Electrostatic polarization fields trigger glioblastoma stem cell differentiation
Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer ste...
Saved in:
Published in | Nanoscale horizons Vol. 8; no. 1; pp. 95 - 17 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
20.12.2022
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2055-6756 2055-6764 2055-6764 |
DOI | 10.1039/d2nh00453d |
Cover
Abstract | Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.
Glioblastoma cancer stem-like cells seeded on substrates exhibiting surface potential differences, undergo differentiation due to the forced hyperpolarization of the membrane potential at the cell/substrate interface. |
---|---|
AbstractList | Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.
Glioblastoma cancer stem-like cells seeded on substrates exhibiting surface potential differences, undergo differentiation due to the forced hyperpolarization of the membrane potential at the cell/substrate interface. Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM. Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM. |
Author | Crepaldi, Marco Catelani, Tiziano Cingolani, Roberto Davis, Alexander Barberis, Andrea Ceseracciu, Luca Proietti Zaccaria, Remo Papadopoulou, Evie L Ruben, Massimo El Merhie, Amira Petrini, Enrica Maria Athanassiou, Athanassia Salerno, Marco Pellegrino, Teresa Fernandez Cabada, Tamara Alabastri, Alessandro |
AuthorAffiliation | Department of Electrical and Computer Engineering Istituto Italiano di Tecnologia Rice University |
AuthorAffiliation_xml | – name: Istituto Italiano di Tecnologia – name: Department of Electrical and Computer Engineering – name: Rice University |
Author_xml | – sequence: 1 givenname: Tamara surname: Fernandez Cabada fullname: Fernandez Cabada, Tamara – sequence: 2 givenname: Massimo surname: Ruben fullname: Ruben, Massimo – sequence: 3 givenname: Amira surname: El Merhie fullname: El Merhie, Amira – sequence: 4 givenname: Remo surname: Proietti Zaccaria fullname: Proietti Zaccaria, Remo – sequence: 5 givenname: Alessandro surname: Alabastri fullname: Alabastri, Alessandro – sequence: 6 givenname: Enrica Maria surname: Petrini fullname: Petrini, Enrica Maria – sequence: 7 givenname: Andrea surname: Barberis fullname: Barberis, Andrea – sequence: 8 givenname: Marco surname: Salerno fullname: Salerno, Marco – sequence: 9 givenname: Marco surname: Crepaldi fullname: Crepaldi, Marco – sequence: 10 givenname: Alexander surname: Davis fullname: Davis, Alexander – sequence: 11 givenname: Luca surname: Ceseracciu fullname: Ceseracciu, Luca – sequence: 12 givenname: Tiziano surname: Catelani fullname: Catelani, Tiziano – sequence: 13 givenname: Athanassia surname: Athanassiou fullname: Athanassiou, Athanassia – sequence: 14 givenname: Teresa surname: Pellegrino fullname: Pellegrino, Teresa – sequence: 15 givenname: Roberto surname: Cingolani fullname: Cingolani, Roberto – sequence: 16 givenname: Evie L surname: Papadopoulou fullname: Papadopoulou, Evie L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36426604$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9rVDEQx4NUbK29eFceeCnC6uT3y0WQtlqhqAc9h7wkb5uS97ImWUH_-mZ321WLpwzJZ77znZk8RQdzmj1CzzG8wUDVW0fmawDGqXuEjghwvhBSsIN9zMUhOinlBgBwj6Xq6RN0SAUjQgA7Ql8vorc1p1JNDbZbpWhy-N3iNHdj8NGVruawXPrcLWNIQzSlpsl0pfqpsz7GzoVx9NnPNWyznqHHo4nFn9ydx-j7h4tvZ5eLqy8fP529v1pYRvq6EGJgBlM_SkJ7geng5KCMAG96B8wR3G5H5iznWA0crHFMjY4IZXqjqJH0GL3b6a7Ww-SdbQayiXqVw2TyL51M0P--zOFaL9NPraTgDFgTOL0TyOnH2peqp1A2HZnZp3XRRDLgoIja1Hr1AL1J6zy39hrFuVQS-IZ6-bejvZX7YTcAdoBt8y7Zj9qGuh1aMxiixqA3K9Xn5PPldqXnLeX1g5R71f_CL3ZwLnbP_fkf9BazMqv3 |
CitedBy_id | crossref_primary_10_1039_D3NH00428G crossref_primary_10_1021_acsami_3c14527 crossref_primary_10_1002_open_202400002 crossref_primary_10_3390_micro3020037 |
Cites_doi | 10.1016/S0006-3495(96)79251-2 10.1039/D1CS00427A 10.1016/j.nano.2014.11.001 10.1016/j.carbon.2016.08.026 10.3389/fphys.2013.00185 10.1371/journal.pone.0003737 10.1529/biophysj.106.094763 10.2147/IJN.S146193 10.3390/cancers11010005 10.1002/adma.201200846 10.1016/j.biomaterials.2016.08.019 10.1007/s12015-010-9142-5 10.3390/pharmaceutics13101668 10.1016/j.jid.2016.07.033 10.5604/16652681.1231592 10.1007/s12015-009-9080-2 10.1038/srep01604 10.1186/s12867-018-0119-2 10.1126/science.1246736 10.1021/acsami.0c21349 10.1039/C5RA23647A 10.1038/s41598-018-36347-7 10.3389/fncel.2015.00087 10.1016/j.bbrc.2017.07.068 10.1098/rsfs.2018.0002 10.1021/nn200500h 10.1101/gad.261982.115 10.1166/jbn.2015.2137 10.1242/dev.02479 10.1074/jbc.M313932200 10.1111/cas.12691 10.4161/cc.8.21.9888 10.1007/s11060-010-0389-0 10.1007/978-3-642-36427-3 10.1002/adma.201302219 10.1634/stemcells.2006-0011 10.3390/ijms20030650 10.3389/fnins.2021.731198 10.1016/j.cell.2009.12.007 10.1016/j.elstat.2004.05.005 10.1002/smll.201200715 10.1016/j.abb.2012.08.006 10.3389/fbioe.2020.00603 10.1021/acsnano.7b00397 10.5607/en.2011.20.2.110 10.1371/journal.pone.0096194 10.3390/ijms18122549 10.2217/nnm-2016-0150 10.1002/bies.201100136 10.1063/1.3682464 10.1016/j.matchemphys.2018.04.042 10.1016/j.nanoen.2017.12.048 10.1021/jacs.5b09970 10.3389/fnsys.2018.00012 10.1111/aor.13425 10.1038/s41598-018-21157-8 10.1063/1.4974566 10.1021/acsnano.6b03438 10.1002/smll.201700789 10.18632/oncotarget.3348 10.1016/j.stem.2015.12.012 10.3390/ijms19123939 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 – notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 5PM |
DOI | 10.1039/d2nh00453d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2055-6764 |
EndPage | 17 |
ExternalDocumentID | PMC9765404 36426604 10_1039_D2NH00453D d2nh00453d |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: ICARO, Contract No. 678109 |
GroupedDBID | 0R~ AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ADMRA AFOGI AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUNWK BLAPV C6K EBS ECGLT O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAJAE AARTK AAXHV AAYXX ABJNI ABPDG AEFDR AENGV AETIL AFRZK AGEGJ AKBGW AKMSF APEMP CITATION GGIMP H13 CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c428t-66b4a13ef7238613bd7b9a60ea8d04d21386f4dc5519b50cad49fd269a8a93a73 |
ISSN | 2055-6756 2055-6764 |
IngestDate | Thu Aug 21 18:38:16 EDT 2025 Sun Sep 28 02:08:11 EDT 2025 Sun Jun 29 12:37:02 EDT 2025 Wed Feb 19 02:25:29 EST 2025 Tue Jul 01 01:45:37 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Wed Dec 21 06:15:23 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-66b4a13ef7238613bd7b9a60ea8d04d21386f4dc5519b50cad49fd269a8a93a73 |
Notes | https://doi.org/10.1039/d2nh00453d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Electron Microscopy and Micro-Analysis Facility (MEMA), University of Florence, via G. Capponi, 3r – 50121 Firenze, Italy. Current address: Mines Saint-Etienne, Centre CMP, Department of Bioelectronics, Gardanne, France. Current address: University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France. Current address: Leonardo Company, Piazza Monte Grappa 4, 00195 Rome, Italy. |
ORCID | 0000-0001-5518-1134 0000-0001-6580-9677 0000-0002-4951-7161 0000-0001-5959-9730 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9765404 |
PMID | 36426604 |
PQID | 2755797057 |
PQPubID | 2047513 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_36426604 proquest_miscellaneous_2740509297 rsc_primary_d2nh00453d crossref_citationtrail_10_1039_D2NH00453D crossref_primary_10_1039_D2NH00453D proquest_journals_2755797057 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9765404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-20 |
PublicationDateYYYYMMDD | 2022-12-20 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale horizons |
PublicationTitleAlternate | Nanoscale Horiz |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Guo (D2NH00453D/cit22/1) 2016; 106 Bramini (D2NH00453D/cit31/1) 2018; 12 Yoo (D2NH00453D/cit47/1) 2011; 20 Scapin (D2NH00453D/cit59/1) 2016; 11 Maier-Hauff (D2NH00453D/cit33/1) 2011; 103 Neradil (D2NH00453D/cit65/1) 2015; 106 van Vliet (D2NH00453D/cit4/1) 2010; 6 Jaworski (D2NH00453D/cit42/1) 2019; 20 Yang (D2NH00453D/cit8/1) 2013; 4 Li (D2NH00453D/cit49/1) 2013 Soto-Cerrato (D2NH00453D/cit61/1) 2015; 137 Jayaram (D2NH00453D/cit14/1) 2017; 13 Sundelacruz (D2NH00453D/cit2/1) 2008; 3 Szmidt (D2NH00453D/cit44/1) 2019; 20 Wierzbicki (D2NH00453D/cit43/1) 2017; 12 Fiorillo (D2NH00453D/cit39/1) 2015; 6 Diao (D2NH00453D/cit64/1) 2019; 9 Solanki (D2NH00453D/cit26/1) 2013; 25 Dante (D2NH00453D/cit12/1) 2017; 11 Verre (D2NH00453D/cit41/1) 2018; 8 Wang (D2NH00453D/cit21/1) 2012; 24 Pan (D2NH00453D/cit60/1) 2018; 45 Gimsa (D2NH00453D/cit54/1) 1996; 71 Diaz (D2NH00453D/cit52/1) 2004; 62 Gavilán (D2NH00453D/cit36/1) 2021; 50 Schoen (D2NH00453D/cit51/1) 2007; 92 Szczepaniak (D2NH00453D/cit45/1) 2018; 19 Wang (D2NH00453D/cit29/1) 2012; 24 Mirsadeghi (D2NH00453D/cit9/1) 2017; 491 Fernandes (D2NH00453D/cit56/1) 2021; 13 Pinto (D2NH00453D/cit53/1) 2014; 9 Blackiston (D2NH00453D/cit1/1) 2009; 8 Pece (D2NH00453D/cit57/1) 2010; 140 Levin (D2NH00453D/cit6/1) 2012; 34 Nayak (D2NH00453D/cit28/1) 2011; 5 Schiffer (D2NH00453D/cit32/1) 2018; 11 Ostrakhovitch (D2NH00453D/cit20/1) 2012; 528 Kostarelos (D2NH00453D/cit30/1) 2014; 344 Papadopoulou (D2NH00453D/cit48/1) 2016; 6 Yamada (D2NH00453D/cit16/1) 2007; 25 Cataldi (D2NH00453D/cit55/1) 2016; 109 Scapin (D2NH00453D/cit24/1) 2016; 11 Generazio (D2NH00453D/cit66/1) 2017; 1806 Konig (D2NH00453D/cit11/1) 2004; 279 Lathia (D2NH00453D/cit37/1) 2015; 29 Collins (D2NH00453D/cit63/1) 2012; 111 Li (D2NH00453D/cit25/1) 2013; 3 Persano (D2NH00453D/cit34/1) 2021; 13 Crowder (D2NH00453D/cit18/1) 2016; 18 Moschetta (D2NH00453D/cit15/1) 2021; 15 Bhavsar (D2NH00453D/cit5/1) 2020; 8 Rahmani (D2NH00453D/cit17/1) 2019; 43 Huang (D2NH00453D/cit19/1) 2012; 8 Bautista (D2NH00453D/cit62/1) 2017; 16 Kim (D2NH00453D/cit27/1) 2015; 11 Sundelacruz (D2NH00453D/cit3/1) 2009; 5 Gupta (D2NH00453D/cit35/1) 2019; 10 Jian (D2NH00453D/cit38/1) 2017; 137 Patro (D2NH00453D/cit46/1) 2015; 9 Bramini (D2NH00453D/cit50/1) 2016; 10 Levin (D2NH00453D/cit7/1) 2013; 5 Distasi (D2NH00453D/cit13/1) 2018; 8 Scapin (D2NH00453D/cit23/1) 2015; 11 Konig (D2NH00453D/cit10/1) 2006; 133 Vicentini (D2NH00453D/cit58/1) 2018; 214 Gurunathan (D2NH00453D/cit40/1) 2017; 18 |
References_xml | – issn: 2013 publication-title: One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers doi: Li Wang – volume: 71 start-page: 495 issue: 1 year: 1996 ident: D2NH00453D/cit54/1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79251-2 – volume: 50 start-page: 11614 issue: 20 year: 2021 ident: D2NH00453D/cit36/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00427A – volume: 11 start-page: 621 issue: 3 year: 2015 ident: D2NH00453D/cit23/1 publication-title: Nanomedicine doi: 10.1016/j.nano.2014.11.001 – volume: 109 start-page: 331 year: 2016 ident: D2NH00453D/cit55/1 publication-title: Carbon doi: 10.1016/j.carbon.2016.08.026 – volume: 4 start-page: 185 year: 2013 ident: D2NH00453D/cit8/1 publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00185 – volume: 3 start-page: e3737 year: 2008 ident: D2NH00453D/cit2/1 publication-title: PLoS One doi: 10.1371/journal.pone.0003737 – volume: 92 start-page: 1096 issue: 3 year: 2007 ident: D2NH00453D/cit51/1 publication-title: Biophys. J. doi: 10.1529/biophysj.106.094763 – volume: 12 start-page: 7241 year: 2017 ident: D2NH00453D/cit43/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S146193 – volume: 11 start-page: 5 year: 2018 ident: D2NH00453D/cit32/1 publication-title: Cancers doi: 10.3390/cancers11010005 – volume: 24 start-page: 4285 issue: 31 year: 2012 ident: D2NH00453D/cit29/1 publication-title: Adv. Mater. doi: 10.1002/adma.201200846 – volume: 106 start-page: 193 year: 2016 ident: D2NH00453D/cit22/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.08.019 – volume: 6 start-page: 178 issue: 2 year: 2010 ident: D2NH00453D/cit4/1 publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-010-9142-5 – volume: 13 start-page: 1668 year: 2021 ident: D2NH00453D/cit34/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13101668 – volume: 137 start-page: 31 issue: 1 year: 2017 ident: D2NH00453D/cit38/1 publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2016.07.033 – volume: 16 start-page: 297 issue: 2 year: 2017 ident: D2NH00453D/cit62/1 publication-title: Ann. Hepatol. doi: 10.5604/16652681.1231592 – volume: 5 start-page: 231 issue: 3 year: 2009 ident: D2NH00453D/cit3/1 publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-009-9080-2 – volume: 3 start-page: 1604 issue: 1 year: 2013 ident: D2NH00453D/cit25/1 publication-title: Sci. Rep. doi: 10.1038/srep01604 – volume: 20 start-page: 2 issue: 1 year: 2019 ident: D2NH00453D/cit44/1 publication-title: BMC Mol. Biol. doi: 10.1186/s12867-018-0119-2 – volume: 344 start-page: 261 issue: 6181 year: 2014 ident: D2NH00453D/cit30/1 publication-title: Science doi: 10.1126/science.1246736 – volume: 13 start-page: 15959 issue: 14 year: 2021 ident: D2NH00453D/cit56/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21349 – volume: 6 start-page: 6823 issue: 8 year: 2016 ident: D2NH00453D/cit48/1 publication-title: RSC Adv. doi: 10.1039/C5RA23647A – volume: 9 start-page: 85 issue: 1 year: 2019 ident: D2NH00453D/cit64/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36347-7 – volume: 9 start-page: 87 year: 2015 ident: D2NH00453D/cit46/1 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00087 – volume: 491 start-page: 166 issue: 1 year: 2017 ident: D2NH00453D/cit9/1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.07.068 – volume: 8 start-page: 20180002 issue: 3 year: 2018 ident: D2NH00453D/cit41/1 publication-title: Interface Focus doi: 10.1098/rsfs.2018.0002 – volume: 5 start-page: 4670 issue: 6 year: 2011 ident: D2NH00453D/cit28/1 publication-title: ACS Nano doi: 10.1021/nn200500h – volume: 29 start-page: 1203 issue: 12 year: 2015 ident: D2NH00453D/cit37/1 publication-title: Genes Dev. doi: 10.1101/gad.261982.115 – volume: 11 start-page: 2024 issue: 11 year: 2015 ident: D2NH00453D/cit27/1 publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2015.2137 – volume: 133 start-page: 3107 issue: 16 year: 2006 ident: D2NH00453D/cit10/1 publication-title: Development doi: 10.1242/dev.02479 – volume: 279 start-page: 28187 issue: 27 year: 2004 ident: D2NH00453D/cit11/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313932200 – volume: 106 start-page: 803 issue: 7 year: 2015 ident: D2NH00453D/cit65/1 publication-title: Cancer Sci. doi: 10.1111/cas.12691 – volume: 8 start-page: 3527 issue: 21 year: 2009 ident: D2NH00453D/cit1/1 publication-title: Cell Cycle doi: 10.4161/cc.8.21.9888 – volume: 103 start-page: 317 issue: 2 year: 2011 ident: D2NH00453D/cit33/1 publication-title: J. Neurooncol. doi: 10.1007/s11060-010-0389-0 – volume-title: One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers year: 2013 ident: D2NH00453D/cit49/1 doi: 10.1007/978-3-642-36427-3 – volume: 25 start-page: 5477 issue: 38 year: 2013 ident: D2NH00453D/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.201302219 – volume: 25 start-page: 562 issue: 3 year: 2007 ident: D2NH00453D/cit16/1 publication-title: Stem Cells doi: 10.1634/stemcells.2006-0011 – volume: 20 start-page: 650 issue: 3 year: 2019 ident: D2NH00453D/cit42/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030650 – volume: 15 start-page: 731198 year: 2021 ident: D2NH00453D/cit15/1 publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.731198 – volume: 140 start-page: 62 issue: 1 year: 2010 ident: D2NH00453D/cit57/1 publication-title: Cell doi: 10.1016/j.cell.2009.12.007 – volume: 10 start-page: 1157 issue: 3 year: 2019 ident: D2NH00453D/cit35/1 publication-title: Neuroscience – volume: 62 start-page: 277 issue: 4 year: 2004 ident: D2NH00453D/cit52/1 publication-title: J. Electrost. doi: 10.1016/j.elstat.2004.05.005 – volume: 8 start-page: 2869 issue: 18 year: 2012 ident: D2NH00453D/cit19/1 publication-title: Small doi: 10.1002/smll.201200715 – volume: 528 start-page: 21 issue: 1 year: 2012 ident: D2NH00453D/cit20/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2012.08.006 – volume: 8 start-page: 603 year: 2020 ident: D2NH00453D/cit5/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00603 – volume: 11 start-page: 6630 issue: 7 year: 2017 ident: D2NH00453D/cit12/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b00397 – volume: 20 start-page: 110 issue: 2 year: 2011 ident: D2NH00453D/cit47/1 publication-title: Exp. Neurobiol. doi: 10.5607/en.2011.20.2.110 – volume: 9 start-page: e96194 issue: 5 year: 2014 ident: D2NH00453D/cit53/1 publication-title: PLoS One doi: 10.1371/journal.pone.0096194 – volume: 18 start-page: 2549 issue: 12 year: 2017 ident: D2NH00453D/cit40/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18122549 – volume: 11 start-page: 1929 issue: 15 year: 2016 ident: D2NH00453D/cit59/1 publication-title: Nanomedicine doi: 10.2217/nnm-2016-0150 – volume: 24 start-page: 4285 issue: 31 year: 2012 ident: D2NH00453D/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.201200846 – volume: 34 start-page: 205 issue: 3 year: 2012 ident: D2NH00453D/cit6/1 publication-title: BioEssays doi: 10.1002/bies.201100136 – volume: 111 start-page: 044701 issue: 4 year: 2012 ident: D2NH00453D/cit63/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3682464 – volume: 214 start-page: 265 year: 2018 ident: D2NH00453D/cit58/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.04.042 – volume: 45 start-page: 193 year: 2018 ident: D2NH00453D/cit60/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.048 – volume: 137 start-page: 15892 issue: 50 year: 2015 ident: D2NH00453D/cit61/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09970 – volume: 12 start-page: 12 year: 2018 ident: D2NH00453D/cit31/1 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2018.00012 – volume: 43 start-page: 780 issue: 8 year: 2019 ident: D2NH00453D/cit17/1 publication-title: Artif. Organs doi: 10.1111/aor.13425 – volume: 8 start-page: 2760 issue: 1 year: 2018 ident: D2NH00453D/cit13/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21157-8 – volume: 5 start-page: 657 issue: 6 year: 2013 ident: D2NH00453D/cit7/1 publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – volume: 1806 start-page: 020025 issue: 1 year: 2017 ident: D2NH00453D/cit66/1 publication-title: AIP Conf. Proc. doi: 10.1063/1.4974566 – volume: 11 start-page: 1929 issue: 15 year: 2016 ident: D2NH00453D/cit24/1 publication-title: Nanomedicine doi: 10.2217/nnm-2016-0150 – volume: 10 start-page: 7154 issue: 7 year: 2016 ident: D2NH00453D/cit50/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b03438 – volume: 13 start-page: 1700789 issue: 27 year: 2017 ident: D2NH00453D/cit14/1 publication-title: Small doi: 10.1002/smll.201700789 – volume: 6 start-page: 3553 issue: 6 year: 2015 ident: D2NH00453D/cit39/1 publication-title: Oncotarget doi: 10.18632/oncotarget.3348 – volume: 18 start-page: 39 issue: 1 year: 2016 ident: D2NH00453D/cit18/1 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.12.012 – volume: 19 start-page: 3939 issue: 12 year: 2018 ident: D2NH00453D/cit45/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19123939 |
SSID | ssj0001817983 |
Score | 2.236947 |
Snippet | Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Bioelectricity Cancer Cell Differentiation Cell membranes Chemistry Differentiation (biology) Glioblastoma Graphene Humans Hypotheses Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Polyamide resins Polylactic acid Scaffolds Static Electricity Stem cells Tissue engineering Tissue Engineering - methods Tumor Microenvironment |
Title | Electrostatic polarization fields trigger glioblastoma stem cell differentiation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36426604 https://www.proquest.com/docview/2755797057 https://www.proquest.com/docview/2740509297 https://pubmed.ncbi.nlm.nih.gov/PMC9765404 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2lqQTlgKBQCBRkBBdkubjrzz1GaVFApIpQKlVcol3vhlhq7MpxLv1F_ExmvOuPND1AL1a0HtvKvufJm83sDCGfWBLhek3sCE654zOhHKZi5URcLCTzmC8TDBQnF-H40v9-FVz1en86WUubUpwkt_fuK3kIqjAGuOIu2f9AtrkpDMBnwBeOgDAc_wnjc93DBjcFpQn2W4DA99ZkD2Jm2touIfjGfb2_r9NcgFAu8xW3sXazjSv2TXuUsgOQUargdvM1AKjsZQ53rVf1ukvP9ogLLiv1OeMrXjQe_udGaG82AWkOZGgTROyJKpb6L5HhKm2vmBZ5qsoytX9xALtIjaQ1l5pVCVo1SKFuwyPkuF7_qJNPq-QS08Ku9XHUDXDvQ2CqYXfHdHHz2knHO1zUDld36DQ_3aaB7s6vguthUVVJsyUqWE92jQDRm1XFDy9EtaKbId-pwT2djEC2gbj198g-jUCl9cn-8Hz27Ue7nhdj6TdMaGi-U10N12Nf2mcfkEf1g7al0E58s5umu1fUXWkq9TN7Rp6asMUaag4-Jz2VHZLHzVQfkiedwpYvyHSLmVaXmZZmpmWYaXWZaSEzLWSmdYeZL8nl1_PZaOyY3h1OAgFt6YSh8PmppxbY1A4ko5CRYDx0FY-l60t6CqMLcAQg2JkI3IRLny0kDRmPOfN45B2RfpZn6jWxglB4Xpi4SbgIUD4LmgQqoTJUMqaxUAPyuZ7GeWIK22N_let5lWDhsfkZvRhXs382IB8b2xtdzuVeq-Majbl53ddzGgVBxCKIbwbkQ3MaZhlnhWcq36CNj_WUKAObVxq85jE16gMSbcHaGGCh9-0zWbqsCr4b7g3IERCgsW859ebBt3xLDtq395j0y2Kj3oHKLsV7Q_C_ig7Z-Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+polarization+fields+trigger+glioblastoma+stem+cell+differentiation&rft.jtitle=Nanoscale+horizons&rft.au=Fernandez+Cabada%2C+Tamara&rft.au=Ruben%2C+Massimo&rft.au=El+Merhie%2C+Amira&rft.au=Proietti+Zaccaria%2C+Remo&rft.date=2022-12-20&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2055-6756&rft.eissn=2055-6764&rft.volume=8&rft.issue=1&rft.spage=95&rft.epage=107&rft_id=info:doi/10.1039%2Fd2nh00453d&rft_id=info%3Apmid%2F36426604&rft.externalDocID=PMC9765404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon |