Vibrational properties of graphdiynes as 2D carbon materials beyond graphene

Two-dimensional (2D) hybrid sp-sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and I...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 17; pp. 1524 - 1536
Main Authors Serafini, P, Milani, A, Tommasini, M, Castiglioni, C, Proserpio, D. M, Bottani, C. E, Casari, C. S
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.05.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d2cp00980c

Cover

Abstract Two-dimensional (2D) hybrid sp-sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp 2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials. Raman and IR spectra investigation of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures is performed in this paper, focusing on how these spectra are affected by different topological features.
AbstractList Two-dimensional (2D) hybrid sp-sp carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials.
Two-dimensional (2D) hybrid sp–sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp 2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials.
Two-dimensional (2D) hybrid sp-sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp 2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials. Raman and IR spectra investigation of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures is performed in this paper, focusing on how these spectra are affected by different topological features.
Two-dimensional (2D) hybrid sp–sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials. Raman and IR spectra investigation of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures is performed in this paper, focusing on how these spectra are affected by different topological features.
Two-dimensional (2D) hybrid sp–sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials.
Two-dimensional (2D) hybrid sp-sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials.Two-dimensional (2D) hybrid sp-sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials.
Author Castiglioni, C
Tommasini, M
Proserpio, D. M
Milani, A
Bottani, C. E
Casari, C. S
Serafini, P
AuthorAffiliation Dipartimento di Chimica, Università degli Studi di Milano
Department of Energy, Politecnico di Milano
Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano
AuthorAffiliation_xml – name: Dipartimento di Chimica, Università degli Studi di Milano
– name: Department of Energy, Politecnico di Milano
– name: Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano
Author_xml – sequence: 1
  givenname: P
  surname: Serafini
  fullname: Serafini, P
– sequence: 2
  givenname: A
  surname: Milani
  fullname: Milani, A
– sequence: 3
  givenname: M
  surname: Tommasini
  fullname: Tommasini, M
– sequence: 4
  givenname: C
  surname: Castiglioni
  fullname: Castiglioni, C
– sequence: 5
  givenname: D. M
  surname: Proserpio
  fullname: Proserpio, D. M
– sequence: 6
  givenname: C. E
  surname: Bottani
  fullname: Bottani, C. E
– sequence: 7
  givenname: C. S
  surname: Casari
  fullname: Casari, C. S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35442257$$D View this record in MEDLINE/PubMed
BookMark eNptkUlvFDEQhS0URBa4cAe1xCUCDXif9gUpmhBAGgkOwNXyUpM46rE7dnei-feY6WQSAicv9dVTvVeHaC-mCAi9JPg9wUx98NT1GKsWuyfogHDJZgq3fG93n8t9dFjKJcaYCMKeoX0mOKdUzA_Q8lew2QwhRdM1fU495CFAadKqOc-mv_BhE-vTlIaeNs5km2KzNgPkYLrSWNik6CcSIjxHT1f1G17cnkfo59mnH4svs-W3z18XJ8uZ47QdZt5gAdZaMydKGes9EVgpS4Fj65lUcu4podySWloRDlRYBgasoM5KLAw7Qu8m3TH2ZnNjuk73OaxN3miC9Z9M9H0mlf440f1o1-AdxCGb-45kgv67EsOFPk_XWnEqiGirwPGtQE5XI5RBr0Nx0HUmQhqLplLQVkrJcEXfPEIv05hrtltKcSUZF5V6_XCi3Sh3a6nA2wlwOZWSYfWPv1O6-L71t6gwfgS7MGxXWt2E7v8tr6aWXNxO-kFkvwG_tLfx
CitedBy_id crossref_primary_10_1103_PhysRevMaterials_7_084202
crossref_primary_10_1039_D4NJ00564C
crossref_primary_10_1007_s00214_023_02960_7
crossref_primary_10_1021_acs_jpcc_4c03050
crossref_primary_10_1016_j_jcis_2024_08_198
crossref_primary_10_1039_D3CP04393B
crossref_primary_10_1016_j_talanta_2025_127673
crossref_primary_10_1016_j_combustflame_2023_112730
crossref_primary_10_1039_D4NR00943F
