High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms
This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression pr...
Saved in:
| Published in | Journal of business & economic statistics Vol. 39; no. 2; pp. 493 - 504 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
20.03.2021
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0735-0015 1537-2707 |
| DOI | 10.1080/07350015.2019.1677472 |
Cover
| Abstract | This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary materials for this article are available online. This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary materials for this article are available online. |
| Author | Korobilis, Dimitris |
| Author_xml | – sequence: 1 givenname: Dimitris orcidid: 0000-0001-9146-3008 surname: Korobilis fullname: Korobilis, Dimitris organization: Adam Smith Business School, University of Glasgow |
| BookMark | eNqFkE9PwyAYh4mZidv0I5g08dwJFPonXlymc8YtenBnQil0LC1MYDH79rZuXjwoB8gbnt-b931GYGCskQBcIzhBMIe3MEsohIhOMETFBKVZRjJ8BoaIJlmMM5gNwLBn4h66ACPvt7A7OU2H4GWh6038oFtpvLaGN9GKC2elsMa2WkRz66TgPmhTR2vf3yvpPa9l9Mb9dz1taut02LT-Epwr3nh5dXrHYD1_fJ8t4uXr0_NsuowFwXmIC1VhKkUhiFBlqiAppIJIpUjJkghUqEJ1n5yIguKKVpJAWZaqkqUQJFUSJmNwc-y7c_ZjL31gW7t33eye4RwmvROcdBQ9Ut063jup2M7plrsDQ5D1DPvxxnpv7OSty939ygkdeOjkBMd182_6_pjWRlnX8k_rmooFfmisU44boT1L_m7xBS44iig |
| CitedBy_id | crossref_primary_10_2139_ssrn_4322548 crossref_primary_10_1002_for_2893 crossref_primary_10_1515_snde_2022_0077 crossref_primary_10_1111_boer_12477 crossref_primary_10_1515_snde_2022_0093 crossref_primary_10_2139_ssrn_3971832 crossref_primary_10_2139_ssrn_3246472 crossref_primary_10_1016_j_ijforecast_2022_03_002 crossref_primary_10_1007_s11222_024_10402_y crossref_primary_10_2139_ssrn_3938628 crossref_primary_10_1016_j_eneco_2023_107286 crossref_primary_10_1002_jae_2936 crossref_primary_10_1257_jel_20201479 crossref_primary_10_1080_07350015_2021_1990772 crossref_primary_10_2139_ssrn_4187780 crossref_primary_10_1016_j_ijforecast_2024_04_007 crossref_primary_10_1111_iere_12577 crossref_primary_10_2139_ssrn_4689088 crossref_primary_10_1111_iere_12623 |
| Cites_doi | 10.23943/princeton/9780691161082.001.0001 10.1111/j.1467-937X.2005.00353.x 10.2307/1911389 10.1016/j.jeconom.2009.07.003 10.1111/1467-937X.00050 10.1111/rssb.12325 10.1162/15324430152748236 10.1561/0800000013 10.1080/01621459.1993.10476353 10.1016/j.ijforecast.2012.05.006 10.1109/ISIT.2011.6033942 10.1111/j.1538-4616.2007.00014.x 10.1080/07350015.2012.663258 10.1073/pnas.0909892106 10.1080/07350015.2012.727718 10.1016/j.jeconom.2013.10.012 10.1080/07350015.2015.1051183 10.1109/ICUWB.2016.7790383 10.1561/2200000052 10.1016/S0304-3932(99)00027-6 10.1080/01621459.2016.1197833 10.1109/ITWKSPS.2010.5503193 10.1017/CBO9780511804779 10.1111/j.1467-937X.2007.00436.x 10.1515/9781400833993 10.1109/18.910572 10.1002/jae.2387 10.1109/TSP.2017.2764855 10.1198/073500107000000241 10.1111/j.1468-2354.2012.00704.x 10.1109/TIT.2007.909166 10.1002/for.2276 10.1080/07350015.2012.747847 |
| ContentType | Journal Article |
| Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
| Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
| DBID | AAYXX CITATION |
| DOI | 10.1080/07350015.2019.1677472 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Statistics Mathematics |
| EISSN | 1537-2707 |
| EndPage | 504 |
| ExternalDocumentID | 10_1080_07350015_2019_1677472 1677472 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29K 30N 4.4 5GY 7WY 85S 8FL AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABKVW ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYRZ ABYWD ABYYQ ACGFO ACGFS ACHQT ACMTB ACNCT ACTIO ACTMH ACVFL ADCVX ADGTB ADMHG ADXHL AEISY AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHAJD AHDZW AHQJS AIJEM AIYEW AKBRZ AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BKOMP BLEHA CCCUG CS3 D-I D0L DGEBU DKSSO DU5 EBS EBU EOH E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA JST K60 K6~ KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UT5 UU3 WZA YK4 YQT ZCA ZGOLN ~S~ AAYXX CITATION ADYSH AFSUE ALIPV |
| ID | FETCH-LOGICAL-c428t-9fd25ec9c4cfb6f049ef01f61feb4c19f9fc9ca4c952d5de40ebbfdebcc46fe03 |
| ISSN | 0735-0015 |
| IngestDate | Fri Jul 25 06:50:28 EDT 2025 Wed Oct 01 03:36:21 EDT 2025 Thu Apr 24 22:56:35 EDT 2025 Mon Oct 20 23:48:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c428t-9fd25ec9c4cfb6f049ef01f61feb4c19f9fc9ca4c952d5de40ebbfdebcc46fe03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9146-3008 |
| PQID | 2803108023 |
| PQPubID | 3244 |
| PageCount | 12 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_07350015_2019_1677472 proquest_journals_2803108023 crossref_citationtrail_10_1080_07350015_2019_1677472 crossref_primary_10_1080_07350015_2019_1677472 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-20 |
| PublicationDateYYYYMMDD | 2021-03-20 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of business & economic statistics |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 Pearl J. (CIT0027) 1982 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Vehtari A. (CIT0036) 2018 CIT0025 CIT0002 CIT0024 CIT0005 Barber D. (CIT0003) 2012 CIT0004 CIT0026 Rangan S. (CIT0031) 2016 Bishop C. M. (CIT0006) 2006 CIT0007 CIT0029 CIT0028 CIT0009 CIT0008 |
| References_xml | – year: 2016 ident: CIT0031 publication-title: arXiv no. 1301.6295v4 – ident: CIT0015 doi: 10.23943/princeton/9780691161082.001.0001 – ident: CIT0029 doi: 10.1111/j.1467-937X.2005.00353.x – year: 2018 ident: CIT0036 publication-title: arXiv no. 1412.4869v3 – ident: CIT0008 doi: 10.2307/1911389 – ident: CIT0011 doi: 10.1016/j.jeconom.2009.07.003 – ident: CIT0018 doi: 10.1111/1467-937X.00050 – ident: CIT0023 doi: 10.1111/rssb.12325 – ident: CIT0035 doi: 10.1162/15324430152748236 – ident: CIT0019 doi: 10.1561/0800000013 – ident: CIT0012 doi: 10.1080/01621459.1993.10476353 – ident: CIT0022 doi: 10.1016/j.ijforecast.2012.05.006 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: CIT0006 – ident: CIT0030 doi: 10.1109/ISIT.2011.6033942 – ident: CIT0034 doi: 10.1111/j.1538-4616.2007.00014.x – ident: CIT0007 doi: 10.1080/07350015.2012.663258 – ident: CIT0009 doi: 10.1073/pnas.0909892106 – ident: CIT0014 doi: 10.1080/07350015.2012.727718 – ident: CIT0017 doi: 10.1016/j.jeconom.2013.10.012 – ident: CIT0028 doi: 10.1080/07350015.2015.1051183 – ident: CIT0038 doi: 10.1109/ICUWB.2016.7790383 – ident: CIT0002 doi: 10.1561/2200000052 – ident: CIT0033 doi: 10.1016/S0304-3932(99)00027-6 – ident: CIT0037 doi: 10.1080/01621459.2016.1197833 – ident: CIT0010 doi: 10.1109/ITWKSPS.2010.5503193 – volume-title: Bayesian Reasoning and Machine Learning year: 2012 ident: CIT0003 doi: 10.1017/CBO9780511804779 – ident: CIT0021 doi: 10.1111/j.1467-937X.2007.00436.x – ident: CIT0016 doi: 10.1515/9781400833993 – ident: CIT0024 doi: 10.1109/18.910572 – ident: CIT0004 doi: 10.1002/jae.2387 – ident: CIT0001 doi: 10.1109/TSP.2017.2764855 – ident: CIT0013 doi: 10.1198/073500107000000241 – ident: CIT0020 doi: 10.1111/j.1468-2354.2012.00704.x – start-page: 133 volume-title: Second National Conference on Artificial Intelligence, AAAI-82 year: 1982 ident: CIT0027 – ident: CIT0025 doi: 10.1109/TIT.2007.909166 – ident: CIT0032 – ident: CIT0005 doi: 10.1002/for.2276 – ident: CIT0026 doi: 10.1080/07350015.2012.747847 |
| SSID | ssj0000856 |
| Score | 2.4037387 |
| Snippet | This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 493 |
| SubjectTerms | Bayesian shrinkage Belief propagation Factor graph High-dimensional inference Time-varying parameter model |
| Title | High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1677472 https://www.proquest.com/docview/2803108023 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000856 issn: 0735-0015 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000856 issn: 0735-0015 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZGd2AcJjZADAbKYTfkynHs1D5OdFMFGpdtYuISxY4Nk6Z2asOFX897sZMm67QxLlGSyk7a7-W9F_e97yPkSPPcVk46qiEZokKqlJaGCVoxYbQ2-EdWU-X7LZ9dii9X8qrXcY3dJbUZ2z_39pX8D6pwDnDFLtknINtNCidgH_CFLSAM23_CGIs06BT5-QO3BsoILRcu9hp_QtlNW66awuZQGnCGgidYpAMpc7MecvNzsbyuf0XK8s0k1bR18Wgh3cTYhRQInjt_vUA-p6itPsWmqeX1YEWBNyVVnPUczySTFJOpECNaxzjB3rVJ33MGGqJoIbznBkVQPYwRVQaB4Q1nHasb4Wp4MSyz0-M0h3w0iPkMybHvBK2ulDBtOU7jNAVOU8RpnpFtDt6ejcj28Wz64_s6RqtG17f7pm1vF7Ku33c_g6xlwGm7EcObxOTiJdmNYCXHwTz2yJab75PnbcP5ap-8OOuoeeFo57wD7xX5eteCkoEFJT0LShoLSqIFJdGCkrUFvSaXpycXn2c0ymtQC--cNdW-4tJZbYX1Jvfwqug8S32eemeETbXXHj4shdWSV7JygjljfOWMtSL3jmVvyGi-mLu3JFGllanlmTHMiYxDMLdK-VSpqmRSOXVARPvzFTZyz6MEyk3xIHwHZNwNuw3kK48N0H1sirpZ9fJBoqbIHhl72AJZxGd8VaB2Gw7h2bun3st7srN-uA7JqF7-dh8gga3Nx2iNfwEnupL4 |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGSgDb0ShQAZWFyexgz1WQFUerRhaqZsVO3ZBlIJIuvDr8eUBBYQ6dLSis2LnfHd2Pn8fQmciiHRimMHCFUOYMu7jWBGKE0KVEAp-ZOUo337UHdLbERvN3YUBWCXsoW1BFJHHaljccBhdQeLOnVsySPaAzBItP3IlzIULw6vMFfugYhCS_nc05rmCK5hgsKlu8fzXzY_89IO99E-0zlNQZxPp6uUL5Mlza5aplv74xeu43Oi20EZZoXrtwqW20YqZ7qC16gJzuoPWe19Ur65Vh3K1YHveRXcAG8FXoBhQsH14vdiN05TGHgiB6jgFqLWXgxW8HkiwjI334Ip4aLcn49f3p-zxJd1Dw8714LKLS7kGrN0eJsPCJgEzWmiqrYqs23oYS3wb-dYoqn1hhXUPY6oFCxKWGEqMUjYxSmsaWUPCfVSbvk7NAfJ4rJmvg1ApYmgYuOSgObc-50lMGDe8gWj1kaQuucxBUmMi_YrytJxECZMoy0lsoNaX2VtB5rHIQMx7gMzyUxRbSJ7IcIFts3IXWcaFVIIWGJgE4eESXZ-ite6gdy_vb_p3R6geAMyGhC7gNVEte5-ZY1cnZeokXwif5lUEWA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSDwG3ohCgQysLk5iB3usKBVQWjFQic2KHRsQpa2adOHX48ujUBDqwGhFZ8XO-e4cf_4-hM5FEOnEMIOFK4YwZdzHsSIUJ4QqIRQcZOUo315006d3T6xCE6YlrBL20LYgishjNSzucWIrRNyF80oGuR6AWaLhR66CuXRReCWCUzG4xUF6X8GY5wKuYILBprrE81c3c-lpjrz0V7DOM1B7C6nq3QvgyVtjmqmG_vhB6_ivwW2jzbI-9ZqFQ-2gJTPcRWvV9eV0F210Z0SvrrUOxWrB9byHOgAawS3QCyi4Prxu7IZpSmMPZEB1nALQ2suhCl4XBFiejffgSnhoNwfPo8lr9vKe7qN--_rx6gaXYg1Yux1MhoVNAma00FRbFVm38TCW-DbyrVFU-8IK6x7GVAsWJCwxlBilbGKU1jSyhoQHaHk4GppD5PFYM18HoVLE0DBwqUFzbn3Ok5gwbngN0eobSV0ymYOgxkD6FeFpOYkSJlGWk1hDjZnZuKDyWGQgvjuAzPJ_KLYQPJHhAtt65S2yjAqpBCUwMAnCo390fYZWH1pteX_b6xyj9QAwNiR00a6OlrPJ1Jy4IilTp_ky-ASmAwL8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Macroeconomic+Forecasting+Using+Message+Passing+Algorithms&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Korobilis%2C+Dimitris&rft.date=2021-03-20&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=39&rft.issue=2&rft.spage=493&rft.epage=504&rft_id=info:doi/10.1080%2F07350015.2019.1677472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2019_1677472 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon |