Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation

This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizi...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 105; pp. 154 - 165
Main Authors Selvaraj, P., Sakthivel, R., Kwon, O.M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2018.05.004

Cover

Abstract This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov–Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.
AbstractList This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.
Author Sakthivel, R.
Selvaraj, P.
Kwon, O.M.
Author_xml – sequence: 1
  givenname: P.
  surname: Selvaraj
  fullname: Selvaraj, P.
  organization: School of Electrical Engineering, Chungbuk National University, 1 Chungdao-ro, Cheongju 28644, South Korea
– sequence: 2
  givenname: R.
  surname: Sakthivel
  fullname: Sakthivel, R.
  email: krsakthivel@buc.edu.in
  organization: Department of Mathematics, Bharathiar University, Coimbatore 641046, India
– sequence: 3
  givenname: O.M.
  orcidid: 0000-0002-4777-7912
  surname: Kwon
  fullname: Kwon, O.M.
  email: madwind@chungbuk.ac.kr
  organization: School of Electrical Engineering, Chungbuk National University, 1 Chungdao-ro, Cheongju 28644, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29886328$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS2UiGwC_wAhlzQz-DEz9lAgoYg8pEQ0UFt-3GG9mbUX25Mo_Pp42UBBAdVtvu9c6ZxTdBRiAITeUNJSQof3mzbAEqC0jFDZkr4lpHuBVlSKsWFCsiO0InLkzUAkOUGnOW8IIYPs-Et0wkYpB87kCi0XPvgCTfFbwPkx2HWKwf_UxceA44RziXatc_EW27jsZnC4vk16rqc8xHSXcV7MBmzBJeJbne7ivdcB5wdf7NqH71gHh33YLQVnXaq5T36Fjic9Z3j9fM_Qt4vPX8-vmpsvl9fnn24a2zFZmn6UVhvhummyg-mN6YwFPpGB8UmO2gnQghlmyMgZMdr0jMnBCjCCcjeB42fo3SF3l-KPBXJRW58tzLMOEJesGOk5E1RQVtG3z-hituDULvmtTo_qd1UV6A6ATTHnBNMfhBK1X0Rt1GERtV9EkV7VRar24S_N-vKrhJK0n_8nfzzIUEu695BUth6CBedTrVy56P8d8AQ3yq2_
CitedBy_id crossref_primary_10_1016_j_neunet_2020_04_009
crossref_primary_10_1186_s13662_019_2286_y
crossref_primary_10_1016_j_neucom_2021_08_123
crossref_primary_10_1109_TNNLS_2020_2964843
crossref_primary_10_1002_asjc_3295
crossref_primary_10_1016_j_cnsns_2021_105777
crossref_primary_10_1016_j_jfranklin_2019_06_025
crossref_primary_10_1016_j_jfranklin_2021_02_026
crossref_primary_10_1016_j_fss_2021_08_018
crossref_primary_10_1016_j_neunet_2023_01_039
crossref_primary_10_1109_TCYB_2020_2983481
crossref_primary_10_1007_s11063_021_10577_9
crossref_primary_10_1016_j_neucom_2023_01_019
crossref_primary_10_1049_iet_cta_2020_0046
crossref_primary_10_1109_ACCESS_2019_2935166
crossref_primary_10_1109_TNNLS_2022_3185617
crossref_primary_10_1016_j_jfranklin_2020_07_005
crossref_primary_10_1007_s11063_023_11345_7
crossref_primary_10_1016_j_neunet_2020_01_024
crossref_primary_10_1109_TAC_2022_3232989
crossref_primary_10_1016_j_nahs_2021_101028
crossref_primary_10_1155_2021_6695353
crossref_primary_10_1016_j_nahs_2024_101523
crossref_primary_10_1016_j_engappai_2021_104594
crossref_primary_10_1049_iet_cta_2019_0721
crossref_primary_10_1016_j_neucom_2019_10_036
crossref_primary_10_1002_acs_3377
crossref_primary_10_1007_s11071_022_08146_3
crossref_primary_10_1186_s13662_021_03438_1
crossref_primary_10_1109_TNNLS_2022_3176887
crossref_primary_10_1016_j_neunet_2022_01_020
crossref_primary_10_1016_j_neunet_2019_03_016
crossref_primary_10_1109_TNNLS_2021_3069926
crossref_primary_10_1002_asjc_2185
crossref_primary_10_1016_j_amc_2022_127274
crossref_primary_10_1016_j_jfranklin_2020_04_051
crossref_primary_10_1080_00207721_2023_2233516
crossref_primary_10_1002_rnc_6889
crossref_primary_10_1007_s12555_021_0231_9
crossref_primary_10_1109_TNNLS_2020_3009081
crossref_primary_10_1109_TSMC_2019_2931091
crossref_primary_10_1016_j_neunet_2020_02_015
crossref_primary_10_1016_j_ins_2021_07_004
crossref_primary_10_1016_j_cjph_2019_02_027
crossref_primary_10_1016_j_neunet_2020_09_012
crossref_primary_10_1016_j_neunet_2020_09_014
crossref_primary_10_1016_j_jfranklin_2019_12_003
crossref_primary_10_1109_TCYB_2020_3042473
crossref_primary_10_1109_TFUZZ_2020_3039676
crossref_primary_10_1371_journal_pone_0220861
crossref_primary_10_1002_acs_3558
crossref_primary_10_1109_TFUZZ_2020_2999041
crossref_primary_10_1002_rnc_5304
crossref_primary_10_1109_TCYB_2022_3231612
crossref_primary_10_1016_j_jfranklin_2021_11_033
crossref_primary_10_1007_s00521_023_08523_y
crossref_primary_10_1016_j_neunet_2019_12_016
crossref_primary_10_1007_s11063_023_11225_0
crossref_primary_10_1109_TFUZZ_2019_2921267
crossref_primary_10_1109_TNNLS_2019_2896162
crossref_primary_10_1155_2019_6732357
crossref_primary_10_1155_2020_5986018
crossref_primary_10_1049_cth2_12104
crossref_primary_10_1016_j_jfranklin_2020_09_006
crossref_primary_10_1016_j_fss_2019_09_001
crossref_primary_10_1016_j_neucom_2019_02_005
crossref_primary_10_1016_j_neunet_2019_07_004
crossref_primary_10_1016_j_neunet_2019_07_002
crossref_primary_10_1049_cth2_12494
crossref_primary_10_1016_j_ins_2023_03_040
crossref_primary_10_1016_j_neucom_2020_03_106
crossref_primary_10_1177_01423312211028217
crossref_primary_10_1016_j_neucom_2022_10_020
crossref_primary_10_1016_j_knosys_2022_109104
crossref_primary_10_1080_0952813X_2020_1725649
crossref_primary_10_3390_math10091533
crossref_primary_10_1186_s13662_020_02572_6
crossref_primary_10_1007_s11071_021_07028_4
crossref_primary_10_1016_j_neucom_2019_09_117
crossref_primary_10_1016_j_neunet_2020_05_012
crossref_primary_10_1016_j_neunet_2020_05_016
crossref_primary_10_3934_dcdss_2022082
crossref_primary_10_1007_s00500_022_07575_x
crossref_primary_10_1016_j_physa_2019_121788
crossref_primary_10_1007_s11071_019_05379_7
crossref_primary_10_1016_j_nahs_2021_101061
crossref_primary_10_1109_TNNLS_2022_3175747
crossref_primary_10_1109_TCYB_2020_2980684
crossref_primary_10_1016_j_amc_2022_127181
crossref_primary_10_1186_s13662_019_2298_7
crossref_primary_10_1007_s11071_019_05258_1
crossref_primary_10_1007_s11063_020_10237_4
crossref_primary_10_1109_TNNLS_2020_3027862
crossref_primary_10_3390_math7060559
crossref_primary_10_1080_00207721_2020_1752418
crossref_primary_10_1109_TNNLS_2019_2944552
crossref_primary_10_1016_j_chaos_2023_113555
crossref_primary_10_1016_j_neunet_2019_05_014
crossref_primary_10_1016_j_ymssp_2019_05_032
crossref_primary_10_1007_s12043_019_1903_3
crossref_primary_10_1016_j_cjph_2019_09_019
crossref_primary_10_1016_j_cnsns_2024_108424
crossref_primary_10_1109_TFUZZ_2022_3229048
crossref_primary_10_1016_j_cnsns_2022_106680
crossref_primary_10_1007_s13042_024_02195_3
crossref_primary_10_11948_20220300
crossref_primary_10_1007_s11071_024_09988_9
crossref_primary_10_1016_j_neunet_2022_07_009
crossref_primary_10_1016_j_neunet_2019_05_024
crossref_primary_10_1016_j_neunet_2019_09_003
crossref_primary_10_1016_j_isatra_2022_10_002
crossref_primary_10_1016_j_neucom_2018_10_079
crossref_primary_10_1109_TNNLS_2022_3184487
crossref_primary_10_1016_j_amc_2022_127083
crossref_primary_10_1186_s13662_018_1835_0
crossref_primary_10_1002_rnc_5195
crossref_primary_10_3390_math12091409
crossref_primary_10_1007_s11063_020_10390_w
crossref_primary_10_1007_s12555_020_0441_6
crossref_primary_10_1016_j_physa_2021_126431
crossref_primary_10_1109_TNNLS_2021_3057490
crossref_primary_10_1016_j_jfranklin_2021_01_023
Cites_doi 10.1016/j.apm.2017.03.024
10.1016/j.neucom.2016.09.004
10.1109/TIE.2014.2351379
10.1016/j.amc.2013.02.030
10.1016/j.automatica.2015.03.010
10.1016/j.neucom.2014.03.042
10.1109/TFUZZ.2015.2513085
10.1109/TSMCB.2012.2199751
10.1109/TNNLS.2013.2295966
10.1109/TIP.2011.2159231
10.1016/j.neucom.2014.02.050
10.1016/j.eswa.2011.11.055
10.1109/TNNLS.2011.2182659
10.1109/TNNLS.2016.2546962
10.1016/j.neunet.2016.10.007
10.1016/j.amc.2016.06.018
10.1016/j.neucom.2017.03.017
10.1109/TASE.2015.2414652
10.1016/j.amc.2015.11.060
10.1016/j.cnsns.2012.02.020
10.1016/j.neucom.2015.12.056
10.1016/j.neucom.2016.10.063
10.1049/iet-cta.2016.0845
10.1109/TSMCB.2010.2053354
10.1109/TCYB.2014.2381604
10.1109/TAC.2016.2604682
10.1016/j.automatica.2015.02.016
10.1109/TNNLS.2016.2599199
10.1007/s11071-016-2635-2
10.1109/TSMC.2016.2562511
10.1049/iet-cta.2014.0383
10.1049/iet-cta.2015.0189
10.1109/TNNLS.2015.2475737
10.1016/j.ins.2017.10.007
10.1016/j.ins.2015.05.031
10.1109/TCSI.2012.2215804
10.1007/s11071-017-3782-9
10.1109/TCYB.2014.2312004
10.1109/TSMCB.2012.2230441
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2018.05.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 165
ExternalDocumentID 29886328
10_1016_j_neunet_2018_05_004
S0893608018301588
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c428t-598cab7d4ffc6b5bb4bce3f0623f89ad7ea72b2b09320bab52286c7eb713dfed3
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 06:28:37 EDT 2025
Mon Jul 21 05:44:44 EDT 2025
Tue Jul 01 01:24:32 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:48:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Markovian jumping parameters
Saturation effect
Coupled stochastic neural networks
Finite-time synchronization
Stochastic coupling strength
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-598cab7d4ffc6b5bb4bce3f0623f89ad7ea72b2b09320bab52286c7eb713dfed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4777-7912
PMID 29886328
PQID 2053271712
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2053271712
pubmed_primary_29886328
crossref_primary_10_1016_j_neunet_2018_05_004
crossref_citationtrail_10_1016_j_neunet_2018_05_004
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_05_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Shi, Wu (b9) 2017
Pan, Sun, Gao, Jing (b18) 2016; 13
Wu, Su, Wu (b34) 2015; 9
Xu, Wang, Wei (b35) 2017; 227
Liu, Ho, Cao, Xu (b13) 2017; 28
Wang, Teng, Jiang (b28) 2012; 17
Bao, Park, Cao (b2) 2016; 27
Wu, Shi, Su, Chu (b33) 2014; 44
Wang, Qiu, Gao (b27) 2017; 47
Zheng, Cao (b40) 2014; 141
Park, Kwon, Seuret (b21) 2017; 62
Liu, Wang, Liang, Liu (b15) 2013; 43
Park, Kwon, Park, Lee (b19) 2012; 39
Manivannan, Samidurai, Cao, Alsaedi, Alsaadi (b16) 2018; 424
Zhu, Cao (b41) 2011; 41
Yang, Huang (b37) 2017; 249
Wang, Zhang, Yan (b29) 2015
Mathiyalagan, Park, Sakthivel (b17) 2016; 84
Zhu, Cao (b42) 2012; 23
Chen, Shi, Lim (b4) 2017; 28
Wu, Cao, Li, Alsaedi, Alsaadi (b31) 2017; 85
Li, Shi, Wu, Basin, Lim (b10) 2015; 62
Wang, Zhu (b30) 2015; 54
Yang, Zhang, Sun (b38) 2016; 10
Hunt, Irwin, Warwick (b7) 1995
Ahn, Shi, Wu (b1) 2015; 45
Lian, Wang (b12) 2015; 320
Zhang, Gao (b39) 2017; 219
Lee, Park, Kwon, Sakthivel (b8) 2016; 290
Fang, Park (b5) 2013; 219
Wu, Shi, Su, Chu (b32) 2013; 43
Tang, Gao, Lu, Kurths (b26) 2014; 25
Sakthivel, Anbuvithya, Mathiyalagan, Ma, Prakash (b23) 2016; 275
Cai, Huang, Zhang (b3) 2017; 47
Park, Kwon, Park, Lee, Cha (b20) 2015; 55
Selvaraj, Kaviarasan, Sakthivel, Karimi (b25) 2017; 11
Huang, Li, Huang, He (b6) 2014; 139
Samidurai, Manivannan (b24) 2016; 185
Peng, Yue, Han (b22) 2015
Yang, Cao, Lu (b36) 2013; 60
Li, Wang, Shi (b11) 2016; 24
Zineddin, Wang, Liu (b43) 2011; 20
Liu, Ho, Song, Cao (b14) 2017; 90
Wang (10.1016/j.neunet.2018.05.004_b28) 2012; 17
Park (10.1016/j.neunet.2018.05.004_b20) 2015; 55
Lian (10.1016/j.neunet.2018.05.004_b12) 2015; 320
Park (10.1016/j.neunet.2018.05.004_b19) 2012; 39
Wang (10.1016/j.neunet.2018.05.004_b27) 2017; 47
Ahn (10.1016/j.neunet.2018.05.004_b1) 2015; 45
Wu (10.1016/j.neunet.2018.05.004_b32) 2013; 43
Peng (10.1016/j.neunet.2018.05.004_b22) 2015
Wu (10.1016/j.neunet.2018.05.004_b31) 2017; 85
Li (10.1016/j.neunet.2018.05.004_b11) 2016; 24
Zineddin (10.1016/j.neunet.2018.05.004_b43) 2011; 20
Bao (10.1016/j.neunet.2018.05.004_b2) 2016; 27
Li (10.1016/j.neunet.2018.05.004_b9) 2017
Tang (10.1016/j.neunet.2018.05.004_b26) 2014; 25
Yang (10.1016/j.neunet.2018.05.004_b37) 2017; 249
Cai (10.1016/j.neunet.2018.05.004_b3) 2017; 47
Mathiyalagan (10.1016/j.neunet.2018.05.004_b17) 2016; 84
Zhu (10.1016/j.neunet.2018.05.004_b42) 2012; 23
Zhu (10.1016/j.neunet.2018.05.004_b41) 2011; 41
Sakthivel (10.1016/j.neunet.2018.05.004_b23) 2016; 275
Fang (10.1016/j.neunet.2018.05.004_b5) 2013; 219
Park (10.1016/j.neunet.2018.05.004_b21) 2017; 62
Manivannan (10.1016/j.neunet.2018.05.004_b16) 2018; 424
Wang (10.1016/j.neunet.2018.05.004_b29) 2015
Zhang (10.1016/j.neunet.2018.05.004_b39) 2017; 219
Selvaraj (10.1016/j.neunet.2018.05.004_b25) 2017; 11
Wu (10.1016/j.neunet.2018.05.004_b34) 2015; 9
Liu (10.1016/j.neunet.2018.05.004_b14) 2017; 90
Xu (10.1016/j.neunet.2018.05.004_b35) 2017; 227
Yang (10.1016/j.neunet.2018.05.004_b38) 2016; 10
Li (10.1016/j.neunet.2018.05.004_b10) 2015; 62
Pan (10.1016/j.neunet.2018.05.004_b18) 2016; 13
Yang (10.1016/j.neunet.2018.05.004_b36) 2013; 60
Lee (10.1016/j.neunet.2018.05.004_b8) 2016; 290
Wu (10.1016/j.neunet.2018.05.004_b33) 2014; 44
Hunt (10.1016/j.neunet.2018.05.004_b7) 1995
Zheng (10.1016/j.neunet.2018.05.004_b40) 2014; 141
Liu (10.1016/j.neunet.2018.05.004_b13) 2017; 28
Chen (10.1016/j.neunet.2018.05.004_b4) 2017; 28
Liu (10.1016/j.neunet.2018.05.004_b15) 2013; 43
Huang (10.1016/j.neunet.2018.05.004_b6) 2014; 139
Wang (10.1016/j.neunet.2018.05.004_b30) 2015; 54
Samidurai (10.1016/j.neunet.2018.05.004_b24) 2016; 185
References_xml – volume: 62
  start-page: 2916
  year: 2017
  end-page: 2922
  ident: b21
  article-title: Weighted consensus protocols design based on network centrality for multi-agent systems with sampled-data
  publication-title: IEEE Transactions on Automatic Control
– volume: 275
  start-page: 213
  year: 2016
  end-page: 228
  ident: b23
  article-title: Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions
  publication-title: Applied Mathematics and Computation
– volume: 60
  start-page: 363
  year: 2013
  end-page: 376
  ident: b36
  article-title: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay
  publication-title: IEEE Transactions on Circuits & Systems I: Regular Papers
– volume: 41
  start-page: 341
  year: 2011
  end-page: 353
  ident: b41
  article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B
– volume: 424
  start-page: 175
  year: 2018
  end-page: 203
  ident: b16
  article-title: Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals
  publication-title: Information Sciences
– volume: 20
  start-page: 3296
  year: 2011
  end-page: 3301
  ident: b43
  article-title: Cellular neural networks, the Navier–Stokes equation, and microarray image reconstruction
  publication-title: IEEE Transactions on Image Processing
– volume: 27
  start-page: 190
  year: 2016
  end-page: 201
  ident: b2
  article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 39
  start-page: 5625
  year: 2012
  end-page: 5633
  ident: b19
  article-title: Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 381
  year: 2015
  end-page: 391
  ident: b34
  article-title: Synchronisation control of dynamical networks subject to variable sampling and actuators saturation
  publication-title: IET Control Theory Applications
– volume: 11
  start-page: 1112
  year: 2017
  end-page: 1123
  ident: b25
  article-title: Fault-tolerant SMC for Takagi–Sugeno fuzzy systems with time-varying delay and actuator saturation
  publication-title: IET Control Theory & Applications
– volume: 290
  start-page: 439
  year: 2016
  end-page: 459
  ident: b8
  article-title: Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process
  publication-title: Applied Mathematics and Computation
– volume: 62
  start-page: 2330
  year: 2015
  end-page: 2340
  ident: b10
  article-title: Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 55
  start-page: 204
  year: 2015
  end-page: 208
  ident: b20
  article-title: Stability of time-delay systems via Wirtinger-based double integral inequality
  publication-title: Automatica
– volume: 43
  start-page: 1796
  year: 2013
  end-page: 1806
  ident: b32
  article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data
  publication-title: IEEE Transactions on Cybernetics
– volume: 90
  start-page: 2057
  year: 2017
  end-page: 2068
  ident: b14
  article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances
  publication-title: Nonlinear Dynamics
– volume: 43
  start-page: 102
  year: 2013
  end-page: 114
  ident: b15
  article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays
  publication-title: IEEE Transactions on Cybernetics
– volume: 249
  start-page: 64
  year: 2017
  end-page: 71
  ident: b37
  article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations
  publication-title: Neurocomputing
– volume: 219
  start-page: 154
  year: 2017
  end-page: 162
  ident: b39
  article-title: Synchronization of coupled neural networks with time-varying delay
  publication-title: Neurocomputing
– volume: 320
  start-page: 235
  year: 2015
  end-page: 243
  ident: b12
  article-title: Exponential stabilization of singularly perturbed switched systems subject to actuator saturation
  publication-title: Information Sciences
– volume: 141
  start-page: 153
  year: 2014
  end-page: 159
  ident: b40
  article-title: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control
  publication-title: Neurocomputing
– volume: 17
  start-page: 3866
  year: 2012
  end-page: 3875
  ident: b28
  article-title: Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 45
  start-page: 2680
  year: 2015
  end-page: 2692
  ident: b1
  article-title: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay
  publication-title: IEEE Transactions on Cybernetics
– volume: 54
  start-page: 284
  year: 2015
  end-page: 291
  ident: b30
  article-title: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form
  publication-title: Automatica
– volume: 10
  start-page: 469
  year: 2016
  end-page: 476
  ident: b38
  article-title: Anti-windup controller design for singularly perturbed systems subject to actuator saturation
  publication-title: IET Control Theory Applications
– year: 2015
  ident: b22
  article-title: Communication and control for networked complex systems
– volume: 85
  start-page: 128
  year: 2017
  end-page: 139
  ident: b31
  article-title: Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching
  publication-title: Neural Networks
– volume: 47
  start-page: 208
  year: 2017
  end-page: 226
  ident: b3
  article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations
  publication-title: Applied Mathematical Modelling
– volume: 13
  start-page: 868
  year: 2016
  end-page: 875
  ident: b18
  article-title: Disturbance observer-based adaptive tracking control with actuator saturation and its application
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 28
  start-page: 2826
  year: 2017
  end-page: 2830
  ident: b13
  article-title: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances
  publication-title: IEEE Transactions on Neural Networks Learning Systems
– volume: 47
  start-page: 1875
  year: 2017
  end-page: 1883
  ident: b27
  article-title: Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Systems
– volume: 44
  start-page: 2635
  year: 2014
  end-page: 2645
  ident: b33
  article-title: Local synchronization of chaotic neural networks with sampled-data and saturating actuators
  publication-title: IEEE Transactions on Cybernetics
– volume: 25
  start-page: 1804
  year: 2014
  end-page: 1815
  ident: b26
  article-title: Pinning distributed synchronization of stochastic dynamical networks: A mixed optimization approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2015
  ident: b29
  article-title: Analysis and design of singular Markovian jump systems
– volume: 219
  start-page: 8009
  year: 2013
  end-page: 8017
  ident: b5
  article-title: Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation
  publication-title: Applied Mathematics and Computation
– volume: 28
  start-page: 1618
  year: 2017
  end-page: 1632
  ident: b4
  article-title: Exponential synchronization for markovian stochastic coupled neural networks of neutral-type via adaptive feedback control
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 227
  start-page: 82
  year: 2017
  end-page: 91
  ident: b35
  article-title: Synchronization for coupled reaction-diffusion neural networks with and without multiple time-varying delays via pinning-control
  publication-title: Neurocomputing
– year: 1995
  ident: b7
  article-title: Neural network engineering in dynamic control systems
– year: 2017
  ident: b9
  article-title: Control and filtering for semi-Markovian jump systems
– volume: 139
  start-page: 145
  year: 2014
  end-page: 149
  ident: b6
  article-title: Finite-time lag synchronization of delayed neural networks
  publication-title: Neurocomputing
– volume: 185
  start-page: 191
  year: 2016
  end-page: 201
  ident: b24
  article-title: Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays
  publication-title: Neurocomputing
– volume: 84
  start-page: 2149
  year: 2016
  end-page: 2160
  ident: b17
  article-title: Finite-time boundedness and dissipativity analysis of networked cascade control systems
  publication-title: Nonlinear Dynamics
– volume: 24
  start-page: 1282
  year: 2016
  end-page: 1293
  ident: b11
  article-title: Output-feedback based sliding mode control for fuzzy systems with actuator saturation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 23
  start-page: 467
  year: 2012
  end-page: 479
  ident: b42
  article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b9
– volume: 47
  start-page: 208
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b3
  article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2017.03.024
– volume: 219
  start-page: 154
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b39
  article-title: Synchronization of coupled neural networks with time-varying delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.004
– volume: 62
  start-page: 2330
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b10
  article-title: Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2351379
– volume: 219
  start-page: 8009
  issue: 15
  year: 2013
  ident: 10.1016/j.neunet.2018.05.004_b5
  article-title: Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.02.030
– volume: 55
  start-page: 204
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b20
  article-title: Stability of time-delay systems via Wirtinger-based double integral inequality
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.03.010
– volume: 141
  start-page: 153
  year: 2014
  ident: 10.1016/j.neunet.2018.05.004_b40
  article-title: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.042
– volume: 24
  start-page: 1282
  issue: 6
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b11
  article-title: Output-feedback based sliding mode control for fuzzy systems with actuator saturation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2513085
– volume: 43
  start-page: 102
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2018.05.004_b15
  article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2199751
– volume: 25
  start-page: 1804
  issue: 10
  year: 2014
  ident: 10.1016/j.neunet.2018.05.004_b26
  article-title: Pinning distributed synchronization of stochastic dynamical networks: A mixed optimization approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2295966
– volume: 20
  start-page: 3296
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2018.05.004_b43
  article-title: Cellular neural networks, the Navier–Stokes equation, and microarray image reconstruction
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2159231
– volume: 139
  start-page: 145
  year: 2014
  ident: 10.1016/j.neunet.2018.05.004_b6
  article-title: Finite-time lag synchronization of delayed neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.050
– volume: 39
  start-page: 5625
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2018.05.004_b19
  article-title: Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.055
– volume: 23
  start-page: 467
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2018.05.004_b42
  article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2182659
– volume: 28
  start-page: 1618
  issue: 7
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b4
  article-title: Exponential synchronization for markovian stochastic coupled neural networks of neutral-type via adaptive feedback control
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2546962
– volume: 85
  start-page: 128
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b31
  article-title: Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.10.007
– volume: 290
  start-page: 439
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b8
  article-title: Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2016.06.018
– volume: 249
  start-page: 64
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b37
  article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.017
– year: 1995
  ident: 10.1016/j.neunet.2018.05.004_b7
– volume: 13
  start-page: 868
  issue: 2
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b18
  article-title: Disturbance observer-based adaptive tracking control with actuator saturation and its application
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2015.2414652
– volume: 275
  start-page: 213
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b23
  article-title: Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.11.060
– volume: 17
  start-page: 3866
  issue: 10
  year: 2012
  ident: 10.1016/j.neunet.2018.05.004_b28
  article-title: Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.02.020
– volume: 185
  start-page: 191
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b24
  article-title: Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.056
– year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b29
– volume: 227
  start-page: 82
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b35
  article-title: Synchronization for coupled reaction-diffusion neural networks with and without multiple time-varying delays via pinning-control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.063
– volume: 11
  start-page: 1112
  issue: 8
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b25
  article-title: Fault-tolerant SMC for Takagi–Sugeno fuzzy systems with time-varying delay and actuator saturation
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2016.0845
– volume: 41
  start-page: 341
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2018.05.004_b41
  article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B
  doi: 10.1109/TSMCB.2010.2053354
– volume: 45
  start-page: 2680
  issue: 12
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b1
  article-title: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2381604
– volume: 62
  start-page: 2916
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b21
  article-title: Weighted consensus protocols design based on network centrality for multi-agent systems with sampled-data
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2604682
– volume: 54
  start-page: 284
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b30
  article-title: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.02.016
– volume: 28
  start-page: 2826
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b13
  article-title: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances
  publication-title: IEEE Transactions on Neural Networks Learning Systems
  doi: 10.1109/TNNLS.2016.2599199
– volume: 84
  start-page: 2149
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b17
  article-title: Finite-time boundedness and dissipativity analysis of networked cascade control systems
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-016-2635-2
– volume: 47
  start-page: 1875
  issue: 8
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b27
  article-title: Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Systems
  doi: 10.1109/TSMC.2016.2562511
– volume: 9
  start-page: 381
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b34
  article-title: Synchronisation control of dynamical networks subject to variable sampling and actuators saturation
  publication-title: IET Control Theory Applications
  doi: 10.1049/iet-cta.2014.0383
– year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b22
– volume: 10
  start-page: 469
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b38
  article-title: Anti-windup controller design for singularly perturbed systems subject to actuator saturation
  publication-title: IET Control Theory Applications
  doi: 10.1049/iet-cta.2015.0189
– volume: 27
  start-page: 190
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2018.05.004_b2
  article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2475737
– volume: 424
  start-page: 175
  year: 2018
  ident: 10.1016/j.neunet.2018.05.004_b16
  article-title: Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.10.007
– volume: 320
  start-page: 235
  year: 2015
  ident: 10.1016/j.neunet.2018.05.004_b12
  article-title: Exponential stabilization of singularly perturbed switched systems subject to actuator saturation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.05.031
– volume: 60
  start-page: 363
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2018.05.004_b36
  article-title: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay
  publication-title: IEEE Transactions on Circuits & Systems I: Regular Papers
  doi: 10.1109/TCSI.2012.2215804
– volume: 90
  start-page: 2057
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2018.05.004_b14
  article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-017-3782-9
– volume: 44
  start-page: 2635
  issue: 12
  year: 2014
  ident: 10.1016/j.neunet.2018.05.004_b33
  article-title: Local synchronization of chaotic neural networks with sampled-data and saturating actuators
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2312004
– volume: 43
  start-page: 1796
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2018.05.004_b32
  article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2230441
SSID ssj0006843
Score 2.5718102
Snippet This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms Coupled stochastic neural networks
Finite-time synchronization
Markovian jumping parameters
Saturation effect
Stochastic coupling strength
Title Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation
URI https://dx.doi.org/10.1016/j.neunet.2018.05.004
https://www.ncbi.nlm.nih.gov/pubmed/29886328
https://www.proquest.com/docview/2053271712
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcumlpdCWLRS5ElezeTlxjgix2rYqF4rEzYofEUHIWZGEqpf-9o5jZyWkIiSOifySZzzzOflmBuCk5FUSpzqjmmU5zdBFUgSxhiotTaHQX8ixSsTPy3x1nX2_YTdbcD7FwjhaZbD93qaP1jq8WYTdXKybZnEVoavNEfCgUqJP43wbdpK0zNkMds6-_Vhdbgxyzj15DttT12GKoBtpXtYM1jhSZczHFJ6hYtt_PNRzCHT0RMtdeBsgJDnzq3wPW8buwbupPAMJp3UfhmXjACV15eNJ98eqMQ-uD7skbU0Q9qnbyuVpJqod1vdGE5fdEoe2nhvekW6Q7jsN6VvignraR1Qm0v1u-pGBSSqrSWNxWtK5_KDjyB_gennx63xFQ5UFqvDq0VNWclXJQmd1rXLJpMykMmkdIS6qeVnpwlRFIhMZIdKLZCURsPFcFUbi9VbXRqcfYWZbaw6AyLhAwOjSvegy05EueWwUS0uGOIBndTGHdNpZoUIKclcJ415MXLM74eUhnDxExATKYw5002vtU3C80L6YhCaeqJJAL_FCz6-TjAWeMvfrpLKmHTpsxNIEb75xModPXvibtSQl53ma8M-vnvcQ3rgnT107gln_MJgviHV6eQzbp3_j46DR_wAjZgEW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VcoBL2eGxGomreVns2DmiiqcHtL3QSr1Z8RIRVDlPJCniwm9nbCdFSKBKXBNv8tiez8k33wC8qWVT5KVl1HJWUYYukiKIddRY7YRBf6Fjlojjk2p7xj6e8_M9OFxiYQKtcj7705keT-v5yXqezfWu69afM3S1FQIeXJTo06S8ATcZL0UQ0H_78zfPo5KJOoelaSi-xM9Fkpd3k3eBUpnLKOA552v7i3_6F_6MfmhzFw5mAEnepTHegz3n78OdJTkDmffqA5g2XYCTNCSPJ8MPb6IKbgq6JH1LEPSZL01QaSamn3YXzpKgbYlN-8QMH8gw6fCVhow9CSE9_SUuJTJ878bIvySNt6Tz2C0ZgjpobPkhnG3enx5u6ZxjgRq8eIyU19I0WljWtqbSXGumjSvbDFFRK-vGCteIQhc6Q5yX6UYjXJOVEU7j5da2zpaPYN_33j0BonOBcDGIvdia2czWMneGlzVHFCBZK1ZQLjOrzCxAHvJgXKiFafZVJXuoYA-VcYX2WAG9qrVLAhzXlBeL0dQfC0mhj7im5uvFxgr3WPhx0njXTwMW4mWB9968WMHjZPyrsRS1lFVZyKf_3e8ruLU9PT5SRx9OPj2D2-FNIrE9h_3x2-ReIOoZ9cu4qn8BVGAB4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-time+synchronization+of+stochastic+coupled+neural+networks+subject+to+Markovian+switching+and+input+saturation&rft.jtitle=Neural+networks&rft.au=Selvaraj%2C+P&rft.au=Sakthivel%2C+R&rft.au=Kwon%2C+O+M&rft.date=2018-09-01&rft.eissn=1879-2782&rft.volume=105&rft.spage=154&rft_id=info:doi/10.1016%2Fj.neunet.2018.05.004&rft_id=info%3Apmid%2F29886328&rft.externalDocID=29886328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon