On the identification of cross-flow mode in three-dimensional boundary layers
Parametric zones are obtained where the cross-flow instability can be identified as a mode in the three-dimensional boundary layers with the Mach number ranging from 0 to 10. Although the term cross-flow mode is widely used in the investigations on boundary-layer instability, the previous work [Z. L...
Saved in:
Published in | AIP advances Vol. 13; no. 1; pp. 015203 - 015203-19 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.01.2023
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/5.0135008 |
Cover
Abstract | Parametric zones are obtained where the cross-flow instability can be identified as a mode in the three-dimensional boundary layers with the Mach number ranging from 0 to 10. Although the term cross-flow mode is widely used in the investigations on boundary-layer instability, the previous work [Z. Liu, Phys. Fluids 34, 094110 (2022)] has demonstrated that a cross-flow mode cannot be designated in certain circumstances. The identification of the cross-flow mode is significant not only in the justifiable use of the term but also in judging whether a disturbance is more inclined to a cross-flow type or not. In this work, a criterion is built to identify the cross-flow mode based on the growth-rate peak and disturbance shape. By means of extensive calculations and identifications, parametric zones are presented for the unstable cross-flow mode. It is found that the cross-flow mode cannot be identified at large local sweep or at Mach numbers larger than 1.6. In parametric zones, the cross-flow mode can be distinguished from the Tollmien–Schlichting mode, or identified as the solely dominant mode. Based on the identifications, the maximum growth rates of the cross-flow mode, the Tollmien–Schlichting mode, and the Mack modes in the three-dimensional boundary layers are provided. The dominant mode can be determined at different Mach numbers. The cross-flow mode is revealed to dominate the boundary-layer instability at low Mach numbers. Under large cross-flow strengths, the second mode could not be the dominant mode in the hypersonic boundary layers, which contrasts sharply with the two-dimensional case. |
---|---|
AbstractList | Parametric zones are obtained where the cross-flow instability can be identified as a mode in the three-dimensional boundary layers with the Mach number ranging from 0 to 10. Although the term cross-flow mode is widely used in the investigations on boundary-layer instability, the previous work [Z. Liu, Phys. Fluids 34, 094110 (2022)] has demonstrated that a cross-flow mode cannot be designated in certain circumstances. The identification of the cross-flow mode is significant not only in the justifiable use of the term but also in judging whether a disturbance is more inclined to a cross-flow type or not. In this work, a criterion is built to identify the cross-flow mode based on the growth-rate peak and disturbance shape. By means of extensive calculations and identifications, parametric zones are presented for the unstable cross-flow mode. It is found that the cross-flow mode cannot be identified at large local sweep or at Mach numbers larger than 1.6. In parametric zones, the cross-flow mode can be distinguished from the Tollmien–Schlichting mode, or identified as the solely dominant mode. Based on the identifications, the maximum growth rates of the cross-flow mode, the Tollmien–Schlichting mode, and the Mack modes in the three-dimensional boundary layers are provided. The dominant mode can be determined at different Mach numbers. The cross-flow mode is revealed to dominate the boundary-layer instability at low Mach numbers. Under large cross-flow strengths, the second mode could not be the dominant mode in the hypersonic boundary layers, which contrasts sharply with the two-dimensional case. |
Author | Liu, Zhiyong |
Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0002-1366-2236 surname: Liu fullname: Liu, Zhiyong |
BookMark | eNp90E9PHCEYBnBiNNFaD36DSXqyySgvzAzD0ZhWTWy81DN5B14sm9lhC7Nt_PbFXf80rZELhPx4gOcD253iRIwdAz8F3smz9pSDbDnvd9iBgLavpRDd7l_rfXaU84KX0WjgfXPAvt1O1fyDquBomoMPFucQpyr6yqaYc-3H-LtaRlfEI0xEtQtLmnJROFZDXE8O00M14gOl_JHteRwzHT3Nh-zu65fvF1f1ze3l9cX5TW0b0c-1BRCK-ECqGTqQZHWriVAjWScGYYErqbWHwVtE8EIiANfKYdFAjZKH7Hqb6yIuzCqFZXmDiRjMZiOme4NpDnYkoyR6gb6VoIZGkR64gJ50w6UdOgdYsj5ts1Yp_lxTns0irlP5XDZCdVyoXvdQ1MlWbWpJ5F9uBW4eyzeteSq_2LN_rA3zptc5YRjfPPF5eyI_y5f4XzG9QrNy_j38f_If7_WjGA |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1063_5_0160098 |
Cites_doi | 10.1063/5.0057853 10.1063/5.0046954 10.1063/5.0110311 10.1017/jfm.2022.607 10.1017/jfm.2016.793 10.2514/3.49693 10.1017/jfm.2021.497 10.1016/0021-9991(90)90106-b 10.2514/1.j056028 10.1007/s10409-021-01136-5 10.2514/1.j051064 10.1017/jfm.2021.962 10.1017/jfm.2020.15 10.1017/jfm.2018.706 10.1098/rspa.1984.0099 10.1017/jfm.2021.1077 10.1146/annurev.fl.21.010189.001315 10.1017/jfm.2019.864 10.1017/jfm.2016.643 10.1016/s0376-0421(99)00002-0 10.1017/S0022112098001931 10.2514/1.j056492 10.1063/1.5094609 10.1063/5.0041442 10.1063/5.0075233 10.2514/1.j058981 10.1016/j.ast.2022.107327 10.2514/1.a33145 10.1063/5.0050786 10.1063/5.0044143 10.1063/1.5125812 10.1063/5.0077734 10.1017/jfm.2016.536 10.1017/jfm.2018.253 10.1103/physrevfluids.1.053603 10.1063/1.5084235 10.1146/annurev.fluid.35.101101.161045 10.1017/jfm.2019.397 10.1063/5.0101187 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0135008 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 015203-19 |
ExternalDocumentID | oai_doaj_org_article_73af2af5317b47e9b0218e9403cb6d1a 10_1063_5_0135008 adv |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-c1127e0be74b613ec959eea9aecd2b2c107399f1bfcaa1f23a11097dab611e473 |
IEDL.DBID | AJDQP |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:26:08 EDT 2025 Mon Jun 30 04:38:15 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Thu Jul 03 08:44:19 EDT 2025 Fri Jun 21 00:17:20 EDT 2024 Tue Jul 04 19:18:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-c1127e0be74b613ec959eea9aecd2b2c107399f1bfcaa1f23a11097dab611e473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1366-2236 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0135008 |
PQID | 2760278981 |
PQPubID | 2050671 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2760278981 scitation_primary_10_1063_5_0135008 crossref_primary_10_1063_5_0135008 crossref_citationtrail_10_1063_5_0135008 doaj_primary_oai_doaj_org_article_73af2af5317b47e9b0218e9403cb6d1a |
PublicationCentury | 2000 |
PublicationDate | 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2023 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Miró Miró, Beyak, Pinna, Reed (c40) 2019; 31 Mack (c3) 1975; 13 Borodulin, Ivanov, Kachanov, Mischenko, Örlü, Hanifi, Hein (c9) 2019; 31 Xu, Chen, Liu, Dong, Fu (c28) 2019; 873 Liu, Yuan, Liu, Yang, Tu, Chen, Gui, Chen (c15) 2021; 37 Arndt, Corke, Matlis, Semper (c12) 2020; 887 Ustinov, Kachanov (c34) 2021; 33 Fedorov, Egorov (c41) 2022; 933 De Vincentiis, Henningson, Hanifi (c11) 2022; 931 Paredes, Gosse, Theofilis, Kimmel (c22) 2016; 804 Xu, Liu, Chen, Fu (c25) 2018; 56 Wan, Tu, Yuan, Chen, Zhang (c17) 2021; 33 Rius-Vidales, Kotsonis (c32) 2021; 924 Yates, Matlis, Juliano, Tufts (c36) 2020; 58 Bippes (c18) 1999; 35 Craig, Saric (c19) 2016; 808 Carneiro, Araújo, Marinho, Martos, Passaro, Toro (c16) 2022; 12 Zhang, Shi (c5) 2021; 11 Ide, Hirota, Tokugawa (c35) 2021; 33 Liu (c38) 2021; 33 Saric, Reed, White (c7) 2003; 35 Reed, Saric (c6) 1989; 21 Groot, Serpieri, Pinna, Kotsonis (c27) 2018; 846 Liu (c8) 2022; 34 Meng, Shi, Shi, Zhu (c13) 2022; 12 Xiang, Chen, Yuan, Wan, Zhuang, Zhang, Tu (c23) 2022; 122 Balakumar, King (c24) 2012; 50 Malik (c39) 1990; 86 Li, Choudhari, Paredes, Duan (c20) 2016; 1 Morkovin, Reshotko, Herbert (c1) 1994; 39 Borodulin, Ivanov, Kachanov, Mischenko, Örlü, Hanifi, Hein (c10) 2019; 31 Moyes, Paredes, Kocian, Reed (c21) 2017; 812 Yates, Tufts, Juliano (c31) 2020; 883 Edelman, Schneider (c30) 2018; 56 Chen, Xi, Ren, Fu (c29) 2022; 947 Zoppini, Ragni, Kotsonis (c33) 2022; 34 Hall, Malik, Poll (c2) 1984; 395 Di Giovanni, Stemmer (c14) 2018; 856 Högberg, Henningson (c26) 1998; 368 Borg, Kimmel, Stanfield (c37) 2015; 52 (2023081021084584400_c15) 2021; 37 (2023081021084584400_c3) 1975; 13 (2023081021084584400_c29) 2022; 947 (2023081021084584400_c9) 2019; 31 (2023081021084584400_c36) 2020; 58 (2023081021084584400_c27) 2018; 846 (2023081021084584400_c30) 2018; 56 (2023081021084584400_c34) 2021; 33 (2023081021084584400_c20) 2016; 1 (2023081021084584400_c13) 2022; 12 (2023081021084584400_c7) 2003; 35 (2023081021084584400_c19) 2016; 808 (2023081021084584400_c37) 2015; 52 (2023081021084584400_c8) 2022; 34 (2023081021084584400_c24) 2012; 50 (2023081021084584400_c17) 2021; 33 (2023081021084584400_c28) 2019; 873 (2023081021084584400_c32) 2021; 924 (2023081021084584400_c38) 2021; 33 (2023081021084584400_c4) 1984 (2023081021084584400_c18) 1999; 35 (2023081021084584400_c22) 2016; 804 (2023081021084584400_c40) 2019; 31 (2023081021084584400_c5) 2021; 11 (2023081021084584400_c35) 2021; 33 (2023081021084584400_c41) 2022; 933 (2023081021084584400_c25) 2018; 56 (2023081021084584400_c10) 2019; 31 (2023081021084584400_c33) 2022; 34 (2023081021084584400_c11) 2022; 931 (2023081021084584400_c1) 1994; 39 (2023081021084584400_c39) 1990; 86 (2023081021084584400_c31) 2020; 883 (2023081021084584400_c12) 2020; 887 (2023081021084584400_c2) 1984; 395 (2023081021084584400_c21) 2017; 812 (2023081021084584400_c26) 1998; 368 (2023081021084584400_c14) 2018; 856 (2023081021084584400_c23) 2022; 122 (2023081021084584400_c6) 1989; 21 (2023081021084584400_c16) 2022; 12 |
References_xml | – volume: 887 start-page: A30 year: 2020 ident: c12 article-title: Controlled stationary/travelling cross-flow mode interaction in a Mach 6.0 boundary layer publication-title: J. Fluid Mech. – volume: 924 start-page: A34 year: 2021 ident: c32 article-title: Impact of a forward-facing step on the development of crossflow instability publication-title: J. Fluid Mech. – volume: 52 start-page: 664 year: 2015 ident: c37 article-title: Traveling crossflow instability for the HIFiRE-5 elliptic cone publication-title: J. Spacecr. Rockets – volume: 1 start-page: 053603 year: 2016 ident: c20 article-title: High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer publication-title: Phys. Rev. Fluids – volume: 846 start-page: 605 year: 2018 ident: c27 article-title: Secondary crossflow instability through global analysis of measured base flows publication-title: J. Fluid Mech. – volume: 21 start-page: 235 year: 1989 ident: c6 article-title: Stability of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. – volume: 31 start-page: 044101 year: 2019 ident: c40 article-title: High-enthalpy models for boundary-layer stability and transition publication-title: Phys. Fluids – volume: 13 start-page: 278 year: 1975 ident: c3 article-title: Linear stability theory and the problem of supersonic boundary-layer transition publication-title: AIAA J. – volume: 56 start-page: 3570 year: 2018 ident: c25 article-title: Role of freestream slow acoustic waves in a hypersonic three-dimensional boundary layer publication-title: AIAA J. – volume: 395 start-page: 229 year: 1984 ident: c2 article-title: On the stability of an infinite swept attachment line boundary layer publication-title: Proc. R. Soc. London, Ser. A – volume: 933 start-page: A26 year: 2022 ident: c41 article-title: Instability of the attachment line boundary layer in a supersonic swept flow publication-title: J. Fluid Mech. – volume: 35 start-page: 413 year: 2003 ident: c7 article-title: Stability and transition of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. – volume: 35 start-page: 363 year: 1999 ident: c18 article-title: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability publication-title: Prog. Aerosp. Sci. – volume: 31 start-page: 114104 year: 2019 ident: c10 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien-Schlichting instability publication-title: Phys. Fluids – volume: 368 start-page: 339 year: 1998 ident: c26 article-title: Secondary instability of cross-flow vortices in Falkner–Skan–Cooke boundary layers publication-title: J. Fluid Mech. – volume: 883 start-page: A50 year: 2020 ident: c31 article-title: Analysis of the hypersonic cross-flow instability with experimental wavenumber distributions publication-title: J. Fluid Mech. – volume: 808 start-page: 224 year: 2016 ident: c19 article-title: Crossflow instability in a hypersonic boundary layer publication-title: J. Fluid Mech. – volume: 804 start-page: 442 year: 2016 ident: c22 article-title: Linear modal instabilities of hypersonic flow over an elliptic cone publication-title: J. Fluid Mech. – volume: 33 start-page: 034112 year: 2021 ident: c35 article-title: Stability assessment on sinusoidal roughness elements for crossflow-transition control publication-title: Phys. Fluids – volume: 33 start-page: 044110 year: 2021 ident: c17 article-title: Identification of traveling crossflow waves under real hypersonic flight conditions publication-title: Phys. Fluids – volume: 37 start-page: 1637 year: 2021 ident: c15 article-title: Design and transition characteristics of a standard model for hypersonic boundary layer transition research publication-title: Acta Mech. Sin. – volume: 12 start-page: 025116 year: 2022 ident: c13 article-title: A machine learning method for transition prediction in hypersonic flows over a cone with angles of attack publication-title: AIP Adv. – volume: 58 start-page: 2093 year: 2020 ident: c36 article-title: Plasma-actuated flow control of hypersonic crossflow-induced boundary-layer transition publication-title: AIAA J. – volume: 856 start-page: 470 year: 2018 ident: c14 article-title: Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration publication-title: J. Fluid Mech. – volume: 33 start-page: 126109 year: 2021 ident: c38 article-title: Compressible Falkner–Skan–Cooke boundary layer on a flat plate publication-title: Phys. Fluids – volume: 34 start-page: 084113 year: 2022 ident: c33 article-title: Transition due to isolated roughness in a swept wing boundary layer publication-title: Phys. Fluids – volume: 33 start-page: 094105 year: 2021 ident: c34 article-title: Comparison of amplitude method of roughness-induced swept-wing transition prediction with experiment publication-title: Phys. Fluids – volume: 12 start-page: 055322 year: 2022 ident: c16 article-title: Leading-to-trailing edge theoretical design of a generic scramjet publication-title: AIP Adv. – volume: 86 start-page: 376 year: 1990 ident: c39 article-title: Numerical methods for hypersonic boundary layer stability publication-title: J. Comput. Phys. – volume: 50 start-page: 1476 year: 2012 ident: c24 article-title: Receptivity and stability of supersonic swept flows publication-title: AIAA J. – volume: 39 start-page: 1 year: 1994 ident: c1 article-title: Transition in open flow systems—A reassessment publication-title: Bull. Am. Phys. Soc. – volume: 11 start-page: 035104 year: 2021 ident: c5 article-title: Nonlinear interactions in a hypersonic boundary layer publication-title: AIP Adv. – volume: 122 start-page: 107327 year: 2022 ident: c23 article-title: Cross-flow transition model predictions of hypersonic transition research vehicle publication-title: Aerosp. Sci. Technol. – volume: 812 start-page: 370 year: 2017 ident: c21 article-title: Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone publication-title: J. Fluid Mech. – volume: 31 start-page: 064101 year: 2019 ident: c9 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability publication-title: Phys. Fluids – volume: 931 start-page: A24 year: 2022 ident: c11 article-title: Transition in an infinite swept-wing boundary layer subject to surface roughness and free-stream turbulence publication-title: J. Fluid Mech. – volume: 873 start-page: 914 year: 2019 ident: c28 article-title: The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow publication-title: J. Fluid Mech. – volume: 947 start-page: A25 year: 2022 ident: c29 article-title: Cross-flow vortices and their secondary instabilities in hypersonic and high-enthalpy boundary layer publication-title: J. Fluid Mech. – volume: 34 start-page: 094110 year: 2022 ident: c8 article-title: Cross-flow instability in compressible boundary layer over a flat plate publication-title: Phys. Fluids – volume: 56 start-page: 182 year: 2018 ident: c30 article-title: Secondary instabilities of hypersonic stationary crossflow waves publication-title: AIAA J. – volume: 33 start-page: 094105 year: 2021 ident: 2023081021084584400_c34 article-title: Comparison of amplitude method of roughness-induced swept-wing transition prediction with experiment publication-title: Phys. Fluids doi: 10.1063/5.0057853 – volume: 33 start-page: 044110 year: 2021 ident: 2023081021084584400_c17 article-title: Identification of traveling crossflow waves under real hypersonic flight conditions publication-title: Phys. Fluids doi: 10.1063/5.0046954 – volume: 34 start-page: 094110 year: 2022 ident: 2023081021084584400_c8 article-title: Cross-flow instability in compressible boundary layer over a flat plate publication-title: Phys. Fluids doi: 10.1063/5.0110311 – volume: 947 start-page: A25 year: 2022 ident: 2023081021084584400_c29 article-title: Cross-flow vortices and their secondary instabilities in hypersonic and high-enthalpy boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.607 – volume: 812 start-page: 370 year: 2017 ident: 2023081021084584400_c21 article-title: Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.793 – volume: 13 start-page: 278 issue: 3 year: 1975 ident: 2023081021084584400_c3 article-title: Linear stability theory and the problem of supersonic boundary-layer transition publication-title: AIAA J. doi: 10.2514/3.49693 – volume: 924 start-page: A34 year: 2021 ident: 2023081021084584400_c32 article-title: Impact of a forward-facing step on the development of crossflow instability publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.497 – volume: 86 start-page: 376 year: 1990 ident: 2023081021084584400_c39 article-title: Numerical methods for hypersonic boundary layer stability publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90106-b – volume: 56 start-page: 182 issue: 1 year: 2018 ident: 2023081021084584400_c30 article-title: Secondary instabilities of hypersonic stationary crossflow waves publication-title: AIAA J. doi: 10.2514/1.j056028 – volume: 37 start-page: 1637 issue: 11 year: 2021 ident: 2023081021084584400_c15 article-title: Design and transition characteristics of a standard model for hypersonic boundary layer transition research publication-title: Acta Mech. Sin. doi: 10.1007/s10409-021-01136-5 – volume: 50 start-page: 1476 issue: 7 year: 2012 ident: 2023081021084584400_c24 article-title: Receptivity and stability of supersonic swept flows publication-title: AIAA J. doi: 10.2514/1.j051064 – volume: 931 start-page: A24 year: 2022 ident: 2023081021084584400_c11 article-title: Transition in an infinite swept-wing boundary layer subject to surface roughness and free-stream turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.962 – volume: 887 start-page: A30 year: 2020 ident: 2023081021084584400_c12 article-title: Controlled stationary/travelling cross-flow mode interaction in a Mach 6.0 boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.15 – volume: 856 start-page: 470 year: 2018 ident: 2023081021084584400_c14 article-title: Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.706 – volume: 395 start-page: 229 year: 1984 ident: 2023081021084584400_c2 article-title: On the stability of an infinite swept attachment line boundary layer publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1984.0099 – volume: 933 start-page: A26 year: 2022 ident: 2023081021084584400_c41 article-title: Instability of the attachment line boundary layer in a supersonic swept flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.1077 – volume: 21 start-page: 235 year: 1989 ident: 2023081021084584400_c6 article-title: Stability of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.21.010189.001315 – volume: 883 start-page: A50 year: 2020 ident: 2023081021084584400_c31 article-title: Analysis of the hypersonic cross-flow instability with experimental wavenumber distributions publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.864 – volume: 808 start-page: 224 year: 2016 ident: 2023081021084584400_c19 article-title: Crossflow instability in a hypersonic boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.643 – volume: 35 start-page: 363 year: 1999 ident: 2023081021084584400_c18 article-title: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability publication-title: Prog. Aerosp. Sci. doi: 10.1016/s0376-0421(99)00002-0 – volume: 368 start-page: 339 year: 1998 ident: 2023081021084584400_c26 article-title: Secondary instability of cross-flow vortices in Falkner–Skan–Cooke boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112098001931 – volume: 56 start-page: 3570 issue: 9 year: 2018 ident: 2023081021084584400_c25 article-title: Role of freestream slow acoustic waves in a hypersonic three-dimensional boundary layer publication-title: AIAA J. doi: 10.2514/1.j056492 – volume: 31 start-page: 064101 year: 2019 ident: 2023081021084584400_c9 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability publication-title: Phys. Fluids doi: 10.1063/1.5094609 – volume: 33 start-page: 034112 year: 2021 ident: 2023081021084584400_c35 article-title: Stability assessment on sinusoidal roughness elements for crossflow-transition control publication-title: Phys. Fluids doi: 10.1063/5.0041442 – volume: 33 start-page: 126109 year: 2021 ident: 2023081021084584400_c38 article-title: Compressible Falkner–Skan–Cooke boundary layer on a flat plate publication-title: Phys. Fluids doi: 10.1063/5.0075233 – volume: 58 start-page: 2093 issue: 5 year: 2020 ident: 2023081021084584400_c36 article-title: Plasma-actuated flow control of hypersonic crossflow-induced boundary-layer transition publication-title: AIAA J. doi: 10.2514/1.j058981 – volume: 122 start-page: 107327 year: 2022 ident: 2023081021084584400_c23 article-title: Cross-flow transition model predictions of hypersonic transition research vehicle publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107327 – volume: 39 start-page: 1 issue: 9 year: 1994 ident: 2023081021084584400_c1 article-title: Transition in open flow systems—A reassessment publication-title: Bull. Am. Phys. Soc. – volume: 52 start-page: 664 issue: 3 year: 2015 ident: 2023081021084584400_c37 article-title: Traveling crossflow instability for the HIFiRE-5 elliptic cone publication-title: J. Spacecr. Rockets doi: 10.2514/1.a33145 – volume: 12 start-page: 055322 year: 2022 ident: 2023081021084584400_c16 article-title: Leading-to-trailing edge theoretical design of a generic scramjet publication-title: AIP Adv. doi: 10.1063/5.0050786 – volume: 11 start-page: 035104 year: 2021 ident: 2023081021084584400_c5 article-title: Nonlinear interactions in a hypersonic boundary layer publication-title: AIP Adv. doi: 10.1063/5.0044143 – volume: 31 start-page: 114104 year: 2019 ident: 2023081021084584400_c10 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien-Schlichting instability publication-title: Phys. Fluids doi: 10.1063/1.5125812 – volume: 12 start-page: 025116 year: 2022 ident: 2023081021084584400_c13 article-title: A machine learning method for transition prediction in hypersonic flows over a cone with angles of attack publication-title: AIP Adv. doi: 10.1063/5.0077734 – year: 1984 ident: 2023081021084584400_c4 article-title: Boundary-layer linear stability theory – volume: 804 start-page: 442 year: 2016 ident: 2023081021084584400_c22 article-title: Linear modal instabilities of hypersonic flow over an elliptic cone publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.536 – volume: 846 start-page: 605 year: 2018 ident: 2023081021084584400_c27 article-title: Secondary crossflow instability through global analysis of measured base flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.253 – volume: 1 start-page: 053603 year: 2016 ident: 2023081021084584400_c20 article-title: High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer publication-title: Phys. Rev. Fluids doi: 10.1103/physrevfluids.1.053603 – volume: 31 start-page: 044101 year: 2019 ident: 2023081021084584400_c40 article-title: High-enthalpy models for boundary-layer stability and transition publication-title: Phys. Fluids doi: 10.1063/1.5084235 – volume: 35 start-page: 413 year: 2003 ident: 2023081021084584400_c7 article-title: Stability and transition of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161045 – volume: 873 start-page: 914 year: 2019 ident: 2023081021084584400_c28 article-title: The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.397 – volume: 34 start-page: 084113 year: 2022 ident: 2023081021084584400_c33 article-title: Transition due to isolated roughness in a swept wing boundary layer publication-title: Phys. Fluids doi: 10.1063/5.0101187 |
SSID | ssj0000491084 |
Score | 2.286939 |
Snippet | Parametric zones are obtained where the cross-flow instability can be identified as a mode in the three-dimensional boundary layers with the Mach number... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 015203 |
SubjectTerms | Cross flow Flow stability Mach number Ponds Three dimensional boundary layer Three dimensional flow Turnaround time |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SEL2In1itEtSDl9Ddze5m96iiFKF6sdBbyMcEKqUtbVX892ay21qh6MXr8siGmYR5uzO8R8iVyaz2RMIwkyrDUl9CmeKuYAan2Dx9tVFQ5-8-5Z1e-tjP-itWXzgTVskDV4FrC65copw_KkKnAkqNRQnKNOJG5zYO1Cgqo5WPqdeK98ZRsBv2Ja1g_tTmC1mhnLdRqZNnEVpKrhSjoNn_g2hu-SpUNcRXas7DLtmpySK9qTa5RzZgtE82w9CmmR2Q7vOIev5GB7Ye-QmL0LGj4XXMDccfFK1u6ACBUwBmUcy_EuKgOjgqTT_pUCHvPiS9h_uXuw6r7RF8XJNizoynSgIiDSLVviiDKbMSANW2jU10YmJswpUu1s4oFbuEK1QXFVZ5dAyp4EekMRqP4JhQSMDEhRKRzvxikBZgDS8NCE8PrLO8Sa4XcZKLkKCFxVCGHnbOZSbrkDbJxRI6qQQz1oFuMdhLAGpchwc-87LOvPwr803SWqRK1hdvJhORYy-1LOImuVym77edrEG9j6ffCDmx7uQ_9ntKttGrvvp_0yKN-fQNzjyjmevzcHi_AFIW8I8 priority: 102 providerName: Directory of Open Access Journals |
Title | On the identification of cross-flow mode in three-dimensional boundary layers |
URI | http://dx.doi.org/10.1063/5.0135008 https://www.proquest.com/docview/2760278981 https://doaj.org/article/73af2af5317b47e9b0218e9403cb6d1a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6hVoi9oOWlLY_Kgj1wiUhip06O5SWEKCwCJG6WH2MJqWpRKbvi3-_YSQtIgLhGX5xoxs588Yy_AfhtC2eISNjECm0TQSE00dyXiQ1VbERfXRrV-QeXvbM7cX5f3C_A3icZ_B4_CLKavIgHets5keO8Be3--fH1n_lWCpHcLC3FTDfo7T3vok0U5X_HJJcozNQZ7zdB5fQnLDdskPVr963AAo5WYTFWZdqnNRhcjRgRNPbgmpqeOAgbexYfl_jh-B8LvWzYQwBOEBMX1PprpQ1mYsukyQsb6kCs1-Hu9OT26Cxp-h-Q4fJymljiQhJTg1IYirpoq6JCDHLa1uUmt1nIslU-M95qnfmc6yAfKp0mdIZC8g1ojcYj_AUMc7RZqWVqChoMRYnO8sqipPjvvOMd2J_ZSc1MEnpUDFVMUve4KlRj0g7szqGPtSLGR6DDYOw5IIhYxwvkWdWsCSW59rn29BWQRkisTOAbWImUW9Nzme7A9sxVqllZT4qmQEiWVmXWgb25-756kw9Qf8eTV4R6dH7zW2NtwY_Qbb7egdmG1nTyjDvESaamS3PyeHBx023mZjf-2_8HhQvfEg |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED9Gyuhexj5Zum4T2x72otW2ZMt-7D5K1jXdBi30TejjBIGQhCTt2H8_naykLZSxV_PzWdzZvh-60-8A3rva20gkHHfSOC5jCuVGhJY76mKL9NUXSZ1_fNqMzuXxRX2Re3PoLExcxOqjmSx6iWB_dZAdyKeRc14urgUHGnFAgpuiTkd9dxQJWg5g5_D4y6-f202WSH_LopUbRaGb99zKQ0mu_xbH3I0JqK-F30g3R4_gYeaJ7LBf12O4h7MncD_1a7rVUxj_mLFI3djE526fZITNA0uP42E6_81oyg2bEHCJyD3p-PcaHMymYUrLP2xqiHI_g_Ojr2efRzxPRogurdo1d5ElKSwsKmljPkbX1R0iCW07X9nKlVR_60JpgzOmDJUwJCyqvInoEqUSz2Ewm8_wBTCs0JWtUYWtozGULXonOocqMgMfvBjCh42f9MYlNL1iqlP5uhG61tmlQ3i7hS56rYy7QJ_I2VsAyVunCzHgOgdbK2FCZUL8PygrFXaWmAh2shDONr40Q9jfhErnb26lK9VQGbVryyG824bvXyu5A3U1X14j9MKHvf-y9QZ2R2fjE33y7fT7S3hAM-n7fZp9GKyXl_gqMpe1fZ3fz78iFOmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+identification+of+cross-flow+mode+in+three-dimensional+boundary+layers&rft.jtitle=AIP+advances&rft.date=2023-01-01&rft.eissn=2158-3226&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1063%2F5.0135008&rft.externalDocID=adv |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |