Machine learning-based identification of cuproptosis-related lncRNA biomarkers in diffuse large B-cell lymphoma

Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL) . Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Variou...

Full description

Saved in:
Bibliographic Details
Published inCell biology and toxicology Vol. 41; no. 1; p. 72
Main Authors Ouyang, Wenhao, Lai, Zijia, Huang, Hong, Ling, Li
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 21.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-6822
0742-2091
1573-6822
DOI10.1007/s10565-025-10030-w

Cover

Abstract Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL) . Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies. Graphical abstract
AbstractList Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL) . Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies. Graphical abstract
Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.
Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.
ArticleNumber 72
Author Lai, Zijia
Ling, Li
Ouyang, Wenhao
Huang, Hong
Author_xml – sequence: 1
  givenname: Wenhao
  surname: Ouyang
  fullname: Ouyang, Wenhao
  organization: Department of Neurology, Shenzhen Hospital, Southern Medical University
– sequence: 2
  givenname: Zijia
  surname: Lai
  fullname: Lai, Zijia
  organization: Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
– sequence: 3
  givenname: Hong
  surname: Huang
  fullname: Huang, Hong
  organization: School of Medicine, Guilin Medical University
– sequence: 4
  givenname: Li
  surname: Ling
  fullname: Ling, Li
  email: linglirabbit@163.com
  organization: Department of Neurology, Shenzhen Hospital, Southern Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40259116$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYh4mpsX_0C3gwJF68oMAMMHMytbFqUjUxeiYM-7JLZWGEGTf77ct2V1s9GE_DhOf38uPhFB3FFAGhp4y-ZJSqV4VRIQWhXJD631CyeYBOmFANkR3nR_fWx-i0lGtKqWRKPELHbc30jMkTlD4au_IRcACTo49LMpgCC-wXECfvvDWTTxEnh-085jROqfhCMgQzVSpE--XTOR58Wpv8HXLBPuKFd24udaLJS8BviIUQcNiux1WlHqOHzoQCTw7fM_Tt8u3Xi_fk6vO7DxfnV8S2vJsIGKCcU9GwTggH1glrjVGtVUz0zcAU470ENXQ9V6wFoEbawbStbIe-65xqzlCznzvH0Ww3JgQ9Zl9bbjWjeqdP7_XpqkLf6tObmnq9T43zsIaFrQ6yuUsm4_WfO9Gv9DL91IxTxnra1QkvDhNy-jFDmfTal50BEyHNRTesr80l69qKPv8LvU5zjtXKLdU2XMgd9ex-pd9dfj1hBfgesDmVksH930UPekqF4xLy3dn_SN0ADs6_sQ
Cites_doi 10.1182/blood.2021013289
10.48550/arXiv.1708.07120
10.1016/j.lfs.2019.03.040
10.3389/fimmu.2022.919231
10.7150/ijbs.33218
10.1038/s41418-024-01341-2
10.1186/s13059-017-1349-1
10.1038/nmeth.3337
10.1021/acsnano.3c00326
10.1186/s13045-024-01589-8
10.1038/s41392-022-01014-x
10.1182/blood.2019003535
10.1056/NEJMoa1801445
10.1093/nar/gkac1071
10.1186/s12935-020-01362-0
10.1038/s41588-018-0252-3
10.1093/bioinformatics/bts034
10.18637/jss.v036.i11
10.1016/j.canlet.2022.215929
10.1126/science.abf0529
10.1038/s41594-024-01340-4
10.1186/s13046-022-02485-0
10.1023/A:1010933404324
10.1016/j.ccell.2020.03.015
10.1016/j.pathol.2020.12.003
10.7150/jca.32807
10.1186/s13059-015-0866-z
10.1038/s41591-018-0016-8
10.1097/JS9.0000000000001875
10.3389/fimmu.2021.687975
10.1186/s13045-022-01392-3
10.1038/s41392-022-01229-y
10.1016/j.prp.2023.154991
10.1186/s13073-018-0611-9
10.1016/j.celrep.2016.12.019
10.1186/s13045-018-0606-4
10.1109/TKDE.2012.51
10.7554/eLife.26476
10.1053/j.seminhematol.2018.05.007
10.1186/s12943-017-0580-4
10.48550/arXiv.1711.05101
10.1038/ncomms3612
10.1101/2024.01.22.576646
10.1002/advs.202309984
10.3389/fcell.2021.758777
10.1016/j.humimm.2021.03.011
10.6004/jnccn.2023.0057
10.1186/s13059-016-1028-7
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7TM
7U7
7X7
7XB
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7P
NAPCQ
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10565-025-10030-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Central Student
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1573-6822
ExternalDocumentID 10.1007/s10565-025-10030-w
PMC12011908
40259116
10_1007_s10565_025_10030_w
Genre Journal Article
GrantInformation_xml – fundername: This study was supported by the Science and Technology Project of Shenzhen
  grantid: JCYJ20210324131614038
GroupedDBID ---
.86
.VR
06C
06D
0R~
0VY
1N0
203
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5RE
5VS
67N
67Z
6NX
78A
7RV
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACULB
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BENPR
BHPHI
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M7P
MA-
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
PF0
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SBY
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
~EX
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
BGNMA
CITATION
M4Y
NAPCQ
NU0
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7TM
7U7
7X7
7XB
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
C1K
CCPQU
DWQXO
FR3
FYUFA
GNUQQ
K9.
LK8
M1P
M2P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
RC3
7X8
5PM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
53G
5QI
7XC
AANXM
AARHV
AAYTO
ABJNI
ABQSL
ACBXY
ADHKG
ADTOC
ADYPR
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AGGDS
AGJBK
AGQPQ
AJBLW
BBWZM
BDATZ
BKEYQ
BPHCQ
BVXVI
CAG
COF
EJD
EN4
EX3
FINBP
FSGXE
H13
HMCUK
HZ~
KOW
N2Q
NDZJH
O9-
OVD
PROAC
PSQYO
Q2X
R4E
RNI
RZC
RZE
RZK
S26
S28
SCLPG
T16
TEORI
UKHRP
UNPAY
UZXMN
VFIZW
WK6
WOW
ZGI
ID FETCH-LOGICAL-c428t-eae0220531855fecf5ccaa74c71593b171296e7b892714ee0a6cba4464b988f73
IEDL.DBID BENPR
ISSN 1573-6822
0742-2091
IngestDate Sun Oct 26 03:48:15 EDT 2025
Tue Sep 30 17:03:56 EDT 2025
Fri Sep 05 17:33:13 EDT 2025
Wed Oct 08 14:21:46 EDT 2025
Fri Apr 25 03:26:59 EDT 2025
Wed Oct 01 06:28:26 EDT 2025
Tue Apr 22 01:10:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords LncRNA
MALAT1
Cuproptosis
Machine learning
Diffuse large B-cell lymphoma
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-eae0220531855fecf5ccaa74c71593b171296e7b892714ee0a6cba4464b988f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s10565-025-10030-w
PMID 40259116
PQID 3192432564
PQPubID 54105
ParticipantIDs unpaywall_primary_10_1007_s10565_025_10030_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12011908
proquest_miscellaneous_3192966184
proquest_journals_3192432564
pubmed_primary_40259116
crossref_primary_10_1007_s10565_025_10030_w
springer_journals_10_1007_s10565_025_10030_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-21
PublicationDateYYYYMMDD 2025-04-21
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-21
  day: 21
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Switzerland
PublicationSubtitle An International Journal Devoted to Research at the Cellular Level
PublicationTitle Cell biology and toxicology
PublicationTitleAbbrev Cell Biol Toxicol
PublicationTitleAlternate Cell Biol Toxicol
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References X Tong (10030_CR35) 2022; 15
D Aran (10030_CR2) 2017; 18
A Frankish (10030_CR11) 2023; 51
C Zhang (10030_CR47) 2024; 17
Y Luo (10030_CR24) 2022; 550
M Zhou (10030_CR49) 2017; 16
Y Yu (10030_CR43) 2025; 111
F Harrington (10030_CR12) 2021; 53
E Becht (10030_CR3) 2016; 17
B Chapuy (10030_CR7) 2018; 24
AA Bhat (10030_CR4) 2024; 253
K Yoshihara (10030_CR42) 2013; 4
W Ouyang (10030_CR27) 2022; 9
10030_CR33
AD Zelenetz (10030_CR44) 2023; 21
J Kim (10030_CR14) 2018; 50
W Ouyang (10030_CR28) 2024; 16
L Chen (10030_CR9) 2022; 7
J Racle (10030_CR29) 2017; 6
D Zeng (10030_CR45) 2021; 12
Q-M Wang (10030_CR38) 2019; 231
P Zheng (10030_CR48) 2022; 41
M Shadman (10030_CR31) 2022; 139
S Ning (10030_CR26) 2023; 17
N Amodio (10030_CR1) 2018; 11
SR Li (10030_CR19) 2022; 7
10030_CR22
Y Yin (10030_CR41) 2021; 82
MB Kursa (10030_CR15) 2010; 36
M Tan (10030_CR34) 2019; 10
R Cao (10030_CR6) 2020; 20
M Yang (10030_CR40) 2022; 13
JT Leek (10030_CR17) 2012; 28
Y-T Liu (10030_CR21) 2024; 31
GW Wright (10030_CR39) 2020; 37
P Tsvetkov (10030_CR36) 2022; 375
F Finotello (10030_CR10) 2019; 11
B Li (10030_CR18) 2016; 17
Y-X Wang (10030_CR37) 2012; 25
10030_CR13
X Lu (10030_CR23) 2024; 11
AM Newman (10030_CR25) 2015; 12
I Skeparnias (10030_CR32) 2024; 31
R Schmitz (10030_CR30) 2018; 378
T Lin (10030_CR20) 2019; 15
L Breiman (10030_CR5) 2001; 45
SE Lacy (10030_CR16) 2020; 135
10030_CR46
P Charoentong (10030_CR8) 2017; 18
References_xml – volume: 139
  start-page: 1330
  issue: 9
  year: 2022
  ident: 10030_CR31
  publication-title: Blood
  doi: 10.1182/blood.2021013289
– ident: 10030_CR33
  doi: 10.48550/arXiv.1708.07120
– volume: 231
  start-page: 116335
  year: 2019
  ident: 10030_CR38
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2019.03.040
– volume: 13
  start-page: 919231
  year: 2022
  ident: 10030_CR40
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.919231
– volume: 15
  start-page: 1287
  issue: 6
  year: 2019
  ident: 10030_CR20
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.33218
– volume: 31
  start-page: 1452
  issue: 11
  year: 2024
  ident: 10030_CR21
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-024-01341-2
– volume: 18
  start-page: 1
  year: 2017
  ident: 10030_CR2
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1349-1
– volume: 12
  start-page: 453
  issue: 5
  year: 2015
  ident: 10030_CR25
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3337
– volume: 17
  start-page: 10206
  issue: 11
  year: 2023
  ident: 10030_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c00326
– volume: 17
  start-page: 68
  issue: 1
  year: 2024
  ident: 10030_CR47
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-024-01589-8
– volume: 16
  start-page: 7818
  issue: 9
  year: 2024
  ident: 10030_CR28
  publication-title: Aging (Albany NY)
– volume: 7
  start-page: 158
  issue: 1
  year: 2022
  ident: 10030_CR19
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-022-01014-x
– volume: 135
  start-page: 1759
  issue: 20
  year: 2020
  ident: 10030_CR16
  publication-title: Blood
  doi: 10.1182/blood.2019003535
– volume: 378
  start-page: 1396
  issue: 15
  year: 2018
  ident: 10030_CR30
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1801445
– volume: 51
  start-page: D942
  issue: D1
  year: 2023
  ident: 10030_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac1071
– volume: 20
  start-page: 276
  year: 2020
  ident: 10030_CR6
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-01362-0
– volume: 50
  start-page: 1705
  issue: 12
  year: 2018
  ident: 10030_CR14
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0252-3
– volume: 28
  start-page: 882
  issue: 6
  year: 2012
  ident: 10030_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts034
– volume: 36
  start-page: 1
  year: 2010
  ident: 10030_CR15
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i11
– volume: 550
  start-page: 215929
  year: 2022
  ident: 10030_CR24
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2022.215929
– volume: 375
  start-page: 1254
  issue: 6586
  year: 2022
  ident: 10030_CR36
  publication-title: Science
  doi: 10.1126/science.abf0529
– volume: 31
  start-page: 1655
  issue: 11
  year: 2024
  ident: 10030_CR32
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-024-01340-4
– volume: 41
  start-page: 271
  issue: 1
  year: 2022
  ident: 10030_CR48
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-022-02485-0
– volume: 45
  start-page: 5
  year: 2001
  ident: 10030_CR5
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 37
  start-page: 551
  issue: 4
  year: 2020
  ident: 10030_CR39
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.03.015
– volume: 53
  start-page: 367
  issue: 3
  year: 2021
  ident: 10030_CR12
  publication-title: Pathology
  doi: 10.1016/j.pathol.2020.12.003
– volume: 10
  start-page: 4245
  issue: 18
  year: 2019
  ident: 10030_CR34
  publication-title: J Cancer
  doi: 10.7150/jca.32807
– volume: 17
  start-page: 1
  year: 2016
  ident: 10030_CR3
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0866-z
– volume: 24
  start-page: 679
  issue: 5
  year: 2018
  ident: 10030_CR7
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0016-8
– volume: 111
  start-page: 839
  issue: 1
  year: 2025
  ident: 10030_CR43
  publication-title: Int J Surg
  doi: 10.1097/JS9.0000000000001875
– volume: 12
  start-page: 687975
  year: 2021
  ident: 10030_CR45
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.687975
– volume: 15
  start-page: 174
  issue: 1
  year: 2022
  ident: 10030_CR35
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-022-01392-3
– volume: 7
  start-page: 378
  issue: 1
  year: 2022
  ident: 10030_CR9
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-022-01229-y
– volume: 253
  start-page: 154991
  year: 2024
  ident: 10030_CR4
  publication-title: Pathol Res Pract
  doi: 10.1016/j.prp.2023.154991
– volume: 11
  start-page: 1
  year: 2019
  ident: 10030_CR10
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0611-9
– volume: 18
  start-page: 248
  issue: 1
  year: 2017
  ident: 10030_CR8
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.12.019
– volume: 11
  start-page: 63
  issue: 1
  year: 2018
  ident: 10030_CR1
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-018-0606-4
– volume: 25
  start-page: 1336
  issue: 6
  year: 2012
  ident: 10030_CR37
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.51
– volume: 6
  start-page: e26476
  year: 2017
  ident: 10030_CR29
  publication-title: eLife
  doi: 10.7554/eLife.26476
– ident: 10030_CR13
  doi: 10.1053/j.seminhematol.2018.05.007
– volume: 16
  start-page: 16
  issue: 1
  year: 2017
  ident: 10030_CR49
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0580-4
– ident: 10030_CR22
  doi: 10.48550/arXiv.1711.05101
– volume: 4
  start-page: 2612
  issue: 1
  year: 2013
  ident: 10030_CR42
  publication-title: Nat Commun
  doi: 10.1038/ncomms3612
– ident: 10030_CR46
  doi: 10.1101/2024.01.22.576646
– volume: 11
  start-page: 2309984
  issue: 18
  year: 2024
  ident: 10030_CR23
  publication-title: Advanced Science
  doi: 10.1002/advs.202309984
– volume: 9
  start-page: 758777
  year: 2022
  ident: 10030_CR27
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.758777
– volume: 82
  start-page: 812
  issue: 11
  year: 2021
  ident: 10030_CR41
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2021.03.011
– volume: 21
  start-page: 1118
  issue: 11
  year: 2023
  ident: 10030_CR44
  publication-title: J Natl Compr Canc Netw
  doi: 10.6004/jnccn.2023.0057
– volume: 17
  start-page: 1
  year: 2016
  ident: 10030_CR18
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1028-7
SSID ssj0006175
Score 2.4013739
Snippet Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 72
SubjectTerms B-cell lymphoma
Biochemistry
Biomarkers
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Biomedical and Life Sciences
Cancer therapies
Cell Biology
Cell growth
Cell Line, Tumor
Cell proliferation
Cell Proliferation - genetics
Gene Expression Regulation, Neoplastic
Humans
Integrated approach
Learning algorithms
Life Sciences
Lymphocytes B
Lymphoma
Lymphoma, Large B-Cell, Diffuse - genetics
Lymphoma, Large B-Cell, Diffuse - pathology
Machine Learning
Non-coding RNA
Permutations
Pharmacology/Toxicology
Prognosis
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Robustness
Therapeutic targets
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48EPVBvK0XEXzTwPZIj8dVFBH0QVzwrSTZrC4s7WK3LPvvnUkPXRTR56Rp0m-S-aaZA-BciIh4dZ_7qiM57sSIK6qa6msP1X0_TFxlvXwfw7tecP8iXuqgsKLxdm-uJO1J_SXYDckHp4FcEk0-XYRlQem8UIp7Xrc9f1Enizo85ufn5lXQN1753T2yvSNdh9UyG8vZVI5GX9TQ7SZs1PyRdSvAt2DBZNuwUlWUnO1A_mCdIw2rq0G8clJTfTbs115BFgiWD5gucUrjSV4MC24DWrDXKNNPj11GIfnktfNesGHGqIRKWeCI5DPOrjj96mejGUoB9tqF3u3N8_Udr2sqcI2GxoQbaWxsLQVNi4HRA4EQyijQEfIaX7kR6v_QRCpOvMgNjOnIUCuJNmOgkjgeRP4eLGV5Zg6AaZHEQulYGaR9aAhJlfhJJ9YCzboAWY8DF81nTsdV6oz0M0kygZIiKKkFJZ06cNwgkdbbqEh9Mg99ZGWBA2dtM24AWqrMTF5WfdBmQ0vVgf0KuPZ1aBwLPM1DB-I5SNsOlFx7viUbvtkk2y4xI1yOA5cN-p_z-m0Zl62E_GHVh_8b_QjWPBLkTsA99xiWJu-lOUFSNFGndg98AGT7BKg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBw4P0ILchI3Ki3m4fj5LgtVBUSK4RYqZwi23HKipWzahKtll_POE7SbosQiLNHTsb-RvONPA-At4xxy6tzGsqJoGiJnEo7NTVUAbr7PE592Wb5zuLTefTxjJ3twPu-FqbNdu-fJF1Ng-3SZOrDVV4cXil8QyJC7aa-hSldj3H5FuzGDBn5CHbns8_Tb64DZ4BASF3bVB7SGB1iVzvz-422_dMN0nkzd3J4QL0HdxqzEpu1WC6v-KiTB6B77Vxqyo9xU8ux-nmt8eP_qv8Q7ncklkwd6h7BjjaP4bYba7l5AuWnNkNTk24kxTm1vjIni7xLTWrRQMqCqAb_dVWX1aKibVUNSi2N-jKbEtsXwKYOXVRkYYid49JUuKNNXCdH1L43kOUGoYhST2F-8uHr8SntBjtQhdFOTbXQbYGvrdxmhVYFQxwJHimO5CqUPkcSEmsukzTgfqT1RMRKCgxcI5kmScHDZzAypdEvgCiWJkyqRGrknnj3QqZhOkkUw9gyQurlwbv-OrOV69-RXXZqtseY4TFm7TFmaw_2-xvPOluustDGqCFSw8iDN8MyWqFVVRhdNk4GA0cMlz147gAyfA4jdIYuJfYg2YLOIGA7fG-vmMX3ttO3b-kZquPBQQ-Ky__6kxoHAxL_QuuX_ya-B3cDC71JRAN_H0b1RaNfITOr5evO8H4BgEAvJA
  priority: 102
  providerName: Unpaywall
Title Machine learning-based identification of cuproptosis-related lncRNA biomarkers in diffuse large B-cell lymphoma
URI https://link.springer.com/article/10.1007/s10565-025-10030-w
https://www.ncbi.nlm.nih.gov/pubmed/40259116
https://www.proquest.com/docview/3192432564
https://www.proquest.com/docview/3192966184
https://pubmed.ncbi.nlm.nih.gov/PMC12011908
https://link.springer.com/content/pdf/10.1007/s10565-025-10030-w.pdf
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Public Health Database (subscription)
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: 8C1
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: C6C
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: C24
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-6822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006175
  issn: 1573-6822
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWkR9EL9Oo2dZwTdvsfnYbPIg0pbWQzEch4XeU8hutlooSb00lP73zuSrloPDl83DDs1OZ3bnN9n5APgghCRcnXJXDROOO1FyRV1TXe2guU_90FZVlG_kX869bwuxOIGozYWhsMr2TKwO6jTX9I38k0uegosG2vuy-cOpaxTdrrYtNJKmtUL6uSoxdgp9hypj9aA_nkZX193ZjPZa1IU5HdSP0G7SaJpkOgQ3nBZqk-rz3bGpuoM_74ZRdnepj-FhmW2S_S5Zr_8xV7On8KTBmWxUK8YzODHZc3hQd57cv4D8RxVEaVjTNeIXJ3OWslXaRA9VAmP5kukSl7TZ5sWq4FXiC1KtM30djRil7lN0z23BVhmjVitlgb9IseVszOlKgK33qC1I9RLms-nPySVvei9wjQ7JlpvEVDm4lFwtlkYvBYo6kZ6WiH9cZUvECb6RKggdaXvGDBNfqwR9S0-FQbCU7hn0sjwzr4FpEQZC6UAZhIfoMCUqdMNhoAW6fx6iIws-tn9zvKlLbMSHYsoklBiFEldCiXcWnLeSiJvtVsQH5bDgfTeNG4VYTTKTlzUN-nbo0VrwqhZc9zp0ogWe-r4FwZFIOwIqwn08k61-V8W4bUJQyI4FF630D-u6j42LTkP-g-s393P9Fh45pLhDjzv2OfS2t6V5h2BpqwZwKhcSx2BiD6A_mo3HET2_3nyfDprdgbMTx6PRn-A4d0Y4M4-uRjd_AZ25GKs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUEU5VH0Bbmm7ldpTWTV-rB8HVEELCgWiCoHEzd1db0qkyA44VpQ_19_WGXvtNEJCvXD2yvb4m9n5xjsPgI9CRMSrM-6rnuRoiRFXNDXV1x66-yxMXFVn-Q7C_mXw40pcrcCfthaG0irbPbHeqLNC0z_yLz5FCj466ODr5IbT1Cg6XW1HaEg7WiHbq1uM2cKOEzOfYQhX7h1_R7w_ed7R4cW3PrdTBrhG6j3lRpq62pTKiMXQ6KFAoWQU6Ag9va_cCD1iaCIVJ17kBsb0ZKiVxCgqUEkcDyMf7_sI1gI_SDD4Wzs4HPw873wB8gPRNAL1UB8T15bt2OI9JFOcPoxLpsZny67xDt-9m7bZnd1uwHqVT-R8Jsfjf9zj0TN4ankt228U8TmsmPwFPG4mXc5fQnFWJ20aZqdU_ObkPjM2ymy2Uq0grBgyXeErTaZFOSp5XWiDq8a5Ph_sM2oVQNlEtyUb5YxGu1Ql3pFy2dkBpyMINp6jduKqV3D5IChswmpe5GYbmBZJLJSOlUE6igGaVImf9GItMNwMkI058Ln9zOmkaemRLpo3EygpgpLWoKQzB3ZaJFJr3mW6UEYHPnSX0TBJVJmbomrWYCyJEbQDWw1w3eMwaBfoZUIH4iVIuwXU9Hv5Sj66rpt_u8TYUBwHdlv0F-91nxi7nYb8h9Sv75f6Paz3L85O09PjwckbeOKREvcC7rk7sDq9rcxbJGpT9c5aA4NfD22AfwHZbUwX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg5IF4FQ4FFghNdNX6s1z4gVChRSyFCiEq5md31uo0U2WkdK8pf49cx41eIKlVcevbK9vib2fnGOw-At0JI4tUp9_VAcbREyTVNTfWNh-4-DWNX11m-o_DoNPg6FuMN-NPVwlBaZbcn1ht1Whj6R77vU6Tgo4MO9rM2LeLH4fDj7ILTBCk6ae3GaTQqcmKXCwzfyg_Hh4j1O88bfvn1-Yi3Ewa4Qdo951bZutKUSohFZk0mUCAlAyPRy_valegNQyt1FHvSDawdqNBohRFUoOMoyqSP970Ft6Xvx5ROKMd9sEfMQDQtQD3UxNhtC3basj2kUZw-iUtGxhfrTvEK072asNmf2t6DrSqfqeVCTaf_OMbhA7jfMlp20KjgQ9iw-SO408y4XD6G4nudrmlZO5_ijJPjTNkkbfOUatVgRcZMha80mxflpOR1iQ2umubm5-iAUZMAyiO6LNkkZzTUpSrxjpTFzj5xOnxg0yXqJa56Aqc3gsEObOZFbp8BMyKOhDaRtkhEMTRTOvbjQWQEBpoB8jAH3nefOZk1zTySVdtmAiVBUJIalGThwG6HRNIadpms1NCBN_1lNEkSVeW2qJo1GEVi7OzA0wa4_nEYrgv0L6ED0Rqk_QJq971-JZ-c122_XeJqKI4Dex36q_e6Toy9XkP-Q-rn10v9Gu6i2SXfjkcnL2DbIx0eBNxzd2FzflnZl8jQ5vpVbQoMft-07f0Fto5JsQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBw4P0ILchI3Ki3m4fj5LgtVBUSK4RYqZwi23HKipWzahKtll_POE7SbosQiLNHTsb-RvONPA-At4xxy6tzGsqJoGiJnEo7NTVUAbr7PE592Wb5zuLTefTxjJ3twPu-FqbNdu-fJF1Ng-3SZOrDVV4cXil8QyJC7aa-hSldj3H5FuzGDBn5CHbns8_Tb64DZ4BASF3bVB7SGB1iVzvz-422_dMN0nkzd3J4QL0HdxqzEpu1WC6v-KiTB6B77Vxqyo9xU8ux-nmt8eP_qv8Q7ncklkwd6h7BjjaP4bYba7l5AuWnNkNTk24kxTm1vjIni7xLTWrRQMqCqAb_dVWX1aKibVUNSi2N-jKbEtsXwKYOXVRkYYid49JUuKNNXCdH1L43kOUGoYhST2F-8uHr8SntBjtQhdFOTbXQbYGvrdxmhVYFQxwJHimO5CqUPkcSEmsukzTgfqT1RMRKCgxcI5kmScHDZzAypdEvgCiWJkyqRGrknnj3QqZhOkkUw9gyQurlwbv-OrOV69-RXXZqtseY4TFm7TFmaw_2-xvPOluustDGqCFSw8iDN8MyWqFVVRhdNk4GA0cMlz147gAyfA4jdIYuJfYg2YLOIGA7fG-vmMX3ttO3b-kZquPBQQ-Ky__6kxoHAxL_QuuX_ya-B3cDC71JRAN_H0b1RaNfITOr5evO8H4BgEAvJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+identification+of+cuproptosis-related+lncRNA+biomarkers+in+diffuse+large+B-cell+lymphoma&rft.jtitle=Cell+biology+and+toxicology&rft.au=Ouyang%2C+Wenhao&rft.au=Lai%2C+Zijia&rft.au=Huang%2C+Hong&rft.au=Ling%2C+Li&rft.date=2025-04-21&rft.issn=1573-6822&rft.eissn=1573-6822&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1007%2Fs10565-025-10030-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10565_025_10030_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-6822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-6822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-6822&client=summon