crossref_primary_10_1016_j_nxmate_2023_100031
crossref_primary_10_1016_j_seppur_2024_128738
crossref_primary_10_1007_s11082_023_05007_0
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126746
Cites_doi 10.1021/acsami.8b03413
10.3762/bjnano.6.49
10.1002/pssr.202000437
10.1021/acsami.8b02612
10.1002/adma.201700421
10.1038/s41563-020-0682-z
10.1021/ol005623w
10.1002/adma.201705630
10.1039/D0NR08397F
10.1021/cr050541c
10.1039/D1CS00592H
10.1039/C9NR06552K
10.1002/adma.201803202
10.1038/s41467-017-02088-w
10.1016/j.cplett.2011.02.059
10.1103/PhysRevLett.108.086804
10.1103/PhysRevMaterials.4.014001
10.1021/acs.jpcc.5b12388
10.1007/s11467-020-0992-2
10.1021/acs.jpcc.1c04238
10.1016/j.carbon.2017.07.066
10.1021/acs.accounts.7b00205
10.1021/jo050926v
10.1016/j.progsolidstchem.2012.12.001
10.1351/pac200880030519
10.1002/adma.200902623
10.1002/chem.201903297
10.1016/j.nanoen.2017.01.049
10.1063/1.3583507
10.1039/C8CS00773J
10.1021/acs.chemrev.8b00288
10.1021/ja078198b
10.1021/acs.chemmater.8b04986
10.1002/jrs.2413
10.1002/9781119468455.ch42
10.1021/acsami.8b03481
10.1039/C4CP00539B
10.1021/acsanm.0c02665
10.1021/jp0757006
10.1002/anie.199708361
10.1021/acs.jpcc.7b06390
10.1039/c3cs60388a
10.1016/j.joule.2019.01.016
10.1002/adma.201804211
10.1021/acs.accounts.9b00558
10.1039/c1ra00481f
10.1103/PhysRevB.88.075427
10.1016/j.cplett.2011.09.045
10.1557/mrc.2018.48
10.1088/2053-1583/ac26ad
10.1038/nmat2885
10.1016/j.carbon.2021.04.094
10.1002/ejoc.200200630
10.1063/1.453405
10.1134/S1063776115040214
10.1021/nn102472s
10.1103/PhysRevB.74.153418
10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y
10.1039/b922733d
10.1021/jp300107d
10.1021/acsnano.6b03048
10.1002/jcc.23686
10.1103/PhysRevB.90.081406
10.1039/C5NR06175J
10.1021/acs.jpcc.9b06942
10.1021/acsami.8b05051
10.1039/c3cp44457k
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
This journal is © the Owner Societies 2022 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © the Owner Societies 2022 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/d2cp00980c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1536
ExternalDocumentID 10.1039/d2cp00980c
PMC9425158
35442257
10_1039_D2CP00980C
d2cp00980c
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 724610
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
53G
70~
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
0UZ
6TJ
71~
9M8
ACHDF
ACRPL
ADNMO
ADTOC
AFFNX
AGQPQ
AHGXI
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
BBWZM
CAG
COF
EEHRC
EJD
FEDTE
HVGLF
H~9
IDY
J3H
L-8
MVM
NDZJH
RCLXC
ROL
UNPAY
XJT
XOL
ZCG
ID FETCH-LOGICAL-c428t-da05ebbba7199abdd15099b2e40bd36967d2124b1bddf14e25b3eaeb52cb605a3
IEDL.DBID UNPAY
ISSN 1463-9076
1463-9084
IngestDate Sun Oct 26 03:46:00 EDT 2025
Tue Sep 30 17:19:20 EDT 2025
Fri Jul 11 08:48:11 EDT 2025
Mon Jun 30 06:46:51 EDT 2025
Wed Feb 19 02:25:12 EST 2025
Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 00:54:11 EDT 2025
Fri May 06 11:27:42 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-da05ebbba7199abdd15099b2e40bd36967d2124b1bddf14e25b3eaeb52cb605a3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d2cp00980c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9728-2627
0000-0001-6597-9406
0000-0002-6945-9157
0000-0002-7917-426X
0000-0001-9144-6822
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2022/cp/d2cp00980c
PMID 35442257
PQID 2659496345
PQPubID 2047499
PageCount 13
ParticipantIDs rsc_primary_d2cp00980c
proquest_miscellaneous_2652866630
pubmed_primary_35442257
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9425158
crossref_primary_10_1039_D2CP00980C
unpaywall_primary_10_1039_d2cp00980c
proquest_journals_2659496345
crossref_citationtrail_10_1039_D2CP00980C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Xie (D2CP00980C/cit14/1) 2020; 26
Milani (D2CP00980C/cit4/1) 2019
Serafini (D2CP00980C/cit32/1) 2021; 180
Solis (D2CP00980C/cit34/1) 2019; 11
Park (D2CP00980C/cit17/1) 2018; 4
Li (D2CP00980C/cit6/1) 2014; 43
Pan (D2CP00980C/cit29/1) 2011; 98
Lorenz (D2CP00980C/cit59/1) 2014; 35
Wang (D2CP00980C/cit13/1) 2019; 31
Li (D2CP00980C/cit48/1) 2010; 46
Bao (D2CP00980C/cit12/1) 2019; 11
Malko (D2CP00980C/cit21/1) 2012; 108
Achilli (D2CP00980C/cit71/1) 2021; 8
Tommasini (D2CP00980C/cit66/1) 2007; 111
Belenkov (D2CP00980C/cit19/1) 2019
Gao (D2CP00980C/cit9/1) 2019; 48
Li (D2CP00980C/cit69/1) 2017; 29
Spitler (D2CP00980C/cit42/1) 2006; 106
Jia (D2CP00980C/cit49/1) 2017; 50
Rabia (D2CP00980C/cit55/1) 2019; 11
Ivanovskii (D2CP00980C/cit5/1) 2013; 41
van Miert (D2CP00980C/cit25/1) 2014; 90
Hirsch (D2CP00980C/cit1/1) 2010; 9
Sakamoto (D2CP00980C/cit10/1) 2019; 31
Zhang (D2CP00980C/cit7/1) 2021; 16
Kamalinahad (D2CP00980C/cit67/1) 2019; 123
Haley (D2CP00980C/cit44/1) 1997; 36
Haley (D2CP00980C/cit40/1) 2008; 80
Thomas (D2CP00980C/cit23/1) 2019; 31
Baughman (D2CP00980C/cit15/1) 1987; 87
Marsden (D2CP00980C/cit41/1) 2005; 70
Wang (D2CP00980C/cit39/1) 2014; 16
Zhang (D2CP00980C/cit54/1) 2018; 9
Ouyang (D2CP00980C/cit18/1) 2020; 14
Casari (D2CP00980C/cit3/1) 2018; 8
Milani (D2CP00980C/cit63/1) 2006; 74
Zhang (D2CP00980C/cit37/1) 2016; 120
Sun (D2CP00980C/cit57/1) 2018; 30
Mortazavi (D2CP00980C/cit33/1) 2017; 123
Zuo (D2CP00980C/cit50/1) 2019; 3
Goyenola (D2CP00980C/cit62/1) 2011; 506
Cui (D2CP00980C/cit22/1) 2013; 15
Belenkov (D2CP00980C/cit16/1) 2015; 120
Casari (D2CP00980C/cit2/1) 2016; 8
Huang (D2CP00980C/cit11/1) 2018; 118
Galeotti (D2CP00980C/cit24/1) 2020; 19
Serafini (D2CP00980C/cit31/1) 2020; 4
Long (D2CP00980C/cit27/1) 2011; 5
Innocenti (D2CP00980C/cit64/1) 2010; 41
Diederich (D2CP00980C/cit47/1) 2010; 22
Bai (D2CP00980C/cit28/1) 2011; 1
Popov (D2CP00980C/cit36/1) 2013; 88
Jia (D2CP00980C/cit70/1) 2017; 33
Lucotti (D2CP00980C/cit65/1) 2009; 131
Gueorguiev (D2CP00980C/cit61/1) 2011; 516
Fang (D2CP00980C/cit52/1) 2022; 51
Kehoe (D2CP00980C/cit46/1) 2000; 2
Sun (D2CP00980C/cit53/1) 2016; 10
Marsden (D2CP00980C/cit43/1) 2003
Zhou (D2CP00980C/cit68/1) 2019; 11
Milani (D2CP00980C/cit35/1) 2015; 6
Serafini (D2CP00980C/cit58/1) 2021; 125
van Miert (D2CP00980C/cit26/1) 2014
Zhao (D2CP00980C/cit38/1) 2017; 121
Bu (D2CP00980C/cit30/1) 2012; 116
Ge (D2CP00980C/cit8/1) 2019; 11
Rabia (D2CP00980C/cit56/1) 2020; 3
D2CP00980C/cit60/1
Yan (D2CP00980C/cit20/1) 2021; 13
Du (D2CP00980C/cit51/1) 2020; 53
Wan (D2CP00980C/cit45/1) 2000; 6
References_xml – issn: 2019
  publication-title: Handbook of Graphene
  doi: Milani Bassi Russo Tommasini Casari
– issn: 2014
  end-page: 195414
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: van Miert Juricic Morais Smith
– issn: 2019
  end-page: p 113−150
  publication-title: Handbook of Graphene
  doi: Belenkov Brzhezinskaya Mavrinskii
– volume: 11
  start-page: 2707
  year: 2019
  ident: D2CP00980C/cit8/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03413
– volume: 6
  start-page: 480
  year: 2015
  ident: D2CP00980C/cit35/1
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.49
– volume: 14
  start-page: 2000437
  year: 2020
  ident: D2CP00980C/cit18/1
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202000437
– volume: 11
  start-page: 2632
  issue: 3
  year: 2019
  ident: D2CP00980C/cit68/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02612
– volume: 29
  start-page: 1700421
  issue: 19
  year: 2017
  ident: D2CP00980C/cit69/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700421
– volume-title: Handbook of Graphene
  year: 2019
  ident: D2CP00980C/cit4/1
– volume: 19
  start-page: 874
  year: 2020
  ident: D2CP00980C/cit24/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0682-z
– volume: 2
  start-page: 969
  year: 2000
  ident: D2CP00980C/cit46/1
  publication-title: Org. Lett.
  doi: 10.1021/ol005623w
– volume: 30
  start-page: 1705630
  year: 2018
  ident: D2CP00980C/cit57/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705630
– volume: 13
  start-page: 3564
  year: 2021
  ident: D2CP00980C/cit20/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR08397F
– volume: 106
  start-page: 5344
  year: 2006
  ident: D2CP00980C/cit42/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050541c
– volume: 51
  start-page: 2681
  year: 2022
  ident: D2CP00980C/cit52/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00592H
– volume: 11
  start-page: 18191
  year: 2019
  ident: D2CP00980C/cit55/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR06552K
– start-page: 195414
  volume-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  year: 2014
  ident: D2CP00980C/cit26/1
– volume: 31
  start-page: 1803202
  year: 2019
  ident: D2CP00980C/cit13/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803202
– volume: 9
  start-page: 1
  year: 2018
  ident: D2CP00980C/cit54/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– volume: 506
  start-page: 86
  issue: 1–3
  year: 2011
  ident: D2CP00980C/cit62/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.02.059
– volume: 108
  start-page: 086804
  year: 2012
  ident: D2CP00980C/cit21/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.086804
– ident: D2CP00980C/cit60/1
– volume: 4
  start-page: 014001
  year: 2020
  ident: D2CP00980C/cit31/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.4.014001
– volume: 120
  start-page: 10605
  year: 2016
  ident: D2CP00980C/cit37/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b12388
– volume: 16
  start-page: 23201
  year: 2021
  ident: D2CP00980C/cit7/1
  publication-title: Front. Phys.
  doi: 10.1007/s11467-020-0992-2
– volume: 125
  start-page: 18456
  year: 2021
  ident: D2CP00980C/cit58/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c04238
– volume: 123
  start-page: 344
  year: 2017
  ident: D2CP00980C/cit33/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.066
– volume: 50
  start-page: 2470
  issue: 10
  year: 2017
  ident: D2CP00980C/cit49/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00205
– volume: 70
  start-page: 10213
  year: 2005
  ident: D2CP00980C/cit41/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050926v
– volume: 41
  start-page: 1
  year: 2013
  ident: D2CP00980C/cit5/1
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2012.12.001
– volume: 80
  start-page: 519
  year: 2008
  ident: D2CP00980C/cit40/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200880030519
– volume: 22
  start-page: 803
  year: 2010
  ident: D2CP00980C/cit47/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902623
– volume: 26
  start-page: 569
  year: 2020
  ident: D2CP00980C/cit14/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201903297
– volume: 33
  start-page: 343
  year: 2017
  ident: D2CP00980C/cit70/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.049
– volume: 98
  start-page: 173102
  year: 2011
  ident: D2CP00980C/cit29/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3583507
– volume: 48
  start-page: 908
  year: 2019
  ident: D2CP00980C/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00773J
– volume: 118
  start-page: 7744
  year: 2018
  ident: D2CP00980C/cit11/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00288
– volume: 131
  start-page: 4239
  year: 2009
  ident: D2CP00980C/cit65/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078198b
– volume: 31
  start-page: 3051
  year: 2019
  ident: D2CP00980C/cit23/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04986
– volume: 41
  start-page: 226
  year: 2010
  ident: D2CP00980C/cit64/1
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2413
– start-page: 113
  volume-title: Handbook of Graphene
  year: 2019
  ident: D2CP00980C/cit19/1
  doi: 10.1002/9781119468455.ch42
– volume: 11
  start-page: 2670
  year: 2019
  ident: D2CP00980C/cit34/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03481
– volume: 16
  start-page: 11303
  year: 2014
  ident: D2CP00980C/cit39/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00539B
– volume: 3
  start-page: 12178
  year: 2020
  ident: D2CP00980C/cit56/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c02665
– volume: 111
  start-page: 11645
  year: 2007
  ident: D2CP00980C/cit66/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0757006
– volume: 36
  start-page: 836
  year: 1997
  ident: D2CP00980C/cit44/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199708361
– volume: 121
  start-page: 21430
  year: 2017
  ident: D2CP00980C/cit38/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06390
– volume: 43
  start-page: 2572
  year: 2014
  ident: D2CP00980C/cit6/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60388a
– volume: 3
  start-page: 899
  issue: 4
  year: 2019
  ident: D2CP00980C/cit50/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.016
– volume: 31
  start-page: 1804211
  year: 2019
  ident: D2CP00980C/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804211
– volume: 53
  start-page: 459
  issue: 2
  year: 2020
  ident: D2CP00980C/cit51/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00558
– volume: 1
  start-page: 768
  year: 2011
  ident: D2CP00980C/cit28/1
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00481f
– volume: 88
  start-page: 075427
  year: 2013
  ident: D2CP00980C/cit36/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075427
– volume: 4
  start-page: 541
  year: 2018
  ident: D2CP00980C/cit17/1
  publication-title: npj Comput. Mater.
– volume: 516
  start-page: 62
  issue: 1–3
  year: 2011
  ident: D2CP00980C/cit61/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.09.045
– volume: 8
  start-page: 207
  year: 2018
  ident: D2CP00980C/cit3/1
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2018.48
– volume: 8
  start-page: 044014
  year: 2021
  ident: D2CP00980C/cit71/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac26ad
– volume: 9
  start-page: 868
  year: 2010
  ident: D2CP00980C/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2885
– volume: 180
  start-page: 265
  year: 2021
  ident: D2CP00980C/cit32/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.04.094
– start-page: 2355
  year: 2003
  ident: D2CP00980C/cit43/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200200630
– volume: 87
  start-page: 6687
  year: 1987
  ident: D2CP00980C/cit15/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.453405
– volume: 120
  start-page: 820
  year: 2015
  ident: D2CP00980C/cit16/1
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776115040214
– volume: 5
  start-page: 2593
  year: 2011
  ident: D2CP00980C/cit27/1
  publication-title: ACS Nano
  doi: 10.1021/nn102472s
– volume: 74
  start-page: 153418
  year: 2006
  ident: D2CP00980C/cit63/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.153418
– volume: 6
  start-page: 2044
  year: 2000
  ident: D2CP00980C/cit45/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y
– volume: 46
  start-page: 3256
  year: 2010
  ident: D2CP00980C/cit48/1
  publication-title: Chem. Commun.
  doi: 10.1039/b922733d
– volume: 116
  start-page: 3934
  year: 2012
  ident: D2CP00980C/cit30/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp300107d
– volume: 10
  start-page: 7023
  year: 2016
  ident: D2CP00980C/cit53/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03048
– volume: 35
  start-page: 1789
  year: 2014
  ident: D2CP00980C/cit59/1
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.23686
– volume: 90
  start-page: 081406
  year: 2014
  ident: D2CP00980C/cit25/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.081406
– volume: 8
  start-page: 4414
  year: 2016
  ident: D2CP00980C/cit2/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR06175J
– volume: 123
  start-page: 27140
  year: 2019
  ident: D2CP00980C/cit67/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06942
– volume: 11
  start-page: 2717
  year: 2019
  ident: D2CP00980C/cit12/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05051
– volume: 15
  start-page: 8179
  year: 2013
  ident: D2CP00980C/cit22/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44457k
SSID ssj0001513
Score 2.459215
Snippet Two-dimensional (2D) hybrid sp-sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure...
Two-dimensional (2D) hybrid sp–sp 2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure...
Two-dimensional (2D) hybrid sp-sp carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly...
Two-dimensional (2D) hybrid sp–sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure...
Two-dimensional (2D) hybrid sp-sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1524
SubjectTerms Carbon
Chemistry
Crystal structure
Density functional theory
Graphene
Hybrid systems
Infrared spectroscopy
Mathematical analysis
Spectra
Spectrum analysis
Symmetry
Topology
Two dimensional materials
Title Vibrational properties of graphdiynes as 2D carbon materials beyond graphene
URI https://www.ncbi.nlm.nih.gov/pubmed/35442257
https://www.proquest.com/docview/2659496345
https://www.proquest.com/docview/2652866630
https://pubmed.ncbi.nlm.nih.gov/PMC9425158
https://pubs.rsc.org/en/content/articlepdf/2022/cp/d2cp00980c
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i7WFw4HsQGJMRu3BImzhOUh-rbtNAY9phReMU-VNMVGnUpkLjr-fZSdOVckDcLPkXxR_Pz-_Zz78HcJxZanLDRWiFtiHDYihsokOJpgNPYmaUDx7_cpmdT9nnm_Smjc1xb2GwEcvBYtlQBBt03x1HU1kP23GstHXuOh2qaqipqhwdZqT2oJ-laIr3oD-9vBp_a14UJSE6ftmmPGJretKE3_t4e0PasTJ3gyX3sHmPYH9VVuLup5jN7u1HZ0-apKu-Jz4M5cdgVcuB-vUHyeN_d_UpPG4tVTJucM_ggSmfw_5knSDuBVx8da52c5ZIKneov3DsrGRuiafB1rd3qEeJWBJ6QpRYyHlJ0D5uRJ5I_3SmQaK-fQnTs9PryXnYJmcIFXosdahFlBoppchjzoXUGi1LziU1LJLaJQnMNe6KTMZYZXHOaSoTI4xMqZLoQonkAHrlvDSvgeCGmI-08sYby2wsbU4jkWtOpVURzwP4uJ6hQrXM5S6BxqzwN-gJL07o5MqPzySADx22avg6_oo6XE900a7ZZUFRhhjqI5YG8L6rxjF1VyiiNPOVx9ARenxJFMCrRi663yQpY6gdsbn5lsR0AMfkvV1T3n73jN4cNWecjgI4QHno8JtZD-C4E7edbm1gb_4N9hYeOsHyYZvsEHr1YmXeoWlVyyPoj0-vP10ctQvpN90vJX4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i3WFw4HsQGMiIXTikTRwnqY9TxzQhmHagaJwif2oTVRq1qdD463m203SlHBA3S_5F8cfz83v28-8BHBeWmtJwEVuhbcywGAub6Vii6cCzlBnlg8e_XBTnU_bpKr_qYnPcWxhsxHK4WAaKYIPuu-NoqttRN46Nts5dpyPVjDRVjaPDTNQe7Bc5muID2J9eXJ58Dy-Kshgdv2JTHrM1PWnG73y8vSHtWJm7wZJ72LwHcLCqG3H7U8xmd_ajs0ch6arviQ9D-TFctXKofv1B8vjfXX0MDztLlZwE3BO4Z-qncDBZJ4h7Bp-_OVc7nCWSxh3qLxw7K5lb4mmw9c0t6lEiloSeEiUWcl4TtI-DyBPpn84EJOrb5zA9-_h1ch53yRlihR5LG2uR5EZKKcqUcyG1RsuSc0kNS6R2SQJLjbsikylWWZxzmsvMCCNzqiS6UCI7hEE9r81LILghlmOtvPHGCptKW9JElJpTaVXCywg-rGeoUh1zuUugMav8DXrGq1M6ufTjM4ngfY9tAl_HX1FH64muujW7rCjKEEN9xPII3vXVOKbuCkXUZr7yGDpGjy9LIngR5KL_TZYzhtoRm1tuSUwPcEze2zX1zbVn9OaoOdN8HMEhykOP38x6BMe9uO10awN79W-w13DfCZYP22RHMGgXK_MGTatWvu0W0G-5byPs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+properties+of+graphdiynes+as+2D+carbon+materials+beyond+graphene&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Serafini%2C+P.&rft.au=Milani%2C+A.&rft.au=Tommasini%2C+M.&rft.au=Castiglioni%2C+C.&rft.date=2022-05-04&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=17&rft.spage=10524&rft.epage=10536&rft_id=info:doi/10.1039%2FD2CP00980C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP00980C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon