High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms

This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of business & economic statistics Vol. 39; no. 2; pp. 493 - 504
Main Author Korobilis, Dimitris
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 20.03.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0735-0015
1537-2707
DOI10.1080/07350015.2019.1677472

Cover

Abstract This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary materials for this article are available online.
AbstractList This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary materials for this article are available online.
This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility, and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation algorithms. In particular, a generalized approximate message passing algorithm is derived that has low algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors. In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary materials for this article are available online.
Author Korobilis, Dimitris
Author_xml – sequence: 1
  givenname: Dimitris
  orcidid: 0000-0001-9146-3008
  surname: Korobilis
  fullname: Korobilis, Dimitris
  organization: Adam Smith Business School, University of Glasgow
BookMark eNqFkE9PwyAYh4mZidv0I5g08dwJFPonXlymc8YtenBnQil0LC1MYDH79rZuXjwoB8gbnt-b931GYGCskQBcIzhBMIe3MEsohIhOMETFBKVZRjJ8BoaIJlmMM5gNwLBn4h66ACPvt7A7OU2H4GWh6038oFtpvLaGN9GKC2elsMa2WkRz66TgPmhTR2vf3yvpPa9l9Mb9dz1taut02LT-Epwr3nh5dXrHYD1_fJ8t4uXr0_NsuowFwXmIC1VhKkUhiFBlqiAppIJIpUjJkghUqEJ1n5yIguKKVpJAWZaqkqUQJFUSJmNwc-y7c_ZjL31gW7t33eye4RwmvROcdBQ9Ut063jup2M7plrsDQ5D1DPvxxnpv7OSty939ygkdeOjkBMd182_6_pjWRlnX8k_rmooFfmisU44boT1L_m7xBS44iig
CitedBy_id crossref_primary_10_2139_ssrn_4322548
crossref_primary_10_1002_for_2893
crossref_primary_10_1515_snde_2022_0077
crossref_primary_10_1111_boer_12477
crossref_primary_10_1515_snde_2022_0093
crossref_primary_10_2139_ssrn_3971832
crossref_primary_10_2139_ssrn_3246472
crossref_primary_10_1016_j_ijforecast_2022_03_002
crossref_primary_10_1007_s11222_024_10402_y
crossref_primary_10_2139_ssrn_3938628
crossref_primary_10_1016_j_eneco_2023_107286
crossref_primary_10_1002_jae_2936
crossref_primary_10_1257_jel_20201479
crossref_primary_10_1080_07350015_2021_1990772
crossref_primary_10_2139_ssrn_4187780
crossref_primary_10_1016_j_ijforecast_2024_04_007
crossref_primary_10_1111_iere_12577
crossref_primary_10_2139_ssrn_4689088
crossref_primary_10_1111_iere_12623
Cites_doi 10.23943/princeton/9780691161082.001.0001
10.1111/j.1467-937X.2005.00353.x
10.2307/1911389
10.1016/j.jeconom.2009.07.003
10.1111/1467-937X.00050
10.1111/rssb.12325
10.1162/15324430152748236
10.1561/0800000013
10.1080/01621459.1993.10476353
10.1016/j.ijforecast.2012.05.006
10.1109/ISIT.2011.6033942
10.1111/j.1538-4616.2007.00014.x
10.1080/07350015.2012.663258
10.1073/pnas.0909892106
10.1080/07350015.2012.727718
10.1016/j.jeconom.2013.10.012
10.1080/07350015.2015.1051183
10.1109/ICUWB.2016.7790383
10.1561/2200000052
10.1016/S0304-3932(99)00027-6
10.1080/01621459.2016.1197833
10.1109/ITWKSPS.2010.5503193
10.1017/CBO9780511804779
10.1111/j.1467-937X.2007.00436.x
10.1515/9781400833993
10.1109/18.910572
10.1002/jae.2387
10.1109/TSP.2017.2764855
10.1198/073500107000000241
10.1111/j.1468-2354.2012.00704.x
10.1109/TIT.2007.909166
10.1002/for.2276
10.1080/07350015.2012.747847
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
DOI 10.1080/07350015.2019.1677472
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 504
ExternalDocumentID 10_1080_07350015_2019_1677472
1677472
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
30N
4.4
5GY
7WY
85S
8FL
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABKVW
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGTB
ADMHG
ADXHL
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHAJD
AHDZW
AHQJS
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BKOMP
BLEHA
CCCUG
CS3
D-I
D0L
DGEBU
DKSSO
DU5
EBS
EBU
EOH
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
JST
K60
K6~
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UT5
UU3
WZA
YK4
YQT
ZCA
ZGOLN
~S~
AAYXX
CITATION
ADYSH
AFSUE
ALIPV
ID FETCH-LOGICAL-c428t-9fd25ec9c4cfb6f049ef01f61feb4c19f9fc9ca4c952d5de40ebbfdebcc46fe03
ISSN 0735-0015
IngestDate Fri Jul 25 06:50:28 EDT 2025
Wed Oct 01 03:36:21 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Mon Oct 20 23:48:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-9fd25ec9c4cfb6f049ef01f61feb4c19f9fc9ca4c952d5de40ebbfdebcc46fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9146-3008
PQID 2803108023
PQPubID 3244
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_07350015_2019_1677472
proquest_journals_2803108023
crossref_citationtrail_10_1080_07350015_2019_1677472
crossref_primary_10_1080_07350015_2019_1677472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-20
PublicationDateYYYYMMDD 2021-03-20
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
Pearl J. (CIT0027) 1982
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Vehtari A. (CIT0036) 2018
CIT0025
CIT0002
CIT0024
CIT0005
Barber D. (CIT0003) 2012
CIT0004
CIT0026
Rangan S. (CIT0031) 2016
Bishop C. M. (CIT0006) 2006
CIT0007
CIT0029
CIT0028
CIT0009
CIT0008
References_xml – year: 2016
  ident: CIT0031
  publication-title: arXiv no. 1301.6295v4
– ident: CIT0015
  doi: 10.23943/princeton/9780691161082.001.0001
– ident: CIT0029
  doi: 10.1111/j.1467-937X.2005.00353.x
– year: 2018
  ident: CIT0036
  publication-title: arXiv no. 1412.4869v3
– ident: CIT0008
  doi: 10.2307/1911389
– ident: CIT0011
  doi: 10.1016/j.jeconom.2009.07.003
– ident: CIT0018
  doi: 10.1111/1467-937X.00050
– ident: CIT0023
  doi: 10.1111/rssb.12325
– ident: CIT0035
  doi: 10.1162/15324430152748236
– ident: CIT0019
  doi: 10.1561/0800000013
– ident: CIT0012
  doi: 10.1080/01621459.1993.10476353
– ident: CIT0022
  doi: 10.1016/j.ijforecast.2012.05.006
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: CIT0006
– ident: CIT0030
  doi: 10.1109/ISIT.2011.6033942
– ident: CIT0034
  doi: 10.1111/j.1538-4616.2007.00014.x
– ident: CIT0007
  doi: 10.1080/07350015.2012.663258
– ident: CIT0009
  doi: 10.1073/pnas.0909892106
– ident: CIT0014
  doi: 10.1080/07350015.2012.727718
– ident: CIT0017
  doi: 10.1016/j.jeconom.2013.10.012
– ident: CIT0028
  doi: 10.1080/07350015.2015.1051183
– ident: CIT0038
  doi: 10.1109/ICUWB.2016.7790383
– ident: CIT0002
  doi: 10.1561/2200000052
– ident: CIT0033
  doi: 10.1016/S0304-3932(99)00027-6
– ident: CIT0037
  doi: 10.1080/01621459.2016.1197833
– ident: CIT0010
  doi: 10.1109/ITWKSPS.2010.5503193
– volume-title: Bayesian Reasoning and Machine Learning
  year: 2012
  ident: CIT0003
  doi: 10.1017/CBO9780511804779
– ident: CIT0021
  doi: 10.1111/j.1467-937X.2007.00436.x
– ident: CIT0016
  doi: 10.1515/9781400833993
– ident: CIT0024
  doi: 10.1109/18.910572
– ident: CIT0004
  doi: 10.1002/jae.2387
– ident: CIT0001
  doi: 10.1109/TSP.2017.2764855
– ident: CIT0013
  doi: 10.1198/073500107000000241
– ident: CIT0020
  doi: 10.1111/j.1468-2354.2012.00704.x
– start-page: 133
  volume-title: Second National Conference on Artificial Intelligence, AAAI-82
  year: 1982
  ident: CIT0027
– ident: CIT0025
  doi: 10.1109/TIT.2007.909166
– ident: CIT0032
– ident: CIT0005
  doi: 10.1002/for.2276
– ident: CIT0026
  doi: 10.1080/07350015.2012.747847
SSID ssj0000856
Score 2.4037387
Snippet This article proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Bayesian shrinkage
Belief propagation
Factor graph
High-dimensional inference
Time-varying parameter model
Title High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1677472
https://www.proquest.com/docview/2803108023
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000856
  issn: 0735-0015
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000856
  issn: 0735-0015
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZGd2AcJjZADAbKYTfkynHs1D5OdFMFGpdtYuISxY4Nk6Z2asOFX897sZMm67QxLlGSyk7a7-W9F_e97yPkSPPcVk46qiEZokKqlJaGCVoxYbQ2-EdWU-X7LZ9dii9X8qrXcY3dJbUZ2z_39pX8D6pwDnDFLtknINtNCidgH_CFLSAM23_CGIs06BT5-QO3BsoILRcu9hp_QtlNW66awuZQGnCGgidYpAMpc7MecvNzsbyuf0XK8s0k1bR18Wgh3cTYhRQInjt_vUA-p6itPsWmqeX1YEWBNyVVnPUczySTFJOpECNaxzjB3rVJ33MGGqJoIbznBkVQPYwRVQaB4Q1nHasb4Wp4MSyz0-M0h3w0iPkMybHvBK2ulDBtOU7jNAVOU8RpnpFtDt6ejcj28Wz64_s6RqtG17f7pm1vF7Ku33c_g6xlwGm7EcObxOTiJdmNYCXHwTz2yJab75PnbcP5ap-8OOuoeeFo57wD7xX5eteCkoEFJT0LShoLSqIFJdGCkrUFvSaXpycXn2c0ymtQC--cNdW-4tJZbYX1Jvfwqug8S32eemeETbXXHj4shdWSV7JygjljfOWMtSL3jmVvyGi-mLu3JFGllanlmTHMiYxDMLdK-VSpqmRSOXVARPvzFTZyz6MEyk3xIHwHZNwNuw3kK48N0H1sirpZ9fJBoqbIHhl72AJZxGd8VaB2Gw7h2bun3st7srN-uA7JqF7-dh8gga3Nx2iNfwEnupL4
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGSgDb0ShQAZWFyexgz1WQFUerRhaqZsVO3ZBlIJIuvDr8eUBBYQ6dLSis2LnfHd2Pn8fQmciiHRimMHCFUOYMu7jWBGKE0KVEAp-ZOUo337UHdLbERvN3YUBWCXsoW1BFJHHaljccBhdQeLOnVsySPaAzBItP3IlzIULw6vMFfugYhCS_nc05rmCK5hgsKlu8fzXzY_89IO99E-0zlNQZxPp6uUL5Mlza5aplv74xeu43Oi20EZZoXrtwqW20YqZ7qC16gJzuoPWe19Ur65Vh3K1YHveRXcAG8FXoBhQsH14vdiN05TGHgiB6jgFqLWXgxW8HkiwjI334Ip4aLcn49f3p-zxJd1Dw8714LKLS7kGrN0eJsPCJgEzWmiqrYqs23oYS3wb-dYoqn1hhXUPY6oFCxKWGEqMUjYxSmsaWUPCfVSbvk7NAfJ4rJmvg1ApYmgYuOSgObc-50lMGDe8gWj1kaQuucxBUmMi_YrytJxECZMoy0lsoNaX2VtB5rHIQMx7gMzyUxRbSJ7IcIFts3IXWcaFVIIWGJgE4eESXZ-ite6gdy_vb_p3R6geAMyGhC7gNVEte5-ZY1cnZeokXwif5lUEWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSDwG3ohCgQysLk5iB3usKBVQWjFQic2KHRsQpa2adOHX48ujUBDqwGhFZ8XO-e4cf_4-hM5FEOnEMIOFK4YwZdzHsSIUJ4QqIRQcZOUo315006d3T6xCE6YlrBL20LYgishjNSzucWIrRNyF80oGuR6AWaLhR66CuXRReCWCUzG4xUF6X8GY5wKuYILBprrE81c3c-lpjrz0V7DOM1B7C6nq3QvgyVtjmqmG_vhB6_ivwW2jzbI-9ZqFQ-2gJTPcRWvV9eV0F210Z0SvrrUOxWrB9byHOgAawS3QCyi4Prxu7IZpSmMPZEB1nALQ2suhCl4XBFiejffgSnhoNwfPo8lr9vKe7qN--_rx6gaXYg1Yux1MhoVNAma00FRbFVm38TCW-DbyrVFU-8IK6x7GVAsWJCwxlBilbGKU1jSyhoQHaHk4GppD5PFYM18HoVLE0DBwqUFzbn3Ok5gwbngN0eobSV0ymYOgxkD6FeFpOYkSJlGWk1hDjZnZuKDyWGQgvjuAzPJ_KLYQPJHhAtt65S2yjAqpBCUwMAnCo390fYZWH1pteX_b6xyj9QAwNiR00a6OlrPJ1Jy4IilTp_ky-ASmAwL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Macroeconomic+Forecasting+Using+Message+Passing+Algorithms&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Korobilis%2C+Dimitris&rft.date=2021-03-20&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=39&rft.issue=2&rft.spage=493&rft.epage=504&rft_id=info:doi/10.1080%2F07350015.2019.1677472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2019_1677472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon