Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizi...
Saved in:
Published in | Neural networks Vol. 105; pp. 154 - 165 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2018.05.004 |
Cover
Abstract | This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov–Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. |
---|---|
AbstractList | This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. |
Author | Sakthivel, R. Selvaraj, P. Kwon, O.M. |
Author_xml | – sequence: 1 givenname: P. surname: Selvaraj fullname: Selvaraj, P. organization: School of Electrical Engineering, Chungbuk National University, 1 Chungdao-ro, Cheongju 28644, South Korea – sequence: 2 givenname: R. surname: Sakthivel fullname: Sakthivel, R. email: krsakthivel@buc.edu.in organization: Department of Mathematics, Bharathiar University, Coimbatore 641046, India – sequence: 3 givenname: O.M. orcidid: 0000-0002-4777-7912 surname: Kwon fullname: Kwon, O.M. email: madwind@chungbuk.ac.kr organization: School of Electrical Engineering, Chungbuk National University, 1 Chungdao-ro, Cheongju 28644, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29886328$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEUhS2UiGwC_wAhlzQz-DEz9lAgoYg8pEQ0UFt-3GG9mbUX25Mo_Pp42UBBAdVtvu9c6ZxTdBRiAITeUNJSQof3mzbAEqC0jFDZkr4lpHuBVlSKsWFCsiO0InLkzUAkOUGnOW8IIYPs-Et0wkYpB87kCi0XPvgCTfFbwPkx2HWKwf_UxceA44RziXatc_EW27jsZnC4vk16rqc8xHSXcV7MBmzBJeJbne7ivdcB5wdf7NqH71gHh33YLQVnXaq5T36Fjic9Z3j9fM_Qt4vPX8-vmpsvl9fnn24a2zFZmn6UVhvhummyg-mN6YwFPpGB8UmO2gnQghlmyMgZMdr0jMnBCjCCcjeB42fo3SF3l-KPBXJRW58tzLMOEJesGOk5E1RQVtG3z-hituDULvmtTo_qd1UV6A6ATTHnBNMfhBK1X0Rt1GERtV9EkV7VRar24S_N-vKrhJK0n_8nfzzIUEu695BUth6CBedTrVy56P8d8AQ3yq2_ |
CitedBy_id | crossref_primary_10_1016_j_neunet_2020_04_009 crossref_primary_10_1186_s13662_019_2286_y crossref_primary_10_1016_j_neucom_2021_08_123 crossref_primary_10_1109_TNNLS_2020_2964843 crossref_primary_10_1002_asjc_3295 crossref_primary_10_1016_j_cnsns_2021_105777 crossref_primary_10_1016_j_jfranklin_2019_06_025 crossref_primary_10_1016_j_jfranklin_2021_02_026 crossref_primary_10_1016_j_fss_2021_08_018 crossref_primary_10_1016_j_neunet_2023_01_039 crossref_primary_10_1109_TCYB_2020_2983481 crossref_primary_10_1007_s11063_021_10577_9 crossref_primary_10_1016_j_neucom_2023_01_019 crossref_primary_10_1049_iet_cta_2020_0046 crossref_primary_10_1109_ACCESS_2019_2935166 crossref_primary_10_1109_TNNLS_2022_3185617 crossref_primary_10_1016_j_jfranklin_2020_07_005 crossref_primary_10_1007_s11063_023_11345_7 crossref_primary_10_1016_j_neunet_2020_01_024 crossref_primary_10_1109_TAC_2022_3232989 crossref_primary_10_1016_j_nahs_2021_101028 crossref_primary_10_1155_2021_6695353 crossref_primary_10_1016_j_nahs_2024_101523 crossref_primary_10_1016_j_engappai_2021_104594 crossref_primary_10_1049_iet_cta_2019_0721 crossref_primary_10_1016_j_neucom_2019_10_036 crossref_primary_10_1002_acs_3377 crossref_primary_10_1007_s11071_022_08146_3 crossref_primary_10_1186_s13662_021_03438_1 crossref_primary_10_1109_TNNLS_2022_3176887 crossref_primary_10_1016_j_neunet_2022_01_020 crossref_primary_10_1016_j_neunet_2019_03_016 crossref_primary_10_1109_TNNLS_2021_3069926 crossref_primary_10_1002_asjc_2185 crossref_primary_10_1016_j_amc_2022_127274 crossref_primary_10_1016_j_jfranklin_2020_04_051 crossref_primary_10_1080_00207721_2023_2233516 crossref_primary_10_1002_rnc_6889 crossref_primary_10_1007_s12555_021_0231_9 crossref_primary_10_1109_TNNLS_2020_3009081 crossref_primary_10_1109_TSMC_2019_2931091 crossref_primary_10_1016_j_neunet_2020_02_015 crossref_primary_10_1016_j_ins_2021_07_004 crossref_primary_10_1016_j_cjph_2019_02_027 crossref_primary_10_1016_j_neunet_2020_09_012 crossref_primary_10_1016_j_neunet_2020_09_014 crossref_primary_10_1016_j_jfranklin_2019_12_003 crossref_primary_10_1109_TCYB_2020_3042473 crossref_primary_10_1109_TFUZZ_2020_3039676 crossref_primary_10_1371_journal_pone_0220861 crossref_primary_10_1002_acs_3558 crossref_primary_10_1109_TFUZZ_2020_2999041 crossref_primary_10_1002_rnc_5304 crossref_primary_10_1109_TCYB_2022_3231612 crossref_primary_10_1016_j_jfranklin_2021_11_033 crossref_primary_10_1007_s00521_023_08523_y crossref_primary_10_1016_j_neunet_2019_12_016 crossref_primary_10_1007_s11063_023_11225_0 crossref_primary_10_1109_TFUZZ_2019_2921267 crossref_primary_10_1109_TNNLS_2019_2896162 crossref_primary_10_1155_2019_6732357 crossref_primary_10_1155_2020_5986018 crossref_primary_10_1049_cth2_12104 crossref_primary_10_1016_j_jfranklin_2020_09_006 crossref_primary_10_1016_j_fss_2019_09_001 crossref_primary_10_1016_j_neucom_2019_02_005 crossref_primary_10_1016_j_neunet_2019_07_004 crossref_primary_10_1016_j_neunet_2019_07_002 crossref_primary_10_1049_cth2_12494 crossref_primary_10_1016_j_ins_2023_03_040 crossref_primary_10_1016_j_neucom_2020_03_106 crossref_primary_10_1177_01423312211028217 crossref_primary_10_1016_j_neucom_2022_10_020 crossref_primary_10_1016_j_knosys_2022_109104 crossref_primary_10_1080_0952813X_2020_1725649 crossref_primary_10_3390_math10091533 crossref_primary_10_1186_s13662_020_02572_6 crossref_primary_10_1007_s11071_021_07028_4 crossref_primary_10_1016_j_neucom_2019_09_117 crossref_primary_10_1016_j_neunet_2020_05_012 crossref_primary_10_1016_j_neunet_2020_05_016 crossref_primary_10_3934_dcdss_2022082 crossref_primary_10_1007_s00500_022_07575_x crossref_primary_10_1016_j_physa_2019_121788 crossref_primary_10_1007_s11071_019_05379_7 crossref_primary_10_1016_j_nahs_2021_101061 crossref_primary_10_1109_TNNLS_2022_3175747 crossref_primary_10_1109_TCYB_2020_2980684 crossref_primary_10_1016_j_amc_2022_127181 crossref_primary_10_1186_s13662_019_2298_7 crossref_primary_10_1007_s11071_019_05258_1 crossref_primary_10_1007_s11063_020_10237_4 crossref_primary_10_1109_TNNLS_2020_3027862 crossref_primary_10_3390_math7060559 crossref_primary_10_1080_00207721_2020_1752418 crossref_primary_10_1109_TNNLS_2019_2944552 crossref_primary_10_1016_j_chaos_2023_113555 crossref_primary_10_1016_j_neunet_2019_05_014 crossref_primary_10_1016_j_ymssp_2019_05_032 crossref_primary_10_1007_s12043_019_1903_3 crossref_primary_10_1016_j_cjph_2019_09_019 crossref_primary_10_1016_j_cnsns_2024_108424 crossref_primary_10_1109_TFUZZ_2022_3229048 crossref_primary_10_1016_j_cnsns_2022_106680 crossref_primary_10_1007_s13042_024_02195_3 crossref_primary_10_11948_20220300 crossref_primary_10_1007_s11071_024_09988_9 crossref_primary_10_1016_j_neunet_2022_07_009 crossref_primary_10_1016_j_neunet_2019_05_024 crossref_primary_10_1016_j_neunet_2019_09_003 crossref_primary_10_1016_j_isatra_2022_10_002 crossref_primary_10_1016_j_neucom_2018_10_079 crossref_primary_10_1109_TNNLS_2022_3184487 crossref_primary_10_1016_j_amc_2022_127083 crossref_primary_10_1186_s13662_018_1835_0 crossref_primary_10_1002_rnc_5195 crossref_primary_10_3390_math12091409 crossref_primary_10_1007_s11063_020_10390_w crossref_primary_10_1007_s12555_020_0441_6 crossref_primary_10_1016_j_physa_2021_126431 crossref_primary_10_1109_TNNLS_2021_3057490 crossref_primary_10_1016_j_jfranklin_2021_01_023 |
Cites_doi | 10.1016/j.apm.2017.03.024 10.1016/j.neucom.2016.09.004 10.1109/TIE.2014.2351379 10.1016/j.amc.2013.02.030 10.1016/j.automatica.2015.03.010 10.1016/j.neucom.2014.03.042 10.1109/TFUZZ.2015.2513085 10.1109/TSMCB.2012.2199751 10.1109/TNNLS.2013.2295966 10.1109/TIP.2011.2159231 10.1016/j.neucom.2014.02.050 10.1016/j.eswa.2011.11.055 10.1109/TNNLS.2011.2182659 10.1109/TNNLS.2016.2546962 10.1016/j.neunet.2016.10.007 10.1016/j.amc.2016.06.018 10.1016/j.neucom.2017.03.017 10.1109/TASE.2015.2414652 10.1016/j.amc.2015.11.060 10.1016/j.cnsns.2012.02.020 10.1016/j.neucom.2015.12.056 10.1016/j.neucom.2016.10.063 10.1049/iet-cta.2016.0845 10.1109/TSMCB.2010.2053354 10.1109/TCYB.2014.2381604 10.1109/TAC.2016.2604682 10.1016/j.automatica.2015.02.016 10.1109/TNNLS.2016.2599199 10.1007/s11071-016-2635-2 10.1109/TSMC.2016.2562511 10.1049/iet-cta.2014.0383 10.1049/iet-cta.2015.0189 10.1109/TNNLS.2015.2475737 10.1016/j.ins.2017.10.007 10.1016/j.ins.2015.05.031 10.1109/TCSI.2012.2215804 10.1007/s11071-017-3782-9 10.1109/TCYB.2014.2312004 10.1109/TSMCB.2012.2230441 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2018.05.004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 165 |
ExternalDocumentID | 29886328 10_1016_j_neunet_2018_05_004 S0893608018301588 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c428t-598cab7d4ffc6b5bb4bce3f0623f89ad7ea72b2b09320bab52286c7eb713dfed3 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Sep 05 06:28:37 EDT 2025 Mon Jul 21 05:44:44 EDT 2025 Tue Jul 01 01:24:32 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:48:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Markovian jumping parameters Saturation effect Coupled stochastic neural networks Finite-time synchronization Stochastic coupling strength |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-598cab7d4ffc6b5bb4bce3f0623f89ad7ea72b2b09320bab52286c7eb713dfed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4777-7912 |
PMID | 29886328 |
PQID | 2053271712 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2053271712 pubmed_primary_29886328 crossref_primary_10_1016_j_neunet_2018_05_004 crossref_citationtrail_10_1016_j_neunet_2018_05_004 elsevier_sciencedirect_doi_10_1016_j_neunet_2018_05_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Shi, Wu (b9) 2017 Pan, Sun, Gao, Jing (b18) 2016; 13 Wu, Su, Wu (b34) 2015; 9 Xu, Wang, Wei (b35) 2017; 227 Liu, Ho, Cao, Xu (b13) 2017; 28 Wang, Teng, Jiang (b28) 2012; 17 Bao, Park, Cao (b2) 2016; 27 Wu, Shi, Su, Chu (b33) 2014; 44 Wang, Qiu, Gao (b27) 2017; 47 Zheng, Cao (b40) 2014; 141 Park, Kwon, Seuret (b21) 2017; 62 Liu, Wang, Liang, Liu (b15) 2013; 43 Park, Kwon, Park, Lee (b19) 2012; 39 Manivannan, Samidurai, Cao, Alsaedi, Alsaadi (b16) 2018; 424 Zhu, Cao (b41) 2011; 41 Yang, Huang (b37) 2017; 249 Wang, Zhang, Yan (b29) 2015 Mathiyalagan, Park, Sakthivel (b17) 2016; 84 Zhu, Cao (b42) 2012; 23 Chen, Shi, Lim (b4) 2017; 28 Wu, Cao, Li, Alsaedi, Alsaadi (b31) 2017; 85 Li, Shi, Wu, Basin, Lim (b10) 2015; 62 Wang, Zhu (b30) 2015; 54 Yang, Zhang, Sun (b38) 2016; 10 Hunt, Irwin, Warwick (b7) 1995 Ahn, Shi, Wu (b1) 2015; 45 Lian, Wang (b12) 2015; 320 Zhang, Gao (b39) 2017; 219 Lee, Park, Kwon, Sakthivel (b8) 2016; 290 Fang, Park (b5) 2013; 219 Wu, Shi, Su, Chu (b32) 2013; 43 Tang, Gao, Lu, Kurths (b26) 2014; 25 Sakthivel, Anbuvithya, Mathiyalagan, Ma, Prakash (b23) 2016; 275 Cai, Huang, Zhang (b3) 2017; 47 Park, Kwon, Park, Lee, Cha (b20) 2015; 55 Selvaraj, Kaviarasan, Sakthivel, Karimi (b25) 2017; 11 Huang, Li, Huang, He (b6) 2014; 139 Samidurai, Manivannan (b24) 2016; 185 Peng, Yue, Han (b22) 2015 Yang, Cao, Lu (b36) 2013; 60 Li, Wang, Shi (b11) 2016; 24 Zineddin, Wang, Liu (b43) 2011; 20 Liu, Ho, Song, Cao (b14) 2017; 90 Wang (10.1016/j.neunet.2018.05.004_b28) 2012; 17 Park (10.1016/j.neunet.2018.05.004_b20) 2015; 55 Lian (10.1016/j.neunet.2018.05.004_b12) 2015; 320 Park (10.1016/j.neunet.2018.05.004_b19) 2012; 39 Wang (10.1016/j.neunet.2018.05.004_b27) 2017; 47 Ahn (10.1016/j.neunet.2018.05.004_b1) 2015; 45 Wu (10.1016/j.neunet.2018.05.004_b32) 2013; 43 Peng (10.1016/j.neunet.2018.05.004_b22) 2015 Wu (10.1016/j.neunet.2018.05.004_b31) 2017; 85 Li (10.1016/j.neunet.2018.05.004_b11) 2016; 24 Zineddin (10.1016/j.neunet.2018.05.004_b43) 2011; 20 Bao (10.1016/j.neunet.2018.05.004_b2) 2016; 27 Li (10.1016/j.neunet.2018.05.004_b9) 2017 Tang (10.1016/j.neunet.2018.05.004_b26) 2014; 25 Yang (10.1016/j.neunet.2018.05.004_b37) 2017; 249 Cai (10.1016/j.neunet.2018.05.004_b3) 2017; 47 Mathiyalagan (10.1016/j.neunet.2018.05.004_b17) 2016; 84 Zhu (10.1016/j.neunet.2018.05.004_b42) 2012; 23 Zhu (10.1016/j.neunet.2018.05.004_b41) 2011; 41 Sakthivel (10.1016/j.neunet.2018.05.004_b23) 2016; 275 Fang (10.1016/j.neunet.2018.05.004_b5) 2013; 219 Park (10.1016/j.neunet.2018.05.004_b21) 2017; 62 Manivannan (10.1016/j.neunet.2018.05.004_b16) 2018; 424 Wang (10.1016/j.neunet.2018.05.004_b29) 2015 Zhang (10.1016/j.neunet.2018.05.004_b39) 2017; 219 Selvaraj (10.1016/j.neunet.2018.05.004_b25) 2017; 11 Wu (10.1016/j.neunet.2018.05.004_b34) 2015; 9 Liu (10.1016/j.neunet.2018.05.004_b14) 2017; 90 Xu (10.1016/j.neunet.2018.05.004_b35) 2017; 227 Yang (10.1016/j.neunet.2018.05.004_b38) 2016; 10 Li (10.1016/j.neunet.2018.05.004_b10) 2015; 62 Pan (10.1016/j.neunet.2018.05.004_b18) 2016; 13 Yang (10.1016/j.neunet.2018.05.004_b36) 2013; 60 Lee (10.1016/j.neunet.2018.05.004_b8) 2016; 290 Wu (10.1016/j.neunet.2018.05.004_b33) 2014; 44 Hunt (10.1016/j.neunet.2018.05.004_b7) 1995 Zheng (10.1016/j.neunet.2018.05.004_b40) 2014; 141 Liu (10.1016/j.neunet.2018.05.004_b13) 2017; 28 Chen (10.1016/j.neunet.2018.05.004_b4) 2017; 28 Liu (10.1016/j.neunet.2018.05.004_b15) 2013; 43 Huang (10.1016/j.neunet.2018.05.004_b6) 2014; 139 Wang (10.1016/j.neunet.2018.05.004_b30) 2015; 54 Samidurai (10.1016/j.neunet.2018.05.004_b24) 2016; 185 |
References_xml | – volume: 62 start-page: 2916 year: 2017 end-page: 2922 ident: b21 article-title: Weighted consensus protocols design based on network centrality for multi-agent systems with sampled-data publication-title: IEEE Transactions on Automatic Control – volume: 275 start-page: 213 year: 2016 end-page: 228 ident: b23 article-title: Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions publication-title: Applied Mathematics and Computation – volume: 60 start-page: 363 year: 2013 end-page: 376 ident: b36 article-title: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay publication-title: IEEE Transactions on Circuits & Systems I: Regular Papers – volume: 41 start-page: 341 year: 2011 end-page: 353 ident: b41 article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B – volume: 424 start-page: 175 year: 2018 end-page: 203 ident: b16 article-title: Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals publication-title: Information Sciences – volume: 20 start-page: 3296 year: 2011 end-page: 3301 ident: b43 article-title: Cellular neural networks, the Navier–Stokes equation, and microarray image reconstruction publication-title: IEEE Transactions on Image Processing – volume: 27 start-page: 190 year: 2016 end-page: 201 ident: b2 article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 39 start-page: 5625 year: 2012 end-page: 5633 ident: b19 article-title: Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays publication-title: Expert Systems with Applications – volume: 9 start-page: 381 year: 2015 end-page: 391 ident: b34 article-title: Synchronisation control of dynamical networks subject to variable sampling and actuators saturation publication-title: IET Control Theory Applications – volume: 11 start-page: 1112 year: 2017 end-page: 1123 ident: b25 article-title: Fault-tolerant SMC for Takagi–Sugeno fuzzy systems with time-varying delay and actuator saturation publication-title: IET Control Theory & Applications – volume: 290 start-page: 439 year: 2016 end-page: 459 ident: b8 article-title: Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process publication-title: Applied Mathematics and Computation – volume: 62 start-page: 2330 year: 2015 end-page: 2340 ident: b10 article-title: Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems publication-title: IEEE Transactions on Industrial Electronics – volume: 55 start-page: 204 year: 2015 end-page: 208 ident: b20 article-title: Stability of time-delay systems via Wirtinger-based double integral inequality publication-title: Automatica – volume: 43 start-page: 1796 year: 2013 end-page: 1806 ident: b32 article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data publication-title: IEEE Transactions on Cybernetics – volume: 90 start-page: 2057 year: 2017 end-page: 2068 ident: b14 article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances publication-title: Nonlinear Dynamics – volume: 43 start-page: 102 year: 2013 end-page: 114 ident: b15 article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays publication-title: IEEE Transactions on Cybernetics – volume: 249 start-page: 64 year: 2017 end-page: 71 ident: b37 article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations publication-title: Neurocomputing – volume: 219 start-page: 154 year: 2017 end-page: 162 ident: b39 article-title: Synchronization of coupled neural networks with time-varying delay publication-title: Neurocomputing – volume: 320 start-page: 235 year: 2015 end-page: 243 ident: b12 article-title: Exponential stabilization of singularly perturbed switched systems subject to actuator saturation publication-title: Information Sciences – volume: 141 start-page: 153 year: 2014 end-page: 159 ident: b40 article-title: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control publication-title: Neurocomputing – volume: 17 start-page: 3866 year: 2012 end-page: 3875 ident: b28 article-title: Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 45 start-page: 2680 year: 2015 end-page: 2692 ident: b1 article-title: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay publication-title: IEEE Transactions on Cybernetics – volume: 54 start-page: 284 year: 2015 end-page: 291 ident: b30 article-title: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form publication-title: Automatica – volume: 10 start-page: 469 year: 2016 end-page: 476 ident: b38 article-title: Anti-windup controller design for singularly perturbed systems subject to actuator saturation publication-title: IET Control Theory Applications – year: 2015 ident: b22 article-title: Communication and control for networked complex systems – volume: 85 start-page: 128 year: 2017 end-page: 139 ident: b31 article-title: Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching publication-title: Neural Networks – volume: 47 start-page: 208 year: 2017 end-page: 226 ident: b3 article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations publication-title: Applied Mathematical Modelling – volume: 13 start-page: 868 year: 2016 end-page: 875 ident: b18 article-title: Disturbance observer-based adaptive tracking control with actuator saturation and its application publication-title: IEEE Transactions on Automation Science and Engineering – volume: 28 start-page: 2826 year: 2017 end-page: 2830 ident: b13 article-title: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances publication-title: IEEE Transactions on Neural Networks Learning Systems – volume: 47 start-page: 1875 year: 2017 end-page: 1883 ident: b27 article-title: Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints publication-title: IEEE Transactions on Systems, Man and Cybernetics, Systems – volume: 44 start-page: 2635 year: 2014 end-page: 2645 ident: b33 article-title: Local synchronization of chaotic neural networks with sampled-data and saturating actuators publication-title: IEEE Transactions on Cybernetics – volume: 25 start-page: 1804 year: 2014 end-page: 1815 ident: b26 article-title: Pinning distributed synchronization of stochastic dynamical networks: A mixed optimization approach publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2015 ident: b29 article-title: Analysis and design of singular Markovian jump systems – volume: 219 start-page: 8009 year: 2013 end-page: 8017 ident: b5 article-title: Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation publication-title: Applied Mathematics and Computation – volume: 28 start-page: 1618 year: 2017 end-page: 1632 ident: b4 article-title: Exponential synchronization for markovian stochastic coupled neural networks of neutral-type via adaptive feedback control publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 227 start-page: 82 year: 2017 end-page: 91 ident: b35 article-title: Synchronization for coupled reaction-diffusion neural networks with and without multiple time-varying delays via pinning-control publication-title: Neurocomputing – year: 1995 ident: b7 article-title: Neural network engineering in dynamic control systems – year: 2017 ident: b9 article-title: Control and filtering for semi-Markovian jump systems – volume: 139 start-page: 145 year: 2014 end-page: 149 ident: b6 article-title: Finite-time lag synchronization of delayed neural networks publication-title: Neurocomputing – volume: 185 start-page: 191 year: 2016 end-page: 201 ident: b24 article-title: Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays publication-title: Neurocomputing – volume: 84 start-page: 2149 year: 2016 end-page: 2160 ident: b17 article-title: Finite-time boundedness and dissipativity analysis of networked cascade control systems publication-title: Nonlinear Dynamics – volume: 24 start-page: 1282 year: 2016 end-page: 1293 ident: b11 article-title: Output-feedback based sliding mode control for fuzzy systems with actuator saturation publication-title: IEEE Transactions on Fuzzy Systems – volume: 23 start-page: 467 year: 2012 end-page: 479 ident: b42 article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2017 ident: 10.1016/j.neunet.2018.05.004_b9 – volume: 47 start-page: 208 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b3 article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.03.024 – volume: 219 start-page: 154 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b39 article-title: Synchronization of coupled neural networks with time-varying delay publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.004 – volume: 62 start-page: 2330 issue: 4 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b10 article-title: Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2351379 – volume: 219 start-page: 8009 issue: 15 year: 2013 ident: 10.1016/j.neunet.2018.05.004_b5 article-title: Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.02.030 – volume: 55 start-page: 204 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b20 article-title: Stability of time-delay systems via Wirtinger-based double integral inequality publication-title: Automatica doi: 10.1016/j.automatica.2015.03.010 – volume: 141 start-page: 153 year: 2014 ident: 10.1016/j.neunet.2018.05.004_b40 article-title: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.042 – volume: 24 start-page: 1282 issue: 6 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b11 article-title: Output-feedback based sliding mode control for fuzzy systems with actuator saturation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2513085 – volume: 43 start-page: 102 issue: 1 year: 2013 ident: 10.1016/j.neunet.2018.05.004_b15 article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2199751 – volume: 25 start-page: 1804 issue: 10 year: 2014 ident: 10.1016/j.neunet.2018.05.004_b26 article-title: Pinning distributed synchronization of stochastic dynamical networks: A mixed optimization approach publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2295966 – volume: 20 start-page: 3296 issue: 11 year: 2011 ident: 10.1016/j.neunet.2018.05.004_b43 article-title: Cellular neural networks, the Navier–Stokes equation, and microarray image reconstruction publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2159231 – volume: 139 start-page: 145 year: 2014 ident: 10.1016/j.neunet.2018.05.004_b6 article-title: Finite-time lag synchronization of delayed neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.050 – volume: 39 start-page: 5625 issue: 5 year: 2012 ident: 10.1016/j.neunet.2018.05.004_b19 article-title: Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.11.055 – volume: 23 start-page: 467 issue: 3 year: 2012 ident: 10.1016/j.neunet.2018.05.004_b42 article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2182659 – volume: 28 start-page: 1618 issue: 7 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b4 article-title: Exponential synchronization for markovian stochastic coupled neural networks of neutral-type via adaptive feedback control publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2546962 – volume: 85 start-page: 128 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b31 article-title: Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching publication-title: Neural Networks doi: 10.1016/j.neunet.2016.10.007 – volume: 290 start-page: 439 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b8 article-title: Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2016.06.018 – volume: 249 start-page: 64 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b37 article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.017 – year: 1995 ident: 10.1016/j.neunet.2018.05.004_b7 – volume: 13 start-page: 868 issue: 2 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b18 article-title: Disturbance observer-based adaptive tracking control with actuator saturation and its application publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2015.2414652 – volume: 275 start-page: 213 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b23 article-title: Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.11.060 – volume: 17 start-page: 3866 issue: 10 year: 2012 ident: 10.1016/j.neunet.2018.05.004_b28 article-title: Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.02.020 – volume: 185 start-page: 191 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b24 article-title: Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.056 – year: 2015 ident: 10.1016/j.neunet.2018.05.004_b29 – volume: 227 start-page: 82 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b35 article-title: Synchronization for coupled reaction-diffusion neural networks with and without multiple time-varying delays via pinning-control publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.063 – volume: 11 start-page: 1112 issue: 8 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b25 article-title: Fault-tolerant SMC for Takagi–Sugeno fuzzy systems with time-varying delay and actuator saturation publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2016.0845 – volume: 41 start-page: 341 issue: 2 year: 2011 ident: 10.1016/j.neunet.2018.05.004_b41 article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B doi: 10.1109/TSMCB.2010.2053354 – volume: 45 start-page: 2680 issue: 12 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b1 article-title: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2381604 – volume: 62 start-page: 2916 issue: 6 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b21 article-title: Weighted consensus protocols design based on network centrality for multi-agent systems with sampled-data publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2604682 – volume: 54 start-page: 284 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b30 article-title: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form publication-title: Automatica doi: 10.1016/j.automatica.2015.02.016 – volume: 28 start-page: 2826 issue: 11 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b13 article-title: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances publication-title: IEEE Transactions on Neural Networks Learning Systems doi: 10.1109/TNNLS.2016.2599199 – volume: 84 start-page: 2149 issue: 4 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b17 article-title: Finite-time boundedness and dissipativity analysis of networked cascade control systems publication-title: Nonlinear Dynamics doi: 10.1007/s11071-016-2635-2 – volume: 47 start-page: 1875 issue: 8 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b27 article-title: Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints publication-title: IEEE Transactions on Systems, Man and Cybernetics, Systems doi: 10.1109/TSMC.2016.2562511 – volume: 9 start-page: 381 issue: 3 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b34 article-title: Synchronisation control of dynamical networks subject to variable sampling and actuators saturation publication-title: IET Control Theory Applications doi: 10.1049/iet-cta.2014.0383 – year: 2015 ident: 10.1016/j.neunet.2018.05.004_b22 – volume: 10 start-page: 469 issue: 4 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b38 article-title: Anti-windup controller design for singularly perturbed systems subject to actuator saturation publication-title: IET Control Theory Applications doi: 10.1049/iet-cta.2015.0189 – volume: 27 start-page: 190 issue: 1 year: 2016 ident: 10.1016/j.neunet.2018.05.004_b2 article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2475737 – volume: 424 start-page: 175 year: 2018 ident: 10.1016/j.neunet.2018.05.004_b16 article-title: Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals publication-title: Information Sciences doi: 10.1016/j.ins.2017.10.007 – volume: 320 start-page: 235 year: 2015 ident: 10.1016/j.neunet.2018.05.004_b12 article-title: Exponential stabilization of singularly perturbed switched systems subject to actuator saturation publication-title: Information Sciences doi: 10.1016/j.ins.2015.05.031 – volume: 60 start-page: 363 issue: 2 year: 2013 ident: 10.1016/j.neunet.2018.05.004_b36 article-title: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay publication-title: IEEE Transactions on Circuits & Systems I: Regular Papers doi: 10.1109/TCSI.2012.2215804 – volume: 90 start-page: 2057 issue: 3 year: 2017 ident: 10.1016/j.neunet.2018.05.004_b14 article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances publication-title: Nonlinear Dynamics doi: 10.1007/s11071-017-3782-9 – volume: 44 start-page: 2635 issue: 12 year: 2014 ident: 10.1016/j.neunet.2018.05.004_b33 article-title: Local synchronization of chaotic neural networks with sampled-data and saturating actuators publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2312004 – volume: 43 start-page: 1796 issue: 6 year: 2013 ident: 10.1016/j.neunet.2018.05.004_b32 article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2230441 |
SSID | ssj0006843 |
Score | 2.5718102 |
Snippet | This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 154 |
SubjectTerms | Coupled stochastic neural networks Finite-time synchronization Markovian jumping parameters Saturation effect Stochastic coupling strength |
Title | Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation |
URI | https://dx.doi.org/10.1016/j.neunet.2018.05.004 https://www.ncbi.nlm.nih.gov/pubmed/29886328 https://www.proquest.com/docview/2053271712 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcumlpdCWLRS5ElezeTlxjgix2rYqF4rEzYofEUHIWZGEqpf-9o5jZyWkIiSOifySZzzzOflmBuCk5FUSpzqjmmU5zdBFUgSxhiotTaHQX8ixSsTPy3x1nX2_YTdbcD7FwjhaZbD93qaP1jq8WYTdXKybZnEVoavNEfCgUqJP43wbdpK0zNkMds6-_Vhdbgxyzj15DttT12GKoBtpXtYM1jhSZczHFJ6hYtt_PNRzCHT0RMtdeBsgJDnzq3wPW8buwbupPAMJp3UfhmXjACV15eNJ98eqMQ-uD7skbU0Q9qnbyuVpJqod1vdGE5fdEoe2nhvekW6Q7jsN6VvignraR1Qm0v1u-pGBSSqrSWNxWtK5_KDjyB_gennx63xFQ5UFqvDq0VNWclXJQmd1rXLJpMykMmkdIS6qeVnpwlRFIhMZIdKLZCURsPFcFUbi9VbXRqcfYWZbaw6AyLhAwOjSvegy05EueWwUS0uGOIBndTGHdNpZoUIKclcJ415MXLM74eUhnDxExATKYw5002vtU3C80L6YhCaeqJJAL_FCz6-TjAWeMvfrpLKmHTpsxNIEb75xModPXvibtSQl53ma8M-vnvcQ3rgnT107gln_MJgviHV6eQzbp3_j46DR_wAjZgEW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VcoBL2eGxGomreVns2DmiiqcHtL3QSr1Z8RIRVDlPJCniwm9nbCdFSKBKXBNv8tiez8k33wC8qWVT5KVl1HJWUYYukiKIddRY7YRBf6Fjlojjk2p7xj6e8_M9OFxiYQKtcj7705keT-v5yXqezfWu69afM3S1FQIeXJTo06S8ATcZL0UQ0H_78zfPo5KJOoelaSi-xM9Fkpd3k3eBUpnLKOA552v7i3_6F_6MfmhzFw5mAEnepTHegz3n78OdJTkDmffqA5g2XYCTNCSPJ8MPb6IKbgq6JH1LEPSZL01QaSamn3YXzpKgbYlN-8QMH8gw6fCVhow9CSE9_SUuJTJ878bIvySNt6Tz2C0ZgjpobPkhnG3enx5u6ZxjgRq8eIyU19I0WljWtqbSXGumjSvbDFFRK-vGCteIQhc6Q5yX6UYjXJOVEU7j5da2zpaPYN_33j0BonOBcDGIvdia2czWMneGlzVHFCBZK1ZQLjOrzCxAHvJgXKiFafZVJXuoYA-VcYX2WAG9qrVLAhzXlBeL0dQfC0mhj7im5uvFxgr3WPhx0njXTwMW4mWB9968WMHjZPyrsRS1lFVZyKf_3e8ruLU9PT5SRx9OPj2D2-FNIrE9h_3x2-ReIOoZ9cu4qn8BVGAB4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-time+synchronization+of+stochastic+coupled+neural+networks+subject+to+Markovian+switching+and+input+saturation&rft.jtitle=Neural+networks&rft.au=Selvaraj%2C+P&rft.au=Sakthivel%2C+R&rft.au=Kwon%2C+O+M&rft.date=2018-09-01&rft.eissn=1879-2782&rft.volume=105&rft.spage=154&rft_id=info:doi/10.1016%2Fj.neunet.2018.05.004&rft_id=info%3Apmid%2F29886328&rft.externalDocID=29886328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |