Process Monitoring Based on Dissimilarity of Time Series Data

For process monitoring, principal component analysis (PCA) has been widely used. Since PCA can describe the correlation among variables, PC-based monitoring outperforms traditional statistical process control methods, such as the Shewhart chart. Nevertheless, PC-based monitoring cannot detect change...

Full description

Saved in:
Bibliographic Details
Published inKAGAKU KOGAKU RONBUNSHU Vol. 25; no. 6; pp. 1004 - 1009
Main Authors KANO, MANABU, OHNO, HIROMU, HASEBE, SHINJI, HASHIMOTO, IORI
Format Journal Article
LanguageEnglish
Japanese
Published The Society of Chemical Engineers, Japan 1999
Subjects
Online AccessGet full text
ISSN0386-216X
1349-9203
DOI10.1252/kakoronbunshu.25.1004

Cover

Abstract For process monitoring, principal component analysis (PCA) has been widely used. Since PCA can describe the correlation among variables, PC-based monitoring outperforms traditional statistical process control methods, such as the Shewhart chart. Nevertheless, PC-based monitoring cannot detect changes in the correlation while the indices monitored are within their control limits. In the present work, a new monitoring method based on distributions of data is proposed, noting that distributions of data reflect the corresponding operational conditions. In order to quantitatively evaluate differences between two data sets, dissimilarity is defined and calculated by applying PCA to transformed-data matrices. The proposed monitoring method and the traditional PC-based method are compared using simulated data. The results of this study clearly indicate the advantage of the proposed method.
AbstractList For process monitoring, principal component analysis (PCA) has been widely used. Since PCA can describe the correlation among variables, PC-based monitoring outperforms traditional statistical process control methods, such as the Shewhart chart. Nevertheless, PC-based monitoring cannot detect changes in the correlation while the indices monitored are within their control limits. In the present work, a new monitoring method based on distributions of data is proposed, noting that distributions of data reflect the corresponding operational conditions. In order to quantitatively evaluate differences between two data sets, dissimilarity is defined and calculated by applying PCA to transformed-data matrices. The proposed monitoring method and the traditional PC-based method are compared using simulated data. The results of this study clearly indicate the advantage of the proposed method.
Author KANO, MANABU
OHNO, HIROMU
HASEBE, SHINJI
HASHIMOTO, IORI
Author_xml – sequence: 1
  fullname: KANO, MANABU
  organization: Department of Chemical Engineering, Kyoto University
– sequence: 1
  fullname: OHNO, HIROMU
  organization: Department of Chemical Science and Engineering, Kobe University
– sequence: 1
  fullname: HASEBE, SHINJI
  organization: Department of Chemical Engineering, Kyoto University
– sequence: 1
  fullname: HASHIMOTO, IORI
  organization: Department of Chemical Engineering, Kyoto University
BookMark eNqFkMtKAzEUhoNUsNY-gpAXmJrLZGaCuNC2XqBewAruhjOZTBs7TSRJF317O1QKdePmnM3__efwnaOedVYjdEnJiDLBrlawct7ZamPDcjNiYkQJSU9Qn_JUJpIR3kN9wossYTT7PEPDEExFCEuLlMuij27evFM6BPzsrInOG7vAdxB0jZ3FE7NLr00L3sQtdg2em7XG79obHfAEIlyg0wbaoIe_e4A-7qfz8WMye314Gt_OEpWyIiYV1SnNoW5ykKQhWlWc7H6gjSC54FLWlGecqbwGXtSsqSVklSJZLYQgMhMVHyCx71XeheB1U357swa_LSkpOw3lkYaSibLTsOOu_3DKRIjG2ejBtP_SL3v6K0RY6MNN8NGoVh9TVOaiI7P96AoOQbUEX2rLfwBaJIf3
CitedBy_id crossref_primary_10_3182_20080706_5_KR_1001_00762
crossref_primary_10_1002_aic_11164
crossref_primary_10_1016_j_conengprac_2008_07_001
crossref_primary_10_3934_mbe_2023684
crossref_primary_10_1109_TASE_2020_3013654
crossref_primary_10_1021_acs_iecr_9b04471
crossref_primary_10_1016_j_jfranklin_2019_07_008
ContentType Journal Article
Copyright by THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN
Copyright_xml – notice: by THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN
DBID AAYXX
CITATION
DOI 10.1252/kakoronbunshu.25.1004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1349-9203
EndPage 1009
ExternalDocumentID 10_1252_kakoronbunshu_25_1004
article_kakoronbunshu1975_25_6_25_6_1004_article_char_en
GroupedDBID .LE
5GY
ACGFO
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
EBS
EJD
HH5
JSF
P2P
RJT
AAYXX
CITATION
E3Z
XSB
ID FETCH-LOGICAL-c428t-b1e417adf7a90f0ecb300021f5075399d13632c7da38d2fd9a6bc06d5550965b3
ISSN 0386-216X
IngestDate Tue Jul 01 01:58:50 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Wed Sep 03 06:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-b1e417adf7a90f0ecb300021f5075399d13632c7da38d2fd9a6bc06d5550965b3
OpenAccessLink https://www.jstage.jst.go.jp/article/kakoronbunshu1975/25/6/25_6_1004/_article/-char/en
PageCount 6
ParticipantIDs crossref_primary_10_1252_kakoronbunshu_25_1004
crossref_citationtrail_10_1252_kakoronbunshu_25_1004
jstage_primary_article_kakoronbunshu1975_25_6_25_6_1004_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-00-00
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999-00-00
PublicationDecade 1990
PublicationTitle KAGAKU KOGAKU RONBUNSHU
PublicationTitleAlternate KAGAKU KOGAKU RONBUNSHU
PublicationYear 1999
Publisher The Society of Chemical Engineers, Japan
Publisher_xml – name: The Society of Chemical Engineers, Japan
References Ku, W., R. H. Storer and C. Georgakis ; “Disturbance Detection and Isolation by Dynamic Principal Component Analysis, ” Chemometrics and Intelligent Laboratory Systems, 30,179-196 (1995)
Fukunaga, K. and W. L. G. Koontz ; “Application of the KarhunenLoeve Expansion to Feature Selection and Ordering, ” IEEE Trans. Comput., C-19,311-318 (1970)
Nomikos, P. and J. F. MacGregor ; “Monitoring Batch Processes Using Multiway Principal Component Analysis, ” AIChE J., 40, 1361-1375 (1994)
Kano, M., K. Nagao, H. Ohno, S. Hasebe and I. Hashimoto ; “Process Monitoring Using Moving Principal Component Analysis, ” Kagaku Kogaku Ronbunshu, 25 (to appear)
Kourti, T., J. Lee, and J. F. MacGregor ; “Experiences with Industrial Applications of Projection Methods for Multivariate Statistical Process Control, ” Computers Chem. Engng., 20, S 745-S 750 (1996)
References_xml – reference: Kourti, T., J. Lee, and J. F. MacGregor ; “Experiences with Industrial Applications of Projection Methods for Multivariate Statistical Process Control, ” Computers Chem. Engng., 20, S 745-S 750 (1996)
– reference: Ku, W., R. H. Storer and C. Georgakis ; “Disturbance Detection and Isolation by Dynamic Principal Component Analysis, ” Chemometrics and Intelligent Laboratory Systems, 30,179-196 (1995)
– reference: Fukunaga, K. and W. L. G. Koontz ; “Application of the KarhunenLoeve Expansion to Feature Selection and Ordering, ” IEEE Trans. Comput., C-19,311-318 (1970)
– reference: Kano, M., K. Nagao, H. Ohno, S. Hasebe and I. Hashimoto ; “Process Monitoring Using Moving Principal Component Analysis, ” Kagaku Kogaku Ronbunshu, 25 (to appear)
– reference: Nomikos, P. and J. F. MacGregor ; “Monitoring Batch Processes Using Multiway Principal Component Analysis, ” AIChE J., 40, 1361-1375 (1994)
SSID ssib002484398
ssj0035378
ssib020472865
ssib000961565
ssib031741082
Score 1.4730347
Snippet For process monitoring, principal component analysis (PCA) has been widely used. Since PCA can describe the correlation among variables, PC-based monitoring...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1004
SubjectTerms dissimilarity
fault detection
monitoring
principal component analysis
statistical process control
Title Process Monitoring Based on Dissimilarity of Time Series Data
URI https://www.jstage.jst.go.jp/article/kakoronbunshu1975/25/6/25_6_1004/_article/-char/en
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KAGAKU KOGAKU RONBUNSHU, 1999/11/10, Vol.25(6), pp.1004-1009
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1349-9203
  dateEnd: 20001231
  omitProxy: true
  ssIdentifier: ssj0035378
  issn: 0386-216X
  databaseCode: HH5
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbKwgEOiKdYXsqBG0pJYjuJjyksm1I1kbqttLfIzkPaXUgRSi_8If4mM3aeUiVgxSVtXDuSPV_m4c58JuSdzymvqtKxle9Km4EDayslmJ0zV7qFCMtQYL3zOvHjHftyyS9ns1-jrKVDo-b5z6N1JbeRKrSBXLFK9h8k2z8UGuA7yBeuIGG4_pWM2yz_9sXUmXQLsEoF_gPwCVb06tsVBK5t0gUWe6BqgNAYZN3IsVu6is6j1e79KtUfmzRZ7JKLeNdr4yhJ9c5plESLvjWNTWu83KTrvjWOLs4WOsUSd8KGs5ehPV6u060eskw3y2G_ATkKemwgbrtUUp0q0hIadMSJBndg4uuRDqOhb3uuPqwQzI3RsZQJW3gOHSthU_3cgm2sUZHRbmSd4VYc1fweRybZG3mDxA_qUOORCx6fD8MnpNqtyLJJf1cEPPN45psLDs26jlgDB5C7Q-56Abg02gJM4kCIgyc8cWzEq-ghJWc4_A4-G3OdsOc5o5wal6FbrbbUDOb04eiMJk7UvWuII7ocRO0WbR-Rh208Y0VmAo_J7Fo-IQ9GLJdPSQdTa4CppWFq7WtrAlNrX1kIU8vA1EKYPiO7z2fbj7HdntoB77cXNrZyS-YGsqgCKZzKKXNF0ey6FUQeSINcuNSnXh4UkoaFVxVC-ip3_IJzzUSk6HNyUu_r8gWxpJBMyoqVZchZHgYQYilHhNCtZFRxfkpYtwxZ3lLa48kqXzMMbWH1pvJFseLqnZJ5P-y74XT504Bzs8Z999vi5-V_e9Irct8wiOBu4Gty0vw4lG_AP27UW43N3-_IuO4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Monitoring+Based+on+Dissimilarity+of+Time+Series+Data&rft.jtitle=KAGAKU+KOGAKU+RONBUNSHU&rft.au=KANO%2C+MANABU&rft.au=OHNO%2C+HIROMU&rft.au=HASEBE%2C+SHINJI&rft.au=HASHIMOTO%2C+IORI&rft.date=1999&rft.pub=The+Society+of+Chemical+Engineers%2C+Japan&rft.issn=0386-216X&rft.eissn=1349-9203&rft.volume=25&rft.issue=6&rft.spage=1004&rft.epage=1009&rft_id=info:doi/10.1252%2Fkakoronbunshu.25.1004&rft.externalDocID=article_kakoronbunshu1975_25_6_25_6_1004_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-216X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-216X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-216X&client=summon