Electrostatic polarization fields trigger glioblastoma stem cell differentiation

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer ste...

Full description

Saved in:
Bibliographic Details
Published inNanoscale horizons Vol. 8; no. 1; pp. 95 - 17
Main Authors Fernandez Cabada, Tamara, Ruben, Massimo, El Merhie, Amira, Proietti Zaccaria, Remo, Alabastri, Alessandro, Petrini, Enrica Maria, Barberis, Andrea, Salerno, Marco, Crepaldi, Marco, Davis, Alexander, Ceseracciu, Luca, Catelani, Tiziano, Athanassiou, Athanassia, Pellegrino, Teresa, Cingolani, Roberto, Papadopoulou, Evie L
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 20.12.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2055-6756
2055-6764
2055-6764
DOI10.1039/d2nh00453d

Cover

Abstract Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM. Glioblastoma cancer stem-like cells seeded on substrates exhibiting surface potential differences, undergo differentiation due to the forced hyperpolarization of the membrane potential at the cell/substrate interface.
AbstractList Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM. Glioblastoma cancer stem-like cells seeded on substrates exhibiting surface potential differences, undergo differentiation due to the forced hyperpolarization of the membrane potential at the cell/substrate interface.
Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.
Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.
Author Crepaldi, Marco
Catelani, Tiziano
Cingolani, Roberto
Davis, Alexander
Barberis, Andrea
Ceseracciu, Luca
Proietti Zaccaria, Remo
Papadopoulou, Evie L
Ruben, Massimo
El Merhie, Amira
Petrini, Enrica Maria
Athanassiou, Athanassia
Salerno, Marco
Pellegrino, Teresa
Fernandez Cabada, Tamara
Alabastri, Alessandro
AuthorAffiliation Department of Electrical and Computer Engineering
Istituto Italiano di Tecnologia
Rice University
AuthorAffiliation_xml – name: Istituto Italiano di Tecnologia
– name: Department of Electrical and Computer Engineering
– name: Rice University
Author_xml – sequence: 1
  givenname: Tamara
  surname: Fernandez Cabada
  fullname: Fernandez Cabada, Tamara
– sequence: 2
  givenname: Massimo
  surname: Ruben
  fullname: Ruben, Massimo
– sequence: 3
  givenname: Amira
  surname: El Merhie
  fullname: El Merhie, Amira
– sequence: 4
  givenname: Remo
  surname: Proietti Zaccaria
  fullname: Proietti Zaccaria, Remo
– sequence: 5
  givenname: Alessandro
  surname: Alabastri
  fullname: Alabastri, Alessandro
– sequence: 6
  givenname: Enrica Maria
  surname: Petrini
  fullname: Petrini, Enrica Maria
– sequence: 7
  givenname: Andrea
  surname: Barberis
  fullname: Barberis, Andrea
– sequence: 8
  givenname: Marco
  surname: Salerno
  fullname: Salerno, Marco
– sequence: 9
  givenname: Marco
  surname: Crepaldi
  fullname: Crepaldi, Marco
– sequence: 10
  givenname: Alexander
  surname: Davis
  fullname: Davis, Alexander
– sequence: 11
  givenname: Luca
  surname: Ceseracciu
  fullname: Ceseracciu, Luca
– sequence: 12
  givenname: Tiziano
  surname: Catelani
  fullname: Catelani, Tiziano
– sequence: 13
  givenname: Athanassia
  surname: Athanassiou
  fullname: Athanassiou, Athanassia
– sequence: 14
  givenname: Teresa
  surname: Pellegrino
  fullname: Pellegrino, Teresa
– sequence: 15
  givenname: Roberto
  surname: Cingolani
  fullname: Cingolani, Roberto
– sequence: 16
  givenname: Evie L
  surname: Papadopoulou
  fullname: Papadopoulou, Evie L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36426604$$D View this record in MEDLINE/PubMed
BookMark eNptks9rVDEQx4NUbK29eFceeCnC6uT3y0WQtlqhqAc9h7wkb5uS97ImWUH_-mZ321WLpwzJZ77znZk8RQdzmj1CzzG8wUDVW0fmawDGqXuEjghwvhBSsIN9zMUhOinlBgBwj6Xq6RN0SAUjQgA7Ql8vorc1p1JNDbZbpWhy-N3iNHdj8NGVruawXPrcLWNIQzSlpsl0pfqpsz7GzoVx9NnPNWyznqHHo4nFn9ydx-j7h4tvZ5eLqy8fP529v1pYRvq6EGJgBlM_SkJ7geng5KCMAG96B8wR3G5H5iznWA0crHFMjY4IZXqjqJH0GL3b6a7Ww-SdbQayiXqVw2TyL51M0P--zOFaL9NPraTgDFgTOL0TyOnH2peqp1A2HZnZp3XRRDLgoIja1Hr1AL1J6zy39hrFuVQS-IZ6-bejvZX7YTcAdoBt8y7Zj9qGuh1aMxiixqA3K9Xn5PPldqXnLeX1g5R71f_CL3ZwLnbP_fkf9BazMqv3
CitedBy_id crossref_primary_10_1039_D3NH00428G
crossref_primary_10_1021_acsami_3c14527
crossref_primary_10_1002_open_202400002
crossref_primary_10_3390_micro3020037
Cites_doi 10.1016/S0006-3495(96)79251-2
10.1039/D1CS00427A
10.1016/j.nano.2014.11.001
10.1016/j.carbon.2016.08.026
10.3389/fphys.2013.00185
10.1371/journal.pone.0003737
10.1529/biophysj.106.094763
10.2147/IJN.S146193
10.3390/cancers11010005
10.1002/adma.201200846
10.1016/j.biomaterials.2016.08.019
10.1007/s12015-010-9142-5
10.3390/pharmaceutics13101668
10.1016/j.jid.2016.07.033
10.5604/16652681.1231592
10.1007/s12015-009-9080-2
10.1038/srep01604
10.1186/s12867-018-0119-2
10.1126/science.1246736
10.1021/acsami.0c21349
10.1039/C5RA23647A
10.1038/s41598-018-36347-7
10.3389/fncel.2015.00087
10.1016/j.bbrc.2017.07.068
10.1098/rsfs.2018.0002
10.1021/nn200500h
10.1101/gad.261982.115
10.1166/jbn.2015.2137
10.1242/dev.02479
10.1074/jbc.M313932200
10.1111/cas.12691
10.4161/cc.8.21.9888
10.1007/s11060-010-0389-0
10.1007/978-3-642-36427-3
10.1002/adma.201302219
10.1634/stemcells.2006-0011
10.3390/ijms20030650
10.3389/fnins.2021.731198
10.1016/j.cell.2009.12.007
10.1016/j.elstat.2004.05.005
10.1002/smll.201200715
10.1016/j.abb.2012.08.006
10.3389/fbioe.2020.00603
10.1021/acsnano.7b00397
10.5607/en.2011.20.2.110
10.1371/journal.pone.0096194
10.3390/ijms18122549
10.2217/nnm-2016-0150
10.1002/bies.201100136
10.1063/1.3682464
10.1016/j.matchemphys.2018.04.042
10.1016/j.nanoen.2017.12.048
10.1021/jacs.5b09970
10.3389/fnsys.2018.00012
10.1111/aor.13425
10.1038/s41598-018-21157-8
10.1063/1.4974566
10.1021/acsnano.6b03438
10.1002/smll.201700789
10.18632/oncotarget.3348
10.1016/j.stem.2015.12.012
10.3390/ijms19123939
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
5PM
DOI 10.1039/d2nh00453d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2055-6764
EndPage 17
ExternalDocumentID PMC9765404
36426604
10_1039_D2NH00453D
d2nh00453d
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: ICARO, Contract No. 678109
GroupedDBID 0R~
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ADMRA
AFOGI
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUNWK
BLAPV
C6K
EBS
ECGLT
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAXHV
AAYXX
ABJNI
ABPDG
AEFDR
AENGV
AETIL
AFRZK
AGEGJ
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c428t-66b4a13ef7238613bd7b9a60ea8d04d21386f4dc5519b50cad49fd269a8a93a73
ISSN 2055-6756
2055-6764
IngestDate Thu Aug 21 18:38:16 EDT 2025
Sun Sep 28 02:08:11 EDT 2025
Sun Jun 29 12:37:02 EDT 2025
Wed Feb 19 02:25:29 EST 2025
Tue Jul 01 01:45:37 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Wed Dec 21 06:15:23 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-66b4a13ef7238613bd7b9a60ea8d04d21386f4dc5519b50cad49fd269a8a93a73
Notes https://doi.org/10.1039/d2nh00453d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Electron Microscopy and Micro-Analysis Facility (MEMA), University of Florence, via G. Capponi, 3r – 50121 Firenze, Italy.
Current address: Mines Saint-Etienne, Centre CMP, Department of Bioelectronics, Gardanne, France.
Current address: University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
Current address: Leonardo Company, Piazza Monte Grappa 4, 00195 Rome, Italy.
ORCID 0000-0001-5518-1134
0000-0001-6580-9677
0000-0002-4951-7161
0000-0001-5959-9730
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9765404
PMID 36426604
PQID 2755797057
PQPubID 2047513
PageCount 13
ParticipantIDs pubmed_primary_36426604
proquest_miscellaneous_2740509297
rsc_primary_d2nh00453d
crossref_citationtrail_10_1039_D2NH00453D
crossref_primary_10_1039_D2NH00453D
proquest_journals_2755797057
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9765404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-20
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale horizons
PublicationTitleAlternate Nanoscale Horiz
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Guo (D2NH00453D/cit22/1) 2016; 106
Bramini (D2NH00453D/cit31/1) 2018; 12
Yoo (D2NH00453D/cit47/1) 2011; 20
Scapin (D2NH00453D/cit59/1) 2016; 11
Maier-Hauff (D2NH00453D/cit33/1) 2011; 103
Neradil (D2NH00453D/cit65/1) 2015; 106
van Vliet (D2NH00453D/cit4/1) 2010; 6
Jaworski (D2NH00453D/cit42/1) 2019; 20
Yang (D2NH00453D/cit8/1) 2013; 4
Li (D2NH00453D/cit49/1) 2013
Soto-Cerrato (D2NH00453D/cit61/1) 2015; 137
Jayaram (D2NH00453D/cit14/1) 2017; 13
Sundelacruz (D2NH00453D/cit2/1) 2008; 3
Szmidt (D2NH00453D/cit44/1) 2019; 20
Wierzbicki (D2NH00453D/cit43/1) 2017; 12
Fiorillo (D2NH00453D/cit39/1) 2015; 6
Diao (D2NH00453D/cit64/1) 2019; 9
Solanki (D2NH00453D/cit26/1) 2013; 25
Dante (D2NH00453D/cit12/1) 2017; 11
Verre (D2NH00453D/cit41/1) 2018; 8
Wang (D2NH00453D/cit21/1) 2012; 24
Pan (D2NH00453D/cit60/1) 2018; 45
Gimsa (D2NH00453D/cit54/1) 1996; 71
Diaz (D2NH00453D/cit52/1) 2004; 62
Gavilán (D2NH00453D/cit36/1) 2021; 50
Schoen (D2NH00453D/cit51/1) 2007; 92
Szczepaniak (D2NH00453D/cit45/1) 2018; 19
Wang (D2NH00453D/cit29/1) 2012; 24
Mirsadeghi (D2NH00453D/cit9/1) 2017; 491
Fernandes (D2NH00453D/cit56/1) 2021; 13
Pinto (D2NH00453D/cit53/1) 2014; 9
Blackiston (D2NH00453D/cit1/1) 2009; 8
Pece (D2NH00453D/cit57/1) 2010; 140
Levin (D2NH00453D/cit6/1) 2012; 34
Nayak (D2NH00453D/cit28/1) 2011; 5
Schiffer (D2NH00453D/cit32/1) 2018; 11
Ostrakhovitch (D2NH00453D/cit20/1) 2012; 528
Kostarelos (D2NH00453D/cit30/1) 2014; 344
Papadopoulou (D2NH00453D/cit48/1) 2016; 6
Yamada (D2NH00453D/cit16/1) 2007; 25
Cataldi (D2NH00453D/cit55/1) 2016; 109
Scapin (D2NH00453D/cit24/1) 2016; 11
Generazio (D2NH00453D/cit66/1) 2017; 1806
Konig (D2NH00453D/cit11/1) 2004; 279
Lathia (D2NH00453D/cit37/1) 2015; 29
Collins (D2NH00453D/cit63/1) 2012; 111
Li (D2NH00453D/cit25/1) 2013; 3
Persano (D2NH00453D/cit34/1) 2021; 13
Crowder (D2NH00453D/cit18/1) 2016; 18
Moschetta (D2NH00453D/cit15/1) 2021; 15
Bhavsar (D2NH00453D/cit5/1) 2020; 8
Rahmani (D2NH00453D/cit17/1) 2019; 43
Huang (D2NH00453D/cit19/1) 2012; 8
Bautista (D2NH00453D/cit62/1) 2017; 16
Kim (D2NH00453D/cit27/1) 2015; 11
Sundelacruz (D2NH00453D/cit3/1) 2009; 5
Gupta (D2NH00453D/cit35/1) 2019; 10
Jian (D2NH00453D/cit38/1) 2017; 137
Patro (D2NH00453D/cit46/1) 2015; 9
Bramini (D2NH00453D/cit50/1) 2016; 10
Levin (D2NH00453D/cit7/1) 2013; 5
Distasi (D2NH00453D/cit13/1) 2018; 8
Scapin (D2NH00453D/cit23/1) 2015; 11
Konig (D2NH00453D/cit10/1) 2006; 133
Vicentini (D2NH00453D/cit58/1) 2018; 214
Gurunathan (D2NH00453D/cit40/1) 2017; 18
References_xml – issn: 2013
  publication-title: One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers
  doi: Li Wang
– volume: 71
  start-page: 495
  issue: 1
  year: 1996
  ident: D2NH00453D/cit54/1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(96)79251-2
– volume: 50
  start-page: 11614
  issue: 20
  year: 2021
  ident: D2NH00453D/cit36/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00427A
– volume: 11
  start-page: 621
  issue: 3
  year: 2015
  ident: D2NH00453D/cit23/1
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.11.001
– volume: 109
  start-page: 331
  year: 2016
  ident: D2NH00453D/cit55/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.08.026
– volume: 4
  start-page: 185
  year: 2013
  ident: D2NH00453D/cit8/1
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00185
– volume: 3
  start-page: e3737
  year: 2008
  ident: D2NH00453D/cit2/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003737
– volume: 92
  start-page: 1096
  issue: 3
  year: 2007
  ident: D2NH00453D/cit51/1
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.094763
– volume: 12
  start-page: 7241
  year: 2017
  ident: D2NH00453D/cit43/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S146193
– volume: 11
  start-page: 5
  year: 2018
  ident: D2NH00453D/cit32/1
  publication-title: Cancers
  doi: 10.3390/cancers11010005
– volume: 24
  start-page: 4285
  issue: 31
  year: 2012
  ident: D2NH00453D/cit29/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200846
– volume: 106
  start-page: 193
  year: 2016
  ident: D2NH00453D/cit22/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.08.019
– volume: 6
  start-page: 178
  issue: 2
  year: 2010
  ident: D2NH00453D/cit4/1
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-010-9142-5
– volume: 13
  start-page: 1668
  year: 2021
  ident: D2NH00453D/cit34/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13101668
– volume: 137
  start-page: 31
  issue: 1
  year: 2017
  ident: D2NH00453D/cit38/1
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2016.07.033
– volume: 16
  start-page: 297
  issue: 2
  year: 2017
  ident: D2NH00453D/cit62/1
  publication-title: Ann. Hepatol.
  doi: 10.5604/16652681.1231592
– volume: 5
  start-page: 231
  issue: 3
  year: 2009
  ident: D2NH00453D/cit3/1
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-009-9080-2
– volume: 3
  start-page: 1604
  issue: 1
  year: 2013
  ident: D2NH00453D/cit25/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep01604
– volume: 20
  start-page: 2
  issue: 1
  year: 2019
  ident: D2NH00453D/cit44/1
  publication-title: BMC Mol. Biol.
  doi: 10.1186/s12867-018-0119-2
– volume: 344
  start-page: 261
  issue: 6181
  year: 2014
  ident: D2NH00453D/cit30/1
  publication-title: Science
  doi: 10.1126/science.1246736
– volume: 13
  start-page: 15959
  issue: 14
  year: 2021
  ident: D2NH00453D/cit56/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21349
– volume: 6
  start-page: 6823
  issue: 8
  year: 2016
  ident: D2NH00453D/cit48/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23647A
– volume: 9
  start-page: 85
  issue: 1
  year: 2019
  ident: D2NH00453D/cit64/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36347-7
– volume: 9
  start-page: 87
  year: 2015
  ident: D2NH00453D/cit46/1
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00087
– volume: 491
  start-page: 166
  issue: 1
  year: 2017
  ident: D2NH00453D/cit9/1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.07.068
– volume: 8
  start-page: 20180002
  issue: 3
  year: 2018
  ident: D2NH00453D/cit41/1
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2018.0002
– volume: 5
  start-page: 4670
  issue: 6
  year: 2011
  ident: D2NH00453D/cit28/1
  publication-title: ACS Nano
  doi: 10.1021/nn200500h
– volume: 29
  start-page: 1203
  issue: 12
  year: 2015
  ident: D2NH00453D/cit37/1
  publication-title: Genes Dev.
  doi: 10.1101/gad.261982.115
– volume: 11
  start-page: 2024
  issue: 11
  year: 2015
  ident: D2NH00453D/cit27/1
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2015.2137
– volume: 133
  start-page: 3107
  issue: 16
  year: 2006
  ident: D2NH00453D/cit10/1
  publication-title: Development
  doi: 10.1242/dev.02479
– volume: 279
  start-page: 28187
  issue: 27
  year: 2004
  ident: D2NH00453D/cit11/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313932200
– volume: 106
  start-page: 803
  issue: 7
  year: 2015
  ident: D2NH00453D/cit65/1
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12691
– volume: 8
  start-page: 3527
  issue: 21
  year: 2009
  ident: D2NH00453D/cit1/1
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.21.9888
– volume: 103
  start-page: 317
  issue: 2
  year: 2011
  ident: D2NH00453D/cit33/1
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-010-0389-0
– volume-title: One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers
  year: 2013
  ident: D2NH00453D/cit49/1
  doi: 10.1007/978-3-642-36427-3
– volume: 25
  start-page: 5477
  issue: 38
  year: 2013
  ident: D2NH00453D/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302219
– volume: 25
  start-page: 562
  issue: 3
  year: 2007
  ident: D2NH00453D/cit16/1
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0011
– volume: 20
  start-page: 650
  issue: 3
  year: 2019
  ident: D2NH00453D/cit42/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030650
– volume: 15
  start-page: 731198
  year: 2021
  ident: D2NH00453D/cit15/1
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.731198
– volume: 140
  start-page: 62
  issue: 1
  year: 2010
  ident: D2NH00453D/cit57/1
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.007
– volume: 10
  start-page: 1157
  issue: 3
  year: 2019
  ident: D2NH00453D/cit35/1
  publication-title: Neuroscience
– volume: 62
  start-page: 277
  issue: 4
  year: 2004
  ident: D2NH00453D/cit52/1
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2004.05.005
– volume: 8
  start-page: 2869
  issue: 18
  year: 2012
  ident: D2NH00453D/cit19/1
  publication-title: Small
  doi: 10.1002/smll.201200715
– volume: 528
  start-page: 21
  issue: 1
  year: 2012
  ident: D2NH00453D/cit20/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2012.08.006
– volume: 8
  start-page: 603
  year: 2020
  ident: D2NH00453D/cit5/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00603
– volume: 11
  start-page: 6630
  issue: 7
  year: 2017
  ident: D2NH00453D/cit12/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00397
– volume: 20
  start-page: 110
  issue: 2
  year: 2011
  ident: D2NH00453D/cit47/1
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2011.20.2.110
– volume: 9
  start-page: e96194
  issue: 5
  year: 2014
  ident: D2NH00453D/cit53/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096194
– volume: 18
  start-page: 2549
  issue: 12
  year: 2017
  ident: D2NH00453D/cit40/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18122549
– volume: 11
  start-page: 1929
  issue: 15
  year: 2016
  ident: D2NH00453D/cit59/1
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0150
– volume: 24
  start-page: 4285
  issue: 31
  year: 2012
  ident: D2NH00453D/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200846
– volume: 34
  start-page: 205
  issue: 3
  year: 2012
  ident: D2NH00453D/cit6/1
  publication-title: BioEssays
  doi: 10.1002/bies.201100136
– volume: 111
  start-page: 044701
  issue: 4
  year: 2012
  ident: D2NH00453D/cit63/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3682464
– volume: 214
  start-page: 265
  year: 2018
  ident: D2NH00453D/cit58/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.04.042
– volume: 45
  start-page: 193
  year: 2018
  ident: D2NH00453D/cit60/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.048
– volume: 137
  start-page: 15892
  issue: 50
  year: 2015
  ident: D2NH00453D/cit61/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09970
– volume: 12
  start-page: 12
  year: 2018
  ident: D2NH00453D/cit31/1
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2018.00012
– volume: 43
  start-page: 780
  issue: 8
  year: 2019
  ident: D2NH00453D/cit17/1
  publication-title: Artif. Organs
  doi: 10.1111/aor.13425
– volume: 8
  start-page: 2760
  issue: 1
  year: 2018
  ident: D2NH00453D/cit13/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21157-8
– volume: 5
  start-page: 657
  issue: 6
  year: 2013
  ident: D2NH00453D/cit7/1
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– volume: 1806
  start-page: 020025
  issue: 1
  year: 2017
  ident: D2NH00453D/cit66/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4974566
– volume: 11
  start-page: 1929
  issue: 15
  year: 2016
  ident: D2NH00453D/cit24/1
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0150
– volume: 10
  start-page: 7154
  issue: 7
  year: 2016
  ident: D2NH00453D/cit50/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03438
– volume: 13
  start-page: 1700789
  issue: 27
  year: 2017
  ident: D2NH00453D/cit14/1
  publication-title: Small
  doi: 10.1002/smll.201700789
– volume: 6
  start-page: 3553
  issue: 6
  year: 2015
  ident: D2NH00453D/cit39/1
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3348
– volume: 18
  start-page: 39
  issue: 1
  year: 2016
  ident: D2NH00453D/cit18/1
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.12.012
– volume: 19
  start-page: 3939
  issue: 12
  year: 2018
  ident: D2NH00453D/cit45/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19123939
SSID ssj0001817983
Score 2.236947
Snippet Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Bioelectricity
Cancer
Cell Differentiation
Cell membranes
Chemistry
Differentiation (biology)
Glioblastoma
Graphene
Humans
Hypotheses
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Polyamide resins
Polylactic acid
Scaffolds
Static Electricity
Stem cells
Tissue engineering
Tissue Engineering - methods
Tumor Microenvironment
Title Electrostatic polarization fields trigger glioblastoma stem cell differentiation
URI https://www.ncbi.nlm.nih.gov/pubmed/36426604
https://www.proquest.com/docview/2755797057
https://www.proquest.com/docview/2740509297
https://pubmed.ncbi.nlm.nih.gov/PMC9765404
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2lqQTlgKBQCBRkBBdkubjrzz1GaVFApIpQKlVcol3vhlhq7MpxLv1F_ExmvOuPND1AL1a0HtvKvufJm83sDCGfWBLhek3sCE654zOhHKZi5URcLCTzmC8TDBQnF-H40v9-FVz1en86WUubUpwkt_fuK3kIqjAGuOIu2f9AtrkpDMBnwBeOgDAc_wnjc93DBjcFpQn2W4DA99ZkD2Jm2touIfjGfb2_r9NcgFAu8xW3sXazjSv2TXuUsgOQUargdvM1AKjsZQ53rVf1ukvP9ogLLiv1OeMrXjQe_udGaG82AWkOZGgTROyJKpb6L5HhKm2vmBZ5qsoytX9xALtIjaQ1l5pVCVo1SKFuwyPkuF7_qJNPq-QS08Ku9XHUDXDvQ2CqYXfHdHHz2knHO1zUDld36DQ_3aaB7s6vguthUVVJsyUqWE92jQDRm1XFDy9EtaKbId-pwT2djEC2gbj198g-jUCl9cn-8Hz27Ue7nhdj6TdMaGi-U10N12Nf2mcfkEf1g7al0E58s5umu1fUXWkq9TN7Rp6asMUaag4-Jz2VHZLHzVQfkiedwpYvyHSLmVaXmZZmpmWYaXWZaSEzLWSmdYeZL8nl1_PZaOyY3h1OAgFt6YSh8PmppxbY1A4ko5CRYDx0FY-l60t6CqMLcAQg2JkI3IRLny0kDRmPOfN45B2RfpZn6jWxglB4Xpi4SbgIUD4LmgQqoTJUMqaxUAPyuZ7GeWIK22N_let5lWDhsfkZvRhXs382IB8b2xtdzuVeq-Majbl53ddzGgVBxCKIbwbkQ3MaZhlnhWcq36CNj_WUKAObVxq85jE16gMSbcHaGGCh9-0zWbqsCr4b7g3IERCgsW859ebBt3xLDtq395j0y2Kj3oHKLsV7Q_C_ig7Z-Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+polarization+fields+trigger+glioblastoma+stem+cell+differentiation&rft.jtitle=Nanoscale+horizons&rft.au=Fernandez+Cabada%2C+Tamara&rft.au=Ruben%2C+Massimo&rft.au=El+Merhie%2C+Amira&rft.au=Proietti+Zaccaria%2C+Remo&rft.date=2022-12-20&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2055-6756&rft.eissn=2055-6764&rft.volume=8&rft.issue=1&rft.spage=95&rft.epage=107&rft_id=info:doi/10.1039%2Fd2nh00453d&rft_id=info%3Apmid%2F36426604&rft.externalDocID=PMC9765404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon