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N = 50) and qnrB19 (or qnrB10; N = 24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6')-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N = 82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance. The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N=22; → Leu, → Phe, → Tyr), Asp87 (N=22; → Asn, → Gly, → Tyr) and parC (Thr57Ser, N=23; Ala141Ser, N=1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N=50) and qnrB19 (or qnrB10; N=24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6')-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N=82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance. The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N=22; →Leu, →Phe, →Tyr), Asp87 (N=22; →Asn, →Gly, →Tyr) and parC (Thr57Ser, N=23; Ala141Ser, N=1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N=50) and qnrB19 (or qnrB10; N=24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6′)-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N=82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance. The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N=22; → Leu, → Phe, → Tyr), Asp87 (N=22; → Asn, → Gly, → Tyr) and parC (Thr57Ser, N=23; Ala141Ser, N=1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N=50) and qnrB19 (or qnrB10; N=24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6')-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N=82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance.The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing of Minimal Inhibitory Concentrations revealed 6.4% of 2680 isolates conferring ciprofloxacin resistance. Simultaneously 37.7% and 40.8% were accounted for, respectively, nalidixic acid and ciprofloxacin Non Wild-Type populations. Amplification and sequencing of quinolone resistance determining region of topoisomerases genes in 44 isolates identified multiple amino-acid substitutions in gyrA at positions Ser83 (N=22; → Leu, → Phe, → Tyr), Asp87 (N=22; → Asn, → Gly, → Tyr) and parC (Thr57Ser, N=23; Ala141Ser, N=1). No relevant mutations were identified in gyrB and parE. Twelve patterns combining one or two substitutions were related to neither serovar nor ciprofloxacin MIC. In 92 isolates suspected for plasmid mediated quinolone resistance two qnr alleles were found: qnrS1 (or qnrS3; N=50) and qnrB19 (or qnrB10; N=24). Additionally, two isolates with chromosomally encoded mechanisms carried qnrS1 and qnrS2. All tested isolates were negative for qnrA, qnrC, qnrD, qepA, aac(6')-Ib-cr. Both chromosomal and plasmid mediated quinolone resistance determinants were found in several Salmonella serovars and Pulsed Field Gel Electrophoresis was used to assess phylogenetic similarity of selected isolates (N=82). Salmonella Newport was found to accumulate quinolone resistance determinants and the serovar was spreading clonally with either variable gyrA mutations, qnrS1/S3, or qnrB10/B19. Alternatively, various determinants are dispersed among related S. Enteritidis isolates. Antimicrobial selection pressure, multiple resistance determinants and scenarios for their acquisition and spread make extremely difficult to combat quinolone resistance. |
Author | Hoszowski, Andrzej Wasyl, Dariusz Zając, Magdalena |
Author_xml | – sequence: 1 givenname: Dariusz orcidid: 0000-0002-1068-8414 surname: Wasyl fullname: Wasyl, Dariusz email: wasyl@piwet.pulawy.pl – sequence: 2 givenname: Andrzej surname: Hoszowski fullname: Hoszowski, Andrzej – sequence: 3 givenname: Magdalena surname: Zając fullname: Zając, Magdalena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24613291$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAURS1URKeFf4BQlmwSnuOPsVkgoYoWpEogUdaWY78IjxJnantG4t_jMO2GBWXlzbnXT_dckLO4RCTkNYWOApXvdt0Ryxxc1wPlHdAOODwjG6q2rO0F78_IBthWtZQycU4uct4BANcSXpDznkvKek035O5bwqOdMDpsbPSN-2mTdQVTyLaEJTbL2NwfQlym-nuTMIdc7ArPWNEY8pybEJvvdporME22yfv9S_J8tFPGVw_vJflx_enu6nN7-_Xmy9XH29bxXpV2BM2kR6BejUq4QaGwXGO_1YNnToAY7OC8kpzLrUKKygrtUYzKDhyZduySvD317tNyf8BczByyW6-IuByyoYpLxrjk7GlUCCp5rzX8B8rqRbV0Rd88oIdhRm_2Kcw2_TKP-1bg_Qlwack54WhcKH-GLcmGyVAwq0yzMyeZZpVpgJoqs4b5X-HH_idiH04xrNMfAyaTXVgF-5DQFeOX8O-C3-kLuzQ |
CitedBy_id | crossref_primary_10_1016_j_jgar_2023_09_010 crossref_primary_10_1089_fpd_2018_2562 crossref_primary_10_1016_j_vetmic_2015_11_033 crossref_primary_10_1016_j_prevetmed_2023_106008 crossref_primary_10_1093_jac_dky562 crossref_primary_10_1016_j_foodcont_2022_108937 crossref_primary_10_1016_j_rvsc_2019_08_022 crossref_primary_10_1128_spectrum_03000_23 crossref_primary_10_1089_mdr_2016_0024 crossref_primary_10_1111_1348_0421_12476 crossref_primary_10_1016_j_crmicr_2022_100151 crossref_primary_10_1016_j_vetmic_2014_04_009 crossref_primary_10_1128_AAC_04203_14 crossref_primary_10_1038_s41598_019_45838_0 crossref_primary_10_3390_ijms22179381 crossref_primary_10_1099_jmm_0_000475 crossref_primary_10_3390_antibiotics12081309 crossref_primary_10_1128_spectrum_00047_24 crossref_primary_10_1186_s12866_018_1368_4 crossref_primary_10_1016_j_cmi_2015_12_004 crossref_primary_10_3389_fmicb_2019_01865 crossref_primary_10_1128_aem_00944_23 crossref_primary_10_1016_j_vetmic_2014_10_014 crossref_primary_10_3390_ani14182675 crossref_primary_10_3390_ijms24065777 crossref_primary_10_17221_260_2016_CJFS crossref_primary_10_1007_s11356_021_17773_z crossref_primary_10_1093_jacamr_dlab022 crossref_primary_10_3390_antibiotics10121455 crossref_primary_10_3389_fmicb_2022_899024 crossref_primary_10_1186_s13099_015_0063_3 crossref_primary_10_1128_AAC_00575_18 crossref_primary_10_3389_fmicb_2021_738784 crossref_primary_10_3390_pathogens8010019 crossref_primary_10_3390_microorganisms9051012 crossref_primary_10_1089_mdr_2014_0061 crossref_primary_10_1007_s00203_023_03485_0 crossref_primary_10_1016_j_vetmic_2018_02_002 crossref_primary_10_3389_fmicb_2017_00510 crossref_primary_10_1038_s41598_020_64346_0 crossref_primary_10_21307_PM_2020_59_1_005 crossref_primary_10_1080_00071668_2019_1697426 crossref_primary_10_1093_jac_dkw232 crossref_primary_10_1186_s12941_021_00487_y crossref_primary_10_3389_fmicb_2019_02265 crossref_primary_10_1128_AEM_01386_19 crossref_primary_10_3390_pathogens9080643 crossref_primary_10_1089_mdr_2016_0119 crossref_primary_10_1016_j_diagmicrobio_2016_01_016 |
Cites_doi | 10.1016/S1473-3099(13)70124-5 10.1016/j.ijantimicag.2012.07.012 10.3389/fmicb.2012.00024 10.1093/jac/dkp383 10.1089/mdr.2011.0095 10.1111/j.1751-7915.2008.00063.x 10.1016/j.ijantimicag.2005.02.006 10.1128/AAC.01051-08 10.1093/jac/dkr414 10.1093/jac/dkn470 10.1111/j.1574-6968.2010.02119.x 10.1080/03079457.2013.779636 10.1016/j.foodres.2011.01.031 10.1128/AAC.48.10.4012-4015.2004 10.3201/eid1210.060589 10.1093/jac/dkn211 10.1128/AEM.02744-09 10.1016/j.bjid.2012.11.012 10.1016/j.foodres.2011.07.024 10.2478/v10213-012-0081-6 10.1093/jac/dks387 10.3389/fmicb.2013.00144 10.1089/fpd.2012.1288 10.1016/j.vetmic.2013.07.023 10.1016/j.vetmic.2008.05.009 10.1093/jac/dkr084 10.3201/eid1311.061438 10.1093/jac/dkm204 10.1093/jac/dkq423 10.1056/NEJMoa012261 10.1016/j.ijantimicag.2010.10.026 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QL C1K 7S9 L.6 |
DOI | 10.1016/j.vetmic.2014.01.040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Biology |
EISSN | 1873-2542 |
EndPage | 314 |
ExternalDocumentID | 24613291 10_1016_j_vetmic_2014_01_040 S0378113514000789 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATLK AAXUO ABBQC ABFNM ABFRF ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CBWCG CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FD6 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LUGTX LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP RIG ROL RPZ SAB SDF SDG SDP SES SNL SPCBC SSA SSH SSI SSZ T5K ~G- ~KM 29Q AAHBH AALCJ AATTM AAXKI AAYWO AAYXX ABGRD ACIEU ACMHX ACVFH ADCNI ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLV HMG HVGLF HZ~ R2- SEW SIN SVS WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QL C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c428t-f0936de01d8f85cb8e5a49e279bd3c505babcd8644678e1e8a59de5f8ab4e39c3 |
IEDL.DBID | .~1 |
ISSN | 0378-1135 1873-2542 |
IngestDate | Fri Sep 05 13:52:13 EDT 2025 Thu Sep 04 14:52:19 EDT 2025 Fri Sep 05 08:50:49 EDT 2025 Mon Jul 21 05:50:14 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Tue Jul 01 01:36:43 EDT 2025 Fri Feb 23 02:26:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Quinolone resistance QRDR Salmonella Newport PMQR Qnr Epidemiology |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-f0936de01d8f85cb8e5a49e279bd3c505babcd8644678e1e8a59de5f8ab4e39c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0002-1068-8414 |
PMID | 24613291 |
PQID | 1534466430 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1846334643 proquest_miscellaneous_1551642990 proquest_miscellaneous_1534466430 pubmed_primary_24613291 crossref_citationtrail_10_1016_j_vetmic_2014_01_040 crossref_primary_10_1016_j_vetmic_2014_01_040 elsevier_sciencedirect_doi_10_1016_j_vetmic_2014_01_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-16 |
PublicationDateYYYYMMDD | 2014-07-16 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Veterinary microbiology |
PublicationTitleAlternate | Vet Microbiol |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Beutlich, Rodriguez, Schroeter, Kasbohrer, Helmuth, Guerra (bib0010) 2010; 76 Fabrega, Madurga, Giralt, Vila (bib0055) 2009; 2 Hoszowski, Wasyl, Truszczyński (bib0085) 1998; 54 Kaplan, Offek, Jurkevitch, Cytryn (bib0100) 2013; 4 Akiyama, Khan (bib0005) 2012; 67 Karczmarczyk, Martins, McCusker, Mattar, Amaral, Leonard, Aarestrup, Fanning (bib0105) 2010; 313 Rushdy, Mabrouk, Abu-Sef, Kheiralla, All, Saleh (bib0140) 2013; 17 Wasyl, Zając, Hoszowski (bib0165) 2013 Eaves, Randall, Gray, Buckley, Woodward, White, Piddock (bib0045) 2004; 48 Wasyl, Hoszowski (bib0150) 2012; 45 Kim, Cho, Kim (bib0115) 2013; 42 Kozoderovic, Velhner, Jelesic, Golic, Lozo, Kehrenberg (bib0120) 2012; 40 Cavaco, Korsgaard, Sorensen, Aarestrup (bib0030) 2008; 62 Cattoir, Poirel, Rotimi, Soussy, Nordmann (bib0015) 2007; 60 Hammerl, Beutlich, Hertwig, Mevius, Threlfall, Helmuth, Guerra (bib0065) 2010; 65 Hassing, Menezes, van Pelt, Petit, van Genderen, Goessens (bib0070) 2011; 37 Hopkins, Davies, Threlfall (bib0080) 2005; 25 Palomo, Campos, Ugarte, Porrero, Alonso, Borge, Vadillo, Dominguez, Quesada, Piriz (bib0130) 2013; 10 Le Hello, Harrois, Bouchrif, Sontag, Elhani, Guibert, Zerouali, Weill (bib0125) 2013; 13 Veldman, Cavaco, Mevius, Battisti, Franco, Botteldoorn, Bruneau, Perrin-Guyomard, Cerny, De Frutos Escobar, Guerra, Schroeter, Gutierrez, Hopkins, Myllyniemi, Sunde, Wasyl, Aarestrup (bib0145) 2011; 66 Zając, Wasyl, Hoszowski, Le Hello, Szulowski (bib0190) 2013; 166 Whichard, Gay, Stevenson, Joyce, Cooper, Omondi, Medalla, Jacoby, Barrett (bib0175) 2007; 13 Garcia-Fernandez, Fortini, Veldman, Mevius, Carattoli (bib0060) 2009; 63 Dolejska, Villa, Hasman, Hansen, Carattoli (bib0040) 2013; 68 Poirel, Cattoir, Nordmann (bib0135) 2012; 3 Yue, Jiang, Liao, Liu, Li, Chen, Chen, Lu, Liu (bib0185) 2008; 132 Wasyl, Zając, Brown, Kuronen, Van der Zwaluw, Hoszowski (bib0155) 2012; 56 Wasyl, Zając, Domanska-Blicharz, Hoszowski (bib0160) 2013 Yang, Xi, Cui, Zhang, Shen, Sheng, Qu, Wang, Meng (bib0180) 2012; 45 European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (bib0050) 2013; 11 Herrera-Leon, Gonzalez-Sanz, Herrera-Leon, Echeita (bib0075) 2011; 66 Chiu, Wu, Su, Chu, Chia, Kuo, Chien, Lin (bib0035) 2002; 346 Weill, Bertrand, Guesnier, Baucheron, Cloeckaert, Grimont (bib0170) 2006; 12 Kim, Park, Kim, Kim, Jacoby, Hooper (bib0110) 2009; 53 Jeong, Kim, Shin, Chang, Jeong, Cho, Kim, Kim, Kim, Lee, Lee, Lee, Lee, Lee (bib0095) 2011; 17 Jeong (10.1016/j.vetmic.2014.01.040_bib0095) 2011; 17 Kim (10.1016/j.vetmic.2014.01.040_bib0110) 2009; 53 Yang (10.1016/j.vetmic.2014.01.040_bib0180) 2012; 45 Wasyl (10.1016/j.vetmic.2014.01.040_bib0150) 2012; 45 Wasyl (10.1016/j.vetmic.2014.01.040_bib0165) 2013 Chiu (10.1016/j.vetmic.2014.01.040_bib0035) 2002; 346 Hopkins (10.1016/j.vetmic.2014.01.040_bib0080) 2005; 25 European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (10.1016/j.vetmic.2014.01.040_bib0050) 2013; 11 Poirel (10.1016/j.vetmic.2014.01.040_bib0135) 2012; 3 Yue (10.1016/j.vetmic.2014.01.040_bib0185) 2008; 132 Karczmarczyk (10.1016/j.vetmic.2014.01.040_bib0105) 2010; 313 Dolejska (10.1016/j.vetmic.2014.01.040_bib0040) 2013; 68 Garcia-Fernandez (10.1016/j.vetmic.2014.01.040_bib0060) 2009; 63 Veldman (10.1016/j.vetmic.2014.01.040_bib0145) 2011; 66 Hammerl (10.1016/j.vetmic.2014.01.040_bib0065) 2010; 65 Kaplan (10.1016/j.vetmic.2014.01.040_bib0100) 2013; 4 Eaves (10.1016/j.vetmic.2014.01.040_bib0045) 2004; 48 Beutlich (10.1016/j.vetmic.2014.01.040_bib0010) 2010; 76 Weill (10.1016/j.vetmic.2014.01.040_bib0170) 2006; 12 Herrera-Leon (10.1016/j.vetmic.2014.01.040_bib0075) 2011; 66 Kozoderovic (10.1016/j.vetmic.2014.01.040_bib0120) 2012; 40 Wasyl (10.1016/j.vetmic.2014.01.040_bib0155) 2012; 56 Zając (10.1016/j.vetmic.2014.01.040_bib0190) 2013; 166 Palomo (10.1016/j.vetmic.2014.01.040_bib0130) 2013; 10 Akiyama (10.1016/j.vetmic.2014.01.040_bib0005) 2012; 67 Rushdy (10.1016/j.vetmic.2014.01.040_bib0140) 2013; 17 Cavaco (10.1016/j.vetmic.2014.01.040_bib0030) 2008; 62 Wasyl (10.1016/j.vetmic.2014.01.040_bib0160) 2013 Cattoir (10.1016/j.vetmic.2014.01.040_bib0015) 2007; 60 Hassing (10.1016/j.vetmic.2014.01.040_bib0070) 2011; 37 Le Hello (10.1016/j.vetmic.2014.01.040_bib0125) 2013; 13 Hoszowski (10.1016/j.vetmic.2014.01.040_bib0085) 1998; 54 Whichard (10.1016/j.vetmic.2014.01.040_bib0175) 2007; 13 Fabrega (10.1016/j.vetmic.2014.01.040_bib0055) 2009; 2 Kim (10.1016/j.vetmic.2014.01.040_bib0115) 2013; 42 |
References_xml | – volume: 25 start-page: 358 year: 2005 end-page: 373 ident: bib0080 article-title: Mechanisms of quinolone resistance in publication-title: Int. J. Antimicrob. Agents – volume: 66 start-page: 287 year: 2011 end-page: 290 ident: bib0075 article-title: Characterization of multidrug-resistant publication-title: J. Antimicrob. Chemother. – volume: 53 start-page: 639 year: 2009 end-page: 645 ident: bib0110 article-title: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period publication-title: Antimicrob. Agents. Chemother – volume: 13 start-page: 1681 year: 2007 end-page: 1688 ident: bib0175 article-title: Human publication-title: Emerg. Infect. Dis. – volume: 132 start-page: 414 year: 2008 end-page: 420 ident: bib0185 article-title: Prevalence of plasmid-mediated quinolone resistance publication-title: Vet. Microbiol. – volume: 48 start-page: 4012 year: 2004 end-page: 4015 ident: bib0045 article-title: Prevalence of mutations within the quinolone resistance-determining region of publication-title: Antimicrob. Agents. Chemother. – volume: 68 start-page: 333 year: 2013 end-page: 339 ident: bib0040 article-title: Characterization of IncN plasmids carrying publication-title: J. Antimicrob. Chemother. – volume: 56 start-page: 459 year: 2012 end-page: 466 ident: bib0155 article-title: Molecular epidemiology of publication-title: Bull. Vet. Inst. Pulawy – volume: 37 start-page: 240 year: 2011 end-page: 243 ident: bib0070 article-title: Analysis of mechanisms involved in reduced susceptibility to ciprofloxacin in publication-title: Int. J. Antimicrob. Agents – volume: 17 start-page: 551 year: 2011 end-page: 557 ident: bib0095 article-title: Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in publication-title: Microb. Drug Resist. – volume: 17 start-page: 431 year: 2013 end-page: 437 ident: bib0140 article-title: Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of publication-title: Braz. J. Infect. Dis. – volume: 76 start-page: 3657 year: 2010 end-page: 3667 ident: bib0010 article-title: A predominant multidrug-resistant publication-title: Appl. Environ. Microbiol. – volume: 60 start-page: 394 year: 2007 end-page: 397 ident: bib0015 article-title: Multiplex PCR for detection of plasmid-mediated quinolone resistance publication-title: J. Antimicrob. Chemother. – volume: 2 start-page: 40 year: 2009 end-page: 61 ident: bib0055 article-title: Mechanism of action of and resistance to quinolones publication-title: Microb. Biotechnol. – volume: 65 start-page: 173 year: 2010 end-page: 175 ident: bib0065 article-title: pSGI15, a small ColE-like publication-title: J. Antimicrob. Chemother. – volume: 166 start-page: 686 year: 2013 end-page: 689 ident: bib0190 article-title: Genetic lineages of publication-title: Vet. Microbiol. – volume: 62 start-page: 632 year: 2008 end-page: 634 ident: bib0030 article-title: Plasmid-mediated quinolone resistance due to publication-title: J. Antimicrob. Chemother. – volume: 63 start-page: 274 year: 2009 end-page: 281 ident: bib0060 article-title: Characterization of plasmids harbouring publication-title: J. Antimicrob. Chemother. – volume: 4 start-page: 1 year: 2013 end-page: 7 ident: bib0100 article-title: Characterization of fluoroquinolone resistance and publication-title: Front. Microbiol. – volume: 40 start-page: 455 year: 2012 end-page: 457 ident: bib0120 article-title: Prevalence of quinolone resistance and mutations in the topoisomerase genes in publication-title: Int. J. Antimicrob. Agents – volume: 66 start-page: 1278 year: 2011 end-page: 1286 ident: bib0145 article-title: International collaborative study on the occurrence of plasmid-mediated quinolone resistance in publication-title: J. Antimicrob. Chemother. – volume: 12 start-page: 1611 year: 2006 end-page: 1612 ident: bib0170 article-title: Ciprofloxacin-resistant publication-title: Emerg. Infect. Dis. – volume: 313 start-page: 10 year: 2010 end-page: 19 ident: bib0105 article-title: Characterization of antimicrobial resistance in publication-title: FEMS Microbiol. Lett. – volume: 346 start-page: 413 year: 2002 end-page: 419 ident: bib0035 article-title: The emergence in Taiwan of fluoroquinolone resistance in publication-title: N. Engl. J. Med. – volume: 13 start-page: 672 year: 2013 end-page: 679 ident: bib0125 article-title: Highly drug-resistant publication-title: Lancet Infect. Dis. – volume: 45 start-page: 935 year: 2012 end-page: 939 ident: bib0180 article-title: Mutations in gyrase and topoisomerase genes associated with fluoroquinolone resistance in publication-title: Food Res. Int. – volume: 45 start-page: 958 year: 2012 end-page: 961 ident: bib0150 article-title: First isolation of ESBL-producing publication-title: Food Res. Int. – volume: 54 start-page: 33 year: 1998 end-page: 37 ident: bib0085 article-title: Lekooporność szczepów publication-title: Medycyna Wet – volume: 3 start-page: 24 year: 2012 ident: bib0135 article-title: Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies publication-title: Front. Microbiol. – volume: 11 start-page: 1 year: 2013 end-page: 359 ident: bib0050 article-title: The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011 publication-title: EFSA J. – volume: 10 start-page: 171 year: 2013 end-page: 176 ident: bib0130 article-title: Dissemination of antimicrobial-resistant clones of publication-title: Foodborne Pathog. Dis. – start-page: 453 year: 2013 end-page: 454 ident: bib0160 article-title: “ publication-title: International Symphosium on – volume: 42 start-page: 221 year: 2013 end-page: 229 ident: bib0115 article-title: Prevalence and characterization of plasmid-mediated quinolone resistance genes in publication-title: Avian Pathol. – volume: 67 start-page: 101 year: 2012 end-page: 110 ident: bib0005 article-title: Molecular characterization of strains of fluoroquinolone-resistant publication-title: J. Antimicrob. Chemother. – start-page: 216 year: 2013 end-page: 220 ident: bib0165 article-title: Antibiotic resistance trends in publication-title: International Symphosium on – volume: 13 start-page: 672 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0125 article-title: Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70124-5 – volume: 40 start-page: 455 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0120 article-title: Prevalence of quinolone resistance and mutations in the topoisomerase genes in Salmonella enterica serotype Enteritidis isolates from Serbia publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2012.07.012 – volume: 3 start-page: 24 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0135 article-title: Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00024 – volume: 65 start-page: 173 year: 2010 ident: 10.1016/j.vetmic.2014.01.040_bib0065 article-title: pSGI15, a small ColE-like qnrB19 plasmid of a Salmonella enterica serovar Typhimurium strain carrying Salmonella genomic island 1 (SGI1) publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkp383 – volume: 17 start-page: 551 year: 2011 ident: 10.1016/j.vetmic.2014.01.040_bib0095 article-title: Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea publication-title: Microb. Drug Resist. doi: 10.1089/mdr.2011.0095 – volume: 2 start-page: 40 year: 2009 ident: 10.1016/j.vetmic.2014.01.040_bib0055 article-title: Mechanism of action of and resistance to quinolones publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2008.00063.x – volume: 25 start-page: 358 year: 2005 ident: 10.1016/j.vetmic.2014.01.040_bib0080 article-title: Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2005.02.006 – volume: 53 start-page: 639 year: 2009 ident: 10.1016/j.vetmic.2014.01.040_bib0110 article-title: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period publication-title: Antimicrob. Agents. Chemother doi: 10.1128/AAC.01051-08 – volume: 67 start-page: 101 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0005 article-title: Molecular characterization of strains of fluoroquinolone-resistant Salmonella enterica serovar Schwarzengrund carrying multidrug resistance isolated from imported foods publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkr414 – volume: 63 start-page: 274 year: 2009 ident: 10.1016/j.vetmic.2014.01.040_bib0060 article-title: Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkn470 – volume: 313 start-page: 10 year: 2010 ident: 10.1016/j.vetmic.2014.01.040_bib0105 article-title: Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2010.02119.x – volume: 42 start-page: 221 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0115 article-title: Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea publication-title: Avian Pathol. doi: 10.1080/03079457.2013.779636 – start-page: 216 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0165 article-title: Antibiotic resistance trends in Salmonella, 2008–2012 – volume: 45 start-page: 935 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0180 article-title: Mutations in gyrase and topoisomerase genes associated with fluoroquinolone resistance in Salmonella serovars from retail meats publication-title: Food Res. Int. doi: 10.1016/j.foodres.2011.01.031 – volume: 48 start-page: 4012 year: 2004 ident: 10.1016/j.vetmic.2014.01.040_bib0045 article-title: Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica publication-title: Antimicrob. Agents. Chemother. doi: 10.1128/AAC.48.10.4012-4015.2004 – volume: 12 start-page: 1611 year: 2006 ident: 10.1016/j.vetmic.2014.01.040_bib0170 article-title: Ciprofloxacin-resistant Salmonella Kentucky in travelers publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1210.060589 – volume: 62 start-page: 632 year: 2008 ident: 10.1016/j.vetmic.2014.01.040_bib0030 article-title: Plasmid-mediated quinolone resistance due to qnrB5 and qnrS1 genes in Salmonella enterica serovars Newport, Hadar and Saintpaul isolated from turkey meat in Denmark publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkn211 – volume: 11 start-page: 1 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0050 article-title: The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011 publication-title: EFSA J. – volume: 76 start-page: 3657 year: 2010 ident: 10.1016/j.vetmic.2014.01.040_bib0010 article-title: A predominant multidrug-resistant Salmonella enterica serovar Saintpaul clonal line in German turkey and related food products publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02744-09 – volume: 54 start-page: 33 year: 1998 ident: 10.1016/j.vetmic.2014.01.040_bib0085 article-title: Lekooporność szczepów Salmonella izolowanych od zwierząt i pasz na terenie Polski w latach 1994–1996 publication-title: Medycyna Wet – volume: 17 start-page: 431 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0140 article-title: Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica publication-title: Braz. J. Infect. Dis. doi: 10.1016/j.bjid.2012.11.012 – volume: 45 start-page: 958 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0150 article-title: First isolation of ESBL-producing Salmonella and emergence of multiresistant Salmonella Kentucky in turkey in Poland publication-title: Food Res. Int. doi: 10.1016/j.foodres.2011.07.024 – volume: 56 start-page: 459 year: 2012 ident: 10.1016/j.vetmic.2014.01.040_bib0155 article-title: Molecular epidemiology of Salmonella enterica serovar Saintpaul isolated from animals, food, and humans in 12 European countries publication-title: Bull. Vet. Inst. Pulawy doi: 10.2478/v10213-012-0081-6 – volume: 68 start-page: 333 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0040 article-title: Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dks387 – volume: 4 start-page: 1 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0100 article-title: Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00144 – volume: 10 start-page: 171 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0130 article-title: Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans publication-title: Foodborne Pathog. Dis. doi: 10.1089/fpd.2012.1288 – volume: 166 start-page: 686 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0190 article-title: Genetic lineages of Salmonella enterica serovar Kentucky spreading in pet reptiles publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2013.07.023 – volume: 132 start-page: 414 year: 2008 ident: 10.1016/j.vetmic.2014.01.040_bib0185 article-title: Prevalence of plasmid-mediated quinolone resistance qnr genes in poultry and swine clinical isolates of Escherichia coli publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2008.05.009 – volume: 66 start-page: 1278 year: 2011 ident: 10.1016/j.vetmic.2014.01.040_bib0145 article-title: International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkr084 – start-page: 453 year: 2013 ident: 10.1016/j.vetmic.2014.01.040_bib0160 article-title: “Ad hoc” study on Salmonella Stanley outbreak strains – volume: 13 start-page: 1681 year: 2007 ident: 10.1016/j.vetmic.2014.01.040_bib0175 article-title: Human Salmonella and concurrent decreased susceptibility to quinolones and extended-spectrum cephalosporins publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1311.061438 – volume: 60 start-page: 394 year: 2007 ident: 10.1016/j.vetmic.2014.01.040_bib0015 article-title: Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkm204 – volume: 66 start-page: 287 year: 2011 ident: 10.1016/j.vetmic.2014.01.040_bib0075 article-title: Characterization of multidrug-resistant Enterobacteriaceae carrying plasmid-mediated quinolone resistance mechanisms in Spain publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkq423 – volume: 346 start-page: 413 year: 2002 ident: 10.1016/j.vetmic.2014.01.040_bib0035 article-title: The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012261 – volume: 37 start-page: 240 year: 2011 ident: 10.1016/j.vetmic.2014.01.040_bib0070 article-title: Analysis of mechanisms involved in reduced susceptibility to ciprofloxacin in Salmonella enterica serotypes Typhi and Paratyphi A isolates from travellers to Southeast Asia publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2010.10.026 |
SSID | ssj0004960 |
Score | 2.3249612 |
Snippet | The study was focused on characterisation of quinolone resistance mechanisms in Salmonella isolated from animals, food, and feed between 2008 and 2011. Testing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 307 |
SubjectTerms | alleles Amino Acid Substitution - genetics Animal Feed - microbiology Animals Bacterial Proteins - genetics ciprofloxacin Ciprofloxacin - pharmacology DNA Gyrase - genetics Drug Resistance, Bacterial - genetics Electrophoresis, Gel, Pulsed-Field Epidemiology Microbial Sensitivity Tests minimum inhibitory concentration mutation nalidixic acid Nalidixic Acid - pharmacology Phylogeny plasmids PMQR Poland - epidemiology Prevalence pulsed-field gel electrophoresis Qnr QRDR Quinolone resistance Quinolones - pharmacology resistance mechanisms Salmonella Salmonella - drug effects Salmonella - genetics Salmonella Infections, Animal - epidemiology Salmonella Infections, Animal - microbiology Salmonella Newport serotypes Species Specificity |
Title | Prevalence and characterisation of quinolone resistance mechanisms in Salmonella spp |
URI | https://dx.doi.org/10.1016/j.vetmic.2014.01.040 https://www.ncbi.nlm.nih.gov/pubmed/24613291 https://www.proquest.com/docview/1534466430 https://www.proquest.com/docview/1551642990 https://www.proquest.com/docview/1846334643 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCKmXCpY-lrbIlXp1N17bG_uIUNFCBReg4mb5MZFSsWHb3UXiwm_H4ySgSjykHhONE2dm4hl75psh5BtwiEKFwMaxUiytksBMVXjmYmGAawCdexGcnE6mF_L4Ul2ukYMeC4Npld3a367pebXu7ow6bo7mdT06KwSiJDETPRs6BPFJWaKuf797TPOQJiOFkZghdQ-fyzleN7Cc1VjIkMtcvBOPQJ42T8-5n9kMHW6Rt53_SPfbKW6TNWgGZLPtKHk7IINfmN6SMbb0pAub75BzLNTkMryIuibS8FilOQuGXlf0z6rGI_YGaNqAo1OJxDNAYHC9mC1o3dAzd5WUFtOl6GI-f0cuDn-cH0xZ106BhbTHWLKqMGISoeBRV1oFr0E5aWBcGh9FSJ6Qdz5EnRykZMCSDLVTJoKqtPMShAniPVlv0ls-Elp6DNcGzz0HKQMY78clV6GQoKtQiiERPRdt6GqNY8uLK9snlf22Le8t8t4W3CbeDwl7GDVva228Ql_2ArL_6IxN5uCVkV97edr0O2GMxDVwvVrYZAAwwi3FizQqbTLRjr9Ak_w6IWR60JB8aBXm4ZuwhJ8YG7773_P_RN7gFZ4x88lnsr78u4IvyTla-r2s_XtkY__o5_T0HlNmEGs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYJLBeGV8jISV5N1bGftY1VRBWh6aYp6s_yYlbZqtqFJKnHht9fj3W2FBK3EdXe8jxl7ZuyZ-YaQT8AhChUCG8dKsaQlgZmq8MzFwgDXADr3IpgdTaYn8tupOt0i-30tDKZVdrq_1elZW3dXRh03R8u6Hh0XAqskMRM9GzrzgDyUSpQIoP_5922ehzS5VBipGZL39XM5yesK1osakQy5zOideAbyd_v0L_8z26GDp2SncyDpXvuNz8gWNAPyqG0p-WtABj8wvyUX2dJZFzd_TuaI1ORyfRF1TaThFqY5S4ZeVPTnpsYz9gZo2oGjV4nEC8DK4Hq1WNG6ocfuPM1azJeiq-XyBTk5-DLfn7KunwILaZOxZlVhxCRCwaOutApeg3LSwLg0PoqQXCHvfIg6eUjJgiUhaqdMBFVp5yUIE8RLst2kt7wmtPQYrw2eew5SBjDej0uuQiFBV6EUQyJ6LtrQgY1jz4tz22eVndmW9xZ5bwtuE--HhN2MWrZgG_fQl72A7B-TxiZ7cM_Ij708bVpPGCRxDVxsVjZZAAxxS3EnjUq7TDTkd9Akx04ImR40JK_aCXPzT4jhJ8aG7_73938gj6fz2aE9_Hr0_Q15gnfwwJlP3pLt9eUG3iVPae3f55VwDXReEf0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+and+characterisation+of+quinolone+resistance+mechanisms+in+Salmonella+spp&rft.jtitle=Veterinary+microbiology&rft.au=Wasyl%2C+Dariusz&rft.au=Hoszowski%2C+Andrzej&rft.au=Zaj%C4%85c%2C+Magdalena&rft.date=2014-07-16&rft.eissn=1873-2542&rft.volume=171&rft.issue=3-4&rft.spage=307&rft_id=info:doi/10.1016%2Fj.vetmic.2014.01.040&rft_id=info%3Apmid%2F24613291&rft.externalDocID=24613291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1135&client=summon |