Machine learning-based identification of cuproptosis-related lncRNA biomarkers in diffuse large B-cell lymphoma
Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL) . Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Variou...
Saved in:
| Published in | Cell biology and toxicology Vol. 41; no. 1; p. 72 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
21.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-6822 0742-2091 1573-6822 |
| DOI | 10.1007/s10565-025-10030-w |
Cover
| Abstract | Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL)
.
Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.
Graphical abstract |
|---|---|
| AbstractList | Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL)
.
Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.
Graphical abstract Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies. Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies.Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell Lymphoma (DLBCL). Data from the TCGA and GEO databases facilitated the identification of 126 significant cuproptosis-related lncRNAs. Various feature selection methods, such as Univariate Filtering, Lasso, Boruta, and Random Forest, were integrated with a Transformer-based model to develop a robust prognostic tool. This model, validated through fivefold cross-validation, demonstrated high accuracy and robustness in predicting risk scores. MALAT1 was pinpointed using permutation feature importance from machine learning methods and was further validated in DLBCL cell lines, confirming its substantial role in cell proliferation. Knockdown experiments on MALAT1 led to reduced cell proliferation, underscoring its potential as a therapeutic target. This integrated approach not only enhances the precision of biomarker identification but also provides a robust prognostic model for DLBCL, demonstrating the utility of these lncRNAs in personalized treatment strategies. This study highlights the critical role of combining diverse machine learning methods to advance DLBCL research and develop targeted cancer therapies. |
| ArticleNumber | 72 |
| Author | Lai, Zijia Ling, Li Ouyang, Wenhao Huang, Hong |
| Author_xml | – sequence: 1 givenname: Wenhao surname: Ouyang fullname: Ouyang, Wenhao organization: Department of Neurology, Shenzhen Hospital, Southern Medical University – sequence: 2 givenname: Zijia surname: Lai fullname: Lai, Zijia organization: Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University – sequence: 3 givenname: Hong surname: Huang fullname: Huang, Hong organization: School of Medicine, Guilin Medical University – sequence: 4 givenname: Li surname: Ling fullname: Ling, Li email: linglirabbit@163.com organization: Department of Neurology, Shenzhen Hospital, Southern Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40259116$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9vFCEYh4mpsX_0C3gwJF68oMAMMHMytbFqUjUxeiYM-7JLZWGEGTf77ct2V1s9GE_DhOf38uPhFB3FFAGhp4y-ZJSqV4VRIQWhXJD631CyeYBOmFANkR3nR_fWx-i0lGtKqWRKPELHbc30jMkTlD4au_IRcACTo49LMpgCC-wXECfvvDWTTxEnh-085jROqfhCMgQzVSpE--XTOR58Wpv8HXLBPuKFd24udaLJS8BviIUQcNiux1WlHqOHzoQCTw7fM_Tt8u3Xi_fk6vO7DxfnV8S2vJsIGKCcU9GwTggH1glrjVGtVUz0zcAU470ENXQ9V6wFoEbawbStbIe-65xqzlCznzvH0Ww3JgQ9Zl9bbjWjeqdP7_XpqkLf6tObmnq9T43zsIaFrQ6yuUsm4_WfO9Gv9DL91IxTxnra1QkvDhNy-jFDmfTal50BEyHNRTesr80l69qKPv8LvU5zjtXKLdU2XMgd9ex-pd9dfj1hBfgesDmVksH930UPekqF4xLy3dn_SN0ADs6_sQ |
| Cites_doi | 10.1182/blood.2021013289 10.48550/arXiv.1708.07120 10.1016/j.lfs.2019.03.040 10.3389/fimmu.2022.919231 10.7150/ijbs.33218 10.1038/s41418-024-01341-2 10.1186/s13059-017-1349-1 10.1038/nmeth.3337 10.1021/acsnano.3c00326 10.1186/s13045-024-01589-8 10.1038/s41392-022-01014-x 10.1182/blood.2019003535 10.1056/NEJMoa1801445 10.1093/nar/gkac1071 10.1186/s12935-020-01362-0 10.1038/s41588-018-0252-3 10.1093/bioinformatics/bts034 10.18637/jss.v036.i11 10.1016/j.canlet.2022.215929 10.1126/science.abf0529 10.1038/s41594-024-01340-4 10.1186/s13046-022-02485-0 10.1023/A:1010933404324 10.1016/j.ccell.2020.03.015 10.1016/j.pathol.2020.12.003 10.7150/jca.32807 10.1186/s13059-015-0866-z 10.1038/s41591-018-0016-8 10.1097/JS9.0000000000001875 10.3389/fimmu.2021.687975 10.1186/s13045-022-01392-3 10.1038/s41392-022-01229-y 10.1016/j.prp.2023.154991 10.1186/s13073-018-0611-9 10.1016/j.celrep.2016.12.019 10.1186/s13045-018-0606-4 10.1109/TKDE.2012.51 10.7554/eLife.26476 10.1053/j.seminhematol.2018.05.007 10.1186/s12943-017-0580-4 10.48550/arXiv.1711.05101 10.1038/ncomms3612 10.1101/2024.01.22.576646 10.1002/advs.202309984 10.3389/fcell.2021.758777 10.1016/j.humimm.2021.03.011 10.6004/jnccn.2023.0057 10.1186/s13059-016-1028-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Springer Nature B.V. Dec 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7TM 7U7 7X7 7XB 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2P M7P NAPCQ P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY Q9U RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10565-025-10030-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Public Health ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1573-6822 |
| ExternalDocumentID | 10.1007/s10565-025-10030-w PMC12011908 40259116 10_1007_s10565_025_10030_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: This study was supported by the Science and Technology Project of Shenzhen grantid: JCYJ20210324131614038 |
| GroupedDBID | --- .86 .VR 06C 06D 0R~ 0VY 1N0 203 29B 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5RE 5VS 67N 67Z 6NX 78A 7RV 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BENPR BHPHI C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM M7P MA- NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 PF0 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 ~EX ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP BGNMA CITATION M4Y NAPCQ NU0 CGR CUY CVF ECM EIF NPM 3V. 7TK 7TM 7U7 7X7 7XB 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY C1K CCPQU DWQXO FR3 FYUFA GNUQQ K9. LK8 M1P M2P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY Q9U RC3 7X8 5PM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 53G 5QI 7XC AANXM AARHV AAYTO ABJNI ABQSL ACBXY ADHKG ADTOC ADYPR AEBTG AEFIE AEKMD AFEXP AFGCZ AGGDS AGJBK AGQPQ AJBLW BBWZM BDATZ BKEYQ BPHCQ BVXVI CAG COF EJD EN4 EX3 FINBP FSGXE H13 HMCUK HZ~ KOW N2Q NDZJH O9- OVD PROAC PSQYO Q2X R4E RNI RZC RZE RZK S26 S28 SCLPG T16 TEORI UKHRP UNPAY UZXMN VFIZW WK6 WOW ZGI |
| ID | FETCH-LOGICAL-c428t-eae0220531855fecf5ccaa74c71593b171296e7b892714ee0a6cba4464b988f73 |
| IEDL.DBID | BENPR |
| ISSN | 1573-6822 0742-2091 |
| IngestDate | Sun Oct 26 03:48:15 EDT 2025 Tue Sep 30 17:03:56 EDT 2025 Fri Sep 05 17:33:13 EDT 2025 Wed Oct 08 14:21:46 EDT 2025 Fri Apr 25 03:26:59 EDT 2025 Wed Oct 01 06:28:26 EDT 2025 Tue Apr 22 01:10:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | LncRNA MALAT1 Cuproptosis Machine learning Diffuse large B-cell lymphoma |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c428t-eae0220531855fecf5ccaa74c71593b171296e7b892714ee0a6cba4464b988f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s10565-025-10030-w |
| PMID | 40259116 |
| PQID | 3192432564 |
| PQPubID | 54105 |
| ParticipantIDs | unpaywall_primary_10_1007_s10565_025_10030_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_12011908 proquest_miscellaneous_3192966184 proquest_journals_3192432564 pubmed_primary_40259116 crossref_primary_10_1007_s10565_025_10030_w springer_journals_10_1007_s10565_025_10030_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-21 |
| PublicationDateYYYYMMDD | 2025-04-21 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Switzerland |
| PublicationSubtitle | An International Journal Devoted to Research at the Cellular Level |
| PublicationTitle | Cell biology and toxicology |
| PublicationTitleAbbrev | Cell Biol Toxicol |
| PublicationTitleAlternate | Cell Biol Toxicol |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | X Tong (10030_CR35) 2022; 15 D Aran (10030_CR2) 2017; 18 A Frankish (10030_CR11) 2023; 51 C Zhang (10030_CR47) 2024; 17 Y Luo (10030_CR24) 2022; 550 M Zhou (10030_CR49) 2017; 16 Y Yu (10030_CR43) 2025; 111 F Harrington (10030_CR12) 2021; 53 E Becht (10030_CR3) 2016; 17 B Chapuy (10030_CR7) 2018; 24 AA Bhat (10030_CR4) 2024; 253 K Yoshihara (10030_CR42) 2013; 4 W Ouyang (10030_CR27) 2022; 9 10030_CR33 AD Zelenetz (10030_CR44) 2023; 21 J Kim (10030_CR14) 2018; 50 W Ouyang (10030_CR28) 2024; 16 L Chen (10030_CR9) 2022; 7 J Racle (10030_CR29) 2017; 6 D Zeng (10030_CR45) 2021; 12 Q-M Wang (10030_CR38) 2019; 231 P Zheng (10030_CR48) 2022; 41 M Shadman (10030_CR31) 2022; 139 S Ning (10030_CR26) 2023; 17 N Amodio (10030_CR1) 2018; 11 SR Li (10030_CR19) 2022; 7 10030_CR22 Y Yin (10030_CR41) 2021; 82 MB Kursa (10030_CR15) 2010; 36 M Tan (10030_CR34) 2019; 10 R Cao (10030_CR6) 2020; 20 M Yang (10030_CR40) 2022; 13 JT Leek (10030_CR17) 2012; 28 Y-T Liu (10030_CR21) 2024; 31 GW Wright (10030_CR39) 2020; 37 P Tsvetkov (10030_CR36) 2022; 375 F Finotello (10030_CR10) 2019; 11 B Li (10030_CR18) 2016; 17 Y-X Wang (10030_CR37) 2012; 25 10030_CR13 X Lu (10030_CR23) 2024; 11 AM Newman (10030_CR25) 2015; 12 I Skeparnias (10030_CR32) 2024; 31 R Schmitz (10030_CR30) 2018; 378 T Lin (10030_CR20) 2019; 15 L Breiman (10030_CR5) 2001; 45 SE Lacy (10030_CR16) 2020; 135 10030_CR46 P Charoentong (10030_CR8) 2017; 18 |
| References_xml | – volume: 139 start-page: 1330 issue: 9 year: 2022 ident: 10030_CR31 publication-title: Blood doi: 10.1182/blood.2021013289 – ident: 10030_CR33 doi: 10.48550/arXiv.1708.07120 – volume: 231 start-page: 116335 year: 2019 ident: 10030_CR38 publication-title: Life Sci doi: 10.1016/j.lfs.2019.03.040 – volume: 13 start-page: 919231 year: 2022 ident: 10030_CR40 publication-title: Front Immunol doi: 10.3389/fimmu.2022.919231 – volume: 15 start-page: 1287 issue: 6 year: 2019 ident: 10030_CR20 publication-title: Int J Biol Sci doi: 10.7150/ijbs.33218 – volume: 31 start-page: 1452 issue: 11 year: 2024 ident: 10030_CR21 publication-title: Cell Death Differ doi: 10.1038/s41418-024-01341-2 – volume: 18 start-page: 1 year: 2017 ident: 10030_CR2 publication-title: Genome Biol doi: 10.1186/s13059-017-1349-1 – volume: 12 start-page: 453 issue: 5 year: 2015 ident: 10030_CR25 publication-title: Nat Methods doi: 10.1038/nmeth.3337 – volume: 17 start-page: 10206 issue: 11 year: 2023 ident: 10030_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.3c00326 – volume: 17 start-page: 68 issue: 1 year: 2024 ident: 10030_CR47 publication-title: J Hematol Oncol doi: 10.1186/s13045-024-01589-8 – volume: 16 start-page: 7818 issue: 9 year: 2024 ident: 10030_CR28 publication-title: Aging (Albany NY) – volume: 7 start-page: 158 issue: 1 year: 2022 ident: 10030_CR19 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-01014-x – volume: 135 start-page: 1759 issue: 20 year: 2020 ident: 10030_CR16 publication-title: Blood doi: 10.1182/blood.2019003535 – volume: 378 start-page: 1396 issue: 15 year: 2018 ident: 10030_CR30 publication-title: N Engl J Med doi: 10.1056/NEJMoa1801445 – volume: 51 start-page: D942 issue: D1 year: 2023 ident: 10030_CR11 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1071 – volume: 20 start-page: 276 year: 2020 ident: 10030_CR6 publication-title: Cancer Cell Int doi: 10.1186/s12935-020-01362-0 – volume: 50 start-page: 1705 issue: 12 year: 2018 ident: 10030_CR14 publication-title: Nat Genet doi: 10.1038/s41588-018-0252-3 – volume: 28 start-page: 882 issue: 6 year: 2012 ident: 10030_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts034 – volume: 36 start-page: 1 year: 2010 ident: 10030_CR15 publication-title: J Stat Softw doi: 10.18637/jss.v036.i11 – volume: 550 start-page: 215929 year: 2022 ident: 10030_CR24 publication-title: Cancer Lett doi: 10.1016/j.canlet.2022.215929 – volume: 375 start-page: 1254 issue: 6586 year: 2022 ident: 10030_CR36 publication-title: Science doi: 10.1126/science.abf0529 – volume: 31 start-page: 1655 issue: 11 year: 2024 ident: 10030_CR32 publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-024-01340-4 – volume: 41 start-page: 271 issue: 1 year: 2022 ident: 10030_CR48 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02485-0 – volume: 45 start-page: 5 year: 2001 ident: 10030_CR5 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 37 start-page: 551 issue: 4 year: 2020 ident: 10030_CR39 publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.03.015 – volume: 53 start-page: 367 issue: 3 year: 2021 ident: 10030_CR12 publication-title: Pathology doi: 10.1016/j.pathol.2020.12.003 – volume: 10 start-page: 4245 issue: 18 year: 2019 ident: 10030_CR34 publication-title: J Cancer doi: 10.7150/jca.32807 – volume: 17 start-page: 1 year: 2016 ident: 10030_CR3 publication-title: Genome Biol doi: 10.1186/s13059-015-0866-z – volume: 24 start-page: 679 issue: 5 year: 2018 ident: 10030_CR7 publication-title: Nat Med doi: 10.1038/s41591-018-0016-8 – volume: 111 start-page: 839 issue: 1 year: 2025 ident: 10030_CR43 publication-title: Int J Surg doi: 10.1097/JS9.0000000000001875 – volume: 12 start-page: 687975 year: 2021 ident: 10030_CR45 publication-title: Front Immunol doi: 10.3389/fimmu.2021.687975 – volume: 15 start-page: 174 issue: 1 year: 2022 ident: 10030_CR35 publication-title: J Hematol Oncol doi: 10.1186/s13045-022-01392-3 – volume: 7 start-page: 378 issue: 1 year: 2022 ident: 10030_CR9 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-01229-y – volume: 253 start-page: 154991 year: 2024 ident: 10030_CR4 publication-title: Pathol Res Pract doi: 10.1016/j.prp.2023.154991 – volume: 11 start-page: 1 year: 2019 ident: 10030_CR10 publication-title: Genome Med doi: 10.1186/s13073-018-0611-9 – volume: 18 start-page: 248 issue: 1 year: 2017 ident: 10030_CR8 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.12.019 – volume: 11 start-page: 63 issue: 1 year: 2018 ident: 10030_CR1 publication-title: J Hematol Oncol doi: 10.1186/s13045-018-0606-4 – volume: 25 start-page: 1336 issue: 6 year: 2012 ident: 10030_CR37 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.51 – volume: 6 start-page: e26476 year: 2017 ident: 10030_CR29 publication-title: eLife doi: 10.7554/eLife.26476 – ident: 10030_CR13 doi: 10.1053/j.seminhematol.2018.05.007 – volume: 16 start-page: 16 issue: 1 year: 2017 ident: 10030_CR49 publication-title: Mol Cancer doi: 10.1186/s12943-017-0580-4 – ident: 10030_CR22 doi: 10.48550/arXiv.1711.05101 – volume: 4 start-page: 2612 issue: 1 year: 2013 ident: 10030_CR42 publication-title: Nat Commun doi: 10.1038/ncomms3612 – ident: 10030_CR46 doi: 10.1101/2024.01.22.576646 – volume: 11 start-page: 2309984 issue: 18 year: 2024 ident: 10030_CR23 publication-title: Advanced Science doi: 10.1002/advs.202309984 – volume: 9 start-page: 758777 year: 2022 ident: 10030_CR27 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.758777 – volume: 82 start-page: 812 issue: 11 year: 2021 ident: 10030_CR41 publication-title: Hum Immunol doi: 10.1016/j.humimm.2021.03.011 – volume: 21 start-page: 1118 issue: 11 year: 2023 ident: 10030_CR44 publication-title: J Natl Compr Canc Netw doi: 10.6004/jnccn.2023.0057 – volume: 17 start-page: 1 year: 2016 ident: 10030_CR18 publication-title: Genome Biol doi: 10.1186/s13059-016-1028-7 |
| SSID | ssj0006175 |
| Score | 2.4013739 |
| Snippet | Multiple machine learning techniques were employed to identify key long non-coding RNA (lncRNA) biomarkers associated with cuproptosis in Diffuse Large B-Cell... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 72 |
| SubjectTerms | B-cell lymphoma Biochemistry Biomarkers Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Biomedical and Life Sciences Cancer therapies Cell Biology Cell growth Cell Line, Tumor Cell proliferation Cell Proliferation - genetics Gene Expression Regulation, Neoplastic Humans Integrated approach Learning algorithms Life Sciences Lymphocytes B Lymphoma Lymphoma, Large B-Cell, Diffuse - genetics Lymphoma, Large B-Cell, Diffuse - pathology Machine Learning Non-coding RNA Permutations Pharmacology/Toxicology Prognosis RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Robustness Therapeutic targets |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48EPVBvK0XEXzTwPZIj8dVFBH0QVzwrSTZrC4s7WK3LPvvnUkPXRTR56Rp0m-S-aaZA-BciIh4dZ_7qiM57sSIK6qa6msP1X0_TFxlvXwfw7tecP8iXuqgsKLxdm-uJO1J_SXYDckHp4FcEk0-XYRlQem8UIp7Xrc9f1Enizo85ufn5lXQN1753T2yvSNdh9UyG8vZVI5GX9TQ7SZs1PyRdSvAt2DBZNuwUlWUnO1A_mCdIw2rq0G8clJTfTbs115BFgiWD5gucUrjSV4MC24DWrDXKNNPj11GIfnktfNesGHGqIRKWeCI5DPOrjj96mejGUoB9tqF3u3N8_Udr2sqcI2GxoQbaWxsLQVNi4HRA4EQyijQEfIaX7kR6v_QRCpOvMgNjOnIUCuJNmOgkjgeRP4eLGV5Zg6AaZHEQulYGaR9aAhJlfhJJ9YCzboAWY8DF81nTsdV6oz0M0kygZIiKKkFJZ06cNwgkdbbqEh9Mg99ZGWBA2dtM24AWqrMTF5WfdBmQ0vVgf0KuPZ1aBwLPM1DB-I5SNsOlFx7viUbvtkk2y4xI1yOA5cN-p_z-m0Zl62E_GHVh_8b_QjWPBLkTsA99xiWJu-lOUFSNFGndg98AGT7BKg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBw4P0ILchI3Ki3m4fj5LgtVBUSK4RYqZwi23HKipWzahKtll_POE7SbosQiLNHTsb-RvONPA-At4xxy6tzGsqJoGiJnEo7NTVUAbr7PE592Wb5zuLTefTxjJ3twPu-FqbNdu-fJF1Ng-3SZOrDVV4cXil8QyJC7aa-hSldj3H5FuzGDBn5CHbns8_Tb64DZ4BASF3bVB7SGB1iVzvz-422_dMN0nkzd3J4QL0HdxqzEpu1WC6v-KiTB6B77Vxqyo9xU8ux-nmt8eP_qv8Q7ncklkwd6h7BjjaP4bYba7l5AuWnNkNTk24kxTm1vjIni7xLTWrRQMqCqAb_dVWX1aKibVUNSi2N-jKbEtsXwKYOXVRkYYid49JUuKNNXCdH1L43kOUGoYhST2F-8uHr8SntBjtQhdFOTbXQbYGvrdxmhVYFQxwJHimO5CqUPkcSEmsukzTgfqT1RMRKCgxcI5kmScHDZzAypdEvgCiWJkyqRGrknnj3QqZhOkkUw9gyQurlwbv-OrOV69-RXXZqtseY4TFm7TFmaw_2-xvPOluustDGqCFSw8iDN8MyWqFVVRhdNk4GA0cMlz147gAyfA4jdIYuJfYg2YLOIGA7fG-vmMX3ttO3b-kZquPBQQ-Ky__6kxoHAxL_QuuX_ya-B3cDC71JRAN_H0b1RaNfITOr5evO8H4BgEAvJA priority: 102 providerName: Unpaywall |
| Title | Machine learning-based identification of cuproptosis-related lncRNA biomarkers in diffuse large B-cell lymphoma |
| URI | https://link.springer.com/article/10.1007/s10565-025-10030-w https://www.ncbi.nlm.nih.gov/pubmed/40259116 https://www.proquest.com/docview/3192432564 https://www.proquest.com/docview/3192966184 https://pubmed.ncbi.nlm.nih.gov/PMC12011908 https://link.springer.com/content/pdf/10.1007/s10565-025-10030-w.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-6822 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Public Health Database (subscription) customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: 8C1 dateStart: 20250101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: C6C dateStart: 20241201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: C24 dateStart: 20241201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-6822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006175 issn: 1573-6822 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWkR9EL9Oo2dZwTdvsfnYbPIg0pbWQzEch4XeU8hutlooSb00lP73zuSrloPDl83DDs1OZ3bnN9n5APgghCRcnXJXDROOO1FyRV1TXe2guU_90FZVlG_kX869bwuxOIGozYWhsMr2TKwO6jTX9I38k0uegosG2vuy-cOpaxTdrrYtNJKmtUL6uSoxdgp9hypj9aA_nkZX193ZjPZa1IU5HdSP0G7SaJpkOgQ3nBZqk-rz3bGpuoM_74ZRdnepj-FhmW2S_S5Zr_8xV7On8KTBmWxUK8YzODHZc3hQd57cv4D8RxVEaVjTNeIXJ3OWslXaRA9VAmP5kukSl7TZ5sWq4FXiC1KtM30djRil7lN0z23BVhmjVitlgb9IseVszOlKgK33qC1I9RLms-nPySVvei9wjQ7JlpvEVDm4lFwtlkYvBYo6kZ6WiH9cZUvECb6RKggdaXvGDBNfqwR9S0-FQbCU7hn0sjwzr4FpEQZC6UAZhIfoMCUqdMNhoAW6fx6iIws-tn9zvKlLbMSHYsoklBiFEldCiXcWnLeSiJvtVsQH5bDgfTeNG4VYTTKTlzUN-nbo0VrwqhZc9zp0ogWe-r4FwZFIOwIqwn08k61-V8W4bUJQyI4FF630D-u6j42LTkP-g-s393P9Fh45pLhDjzv2OfS2t6V5h2BpqwZwKhcSx2BiD6A_mo3HET2_3nyfDprdgbMTx6PRn-A4d0Y4M4-uRjd_AZ25GKs |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUEU5VH0Bbmm7ldpTWTV-rB8HVEELCgWiCoHEzd1db0qkyA44VpQ_19_WGXvtNEJCvXD2yvb4m9n5xjsPgI9CRMSrM-6rnuRoiRFXNDXV1x66-yxMXFVn-Q7C_mXw40pcrcCfthaG0irbPbHeqLNC0z_yLz5FCj466ODr5IbT1Cg6XW1HaEg7WiHbq1uM2cKOEzOfYQhX7h1_R7w_ed7R4cW3PrdTBrhG6j3lRpq62pTKiMXQ6KFAoWQU6Ag9va_cCD1iaCIVJ17kBsb0ZKiVxCgqUEkcDyMf7_sI1gI_SDD4Wzs4HPw873wB8gPRNAL1UB8T15bt2OI9JFOcPoxLpsZny67xDt-9m7bZnd1uwHqVT-R8Jsfjf9zj0TN4ankt228U8TmsmPwFPG4mXc5fQnFWJ20aZqdU_ObkPjM2ymy2Uq0grBgyXeErTaZFOSp5XWiDq8a5Ph_sM2oVQNlEtyUb5YxGu1Ql3pFy2dkBpyMINp6jduKqV3D5IChswmpe5GYbmBZJLJSOlUE6igGaVImf9GItMNwMkI058Ln9zOmkaemRLpo3EygpgpLWoKQzB3ZaJFJr3mW6UEYHPnSX0TBJVJmbomrWYCyJEbQDWw1w3eMwaBfoZUIH4iVIuwXU9Hv5Sj66rpt_u8TYUBwHdlv0F-91nxi7nYb8h9Sv75f6Paz3L85O09PjwckbeOKREvcC7rk7sDq9rcxbJGpT9c5aA4NfD22AfwHZbUwX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg5IF4FQ4FFghNdNX6s1z4gVChRSyFCiEq5md31uo0U2WkdK8pf49cx41eIKlVcevbK9vib2fnGOw-At0JI4tUp9_VAcbREyTVNTfWNh-4-DWNX11m-o_DoNPg6FuMN-NPVwlBaZbcn1ht1Whj6R77vU6Tgo4MO9rM2LeLH4fDj7ILTBCk6ae3GaTQqcmKXCwzfyg_Hh4j1O88bfvn1-Yi3Ewa4Qdo951bZutKUSohFZk0mUCAlAyPRy_valegNQyt1FHvSDawdqNBohRFUoOMoyqSP970Ft6Xvx5ROKMd9sEfMQDQtQD3UxNhtC3basj2kUZw-iUtGxhfrTvEK072asNmf2t6DrSqfqeVCTaf_OMbhA7jfMlp20KjgQ9iw-SO408y4XD6G4nudrmlZO5_ijJPjTNkkbfOUatVgRcZMha80mxflpOR1iQ2umubm5-iAUZMAyiO6LNkkZzTUpSrxjpTFzj5xOnxg0yXqJa56Aqc3gsEObOZFbp8BMyKOhDaRtkhEMTRTOvbjQWQEBpoB8jAH3nefOZk1zTySVdtmAiVBUJIalGThwG6HRNIadpms1NCBN_1lNEkSVeW2qJo1GEVi7OzA0wa4_nEYrgv0L6ED0Rqk_QJq971-JZ-c122_XeJqKI4Dex36q_e6Toy9XkP-Q-rn10v9Gu6i2SXfjkcnL2DbIx0eBNxzd2FzflnZl8jQ5vpVbQoMft-07f0Fto5JsQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBw4P0ILchI3Ki3m4fj5LgtVBUSK4RYqZwi23HKipWzahKtll_POE7SbosQiLNHTsb-RvONPA-At4xxy6tzGsqJoGiJnEo7NTVUAbr7PE592Wb5zuLTefTxjJ3twPu-FqbNdu-fJF1Ng-3SZOrDVV4cXil8QyJC7aa-hSldj3H5FuzGDBn5CHbns8_Tb64DZ4BASF3bVB7SGB1iVzvz-422_dMN0nkzd3J4QL0HdxqzEpu1WC6v-KiTB6B77Vxqyo9xU8ux-nmt8eP_qv8Q7ncklkwd6h7BjjaP4bYba7l5AuWnNkNTk24kxTm1vjIni7xLTWrRQMqCqAb_dVWX1aKibVUNSi2N-jKbEtsXwKYOXVRkYYid49JUuKNNXCdH1L43kOUGoYhST2F-8uHr8SntBjtQhdFOTbXQbYGvrdxmhVYFQxwJHimO5CqUPkcSEmsukzTgfqT1RMRKCgxcI5kmScHDZzAypdEvgCiWJkyqRGrknnj3QqZhOkkUw9gyQurlwbv-OrOV69-RXXZqtseY4TFm7TFmaw_2-xvPOluustDGqCFSw8iDN8MyWqFVVRhdNk4GA0cMlz147gAyfA4jdIYuJfYg2YLOIGA7fG-vmMX3ttO3b-kZquPBQQ-Ky__6kxoHAxL_QuuX_ya-B3cDC71JRAN_H0b1RaNfITOr5evO8H4BgEAvJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+identification+of+cuproptosis-related+lncRNA+biomarkers+in+diffuse+large+B-cell+lymphoma&rft.jtitle=Cell+biology+and+toxicology&rft.au=Ouyang%2C+Wenhao&rft.au=Lai%2C+Zijia&rft.au=Huang%2C+Hong&rft.au=Ling%2C+Li&rft.date=2025-04-21&rft.issn=1573-6822&rft.eissn=1573-6822&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1007%2Fs10565-025-10030-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10565_025_10030_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-6822&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-6822&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-6822&client=summon |