Stochastic pharmacodynamics of a heterogeneous tumour-cell population
Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell has a different value of an attribute linked to surviv...
Saved in:
Published in | Journal of pharmacokinetics and pharmacodynamics Vol. 52; no. 3; p. 28 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1567-567X 1573-8744 1573-8744 |
DOI | 10.1007/s10928-025-09974-7 |
Cover
Abstract | Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell has a different value of an attribute linked to survival. Once the drug reduces a cell’s value below a threshold, the cell is susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment. |
---|---|
AbstractList | Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell has a different value of an attribute linked to survival. Once the drug reduces a cell’s value below a threshold, the cell is susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment. Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell has a different value of an attribute linked to survival. Once the drug reduces a cell's value below a threshold, the cell is susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment.Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell has a different value of an attribute linked to survival. Once the drug reduces a cell's value below a threshold, the cell is susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment. |
ArticleNumber | 28 |
Author | Yates, James Truong, Van Thuy Vicini, Paolo Dubois, Vincent Lythe, Grant |
Author_xml | – sequence: 1 givenname: Van Thuy surname: Truong fullname: Truong, Van Thuy email: vn.thuy.truong@gmail.com organization: School of Mathematics, University of Leeds, Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca – sequence: 2 givenname: Paolo surname: Vicini fullname: Vicini, Paolo organization: Confo Therapeutics – sequence: 3 givenname: James surname: Yates fullname: Yates, James organization: DMPK, Preclinical Sciences, RTech, GSK – sequence: 4 givenname: Vincent surname: Dubois fullname: Dubois, Vincent organization: Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca – sequence: 5 givenname: Grant surname: Lythe fullname: Lythe, Grant organization: School of Mathematics, University of Leeds |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40325283$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha1qEDNQ_gCLKlI33RiuX2NnhSrESxqJBVTqznIcZyYosVM7QeLf18NQCixYWLbk7xzf43OAZj54h9AxgRMCIE8TgZIqDFRgKEvJsfyCFkRIhpXkfLY9LyXO6_ccHaT0AECWgsI-mnNgVFDFFujibgx2Y9LY2mLYmNgbG-onb_rWpiI0hSk2bnQxrJ13YUrFOPVhiti6riuGMEydGdvgv6K9xnTJHb3sh-jX5cX9-TVe3V7dnP9cYcupGrGQJVGES8OtqrlopGWlksIuCbFL2dRQkwoqlWNZVvFaNNSV1lYVrYxomK3YITrb-Q5T1bvaOj9G0-khtr2JTzqYVr-_8e1Gr8OjJhQEY5Jkhx8vDjH8mVwadd-mbRrznE8zCqCIpKXK6PcP6EOO7nO-LcU4cK5opr69Hel1ln9fnAG6A2wMKUXXvCIE9LZHvetR5x71c49aZhHbiVKG_drF_29_ovoL522g9A |
Cites_doi | 10.1007/s11538-018-00556-y 10.1111/j.1574-6976.2008.00156.x 10.1016/j.molcel.2019.09.028 10.1007/s11538-016-0225-6 10.1158/1078-0432.CCR-12-0445 10.1371/journal.pone.0240765 10.1007/s00280-015-2861-1 10.1016/j.jbspin.2023.105523 10.1007/s10928-018-9584-y 10.1007/s40262-019-00748-2 10.1038/psp.2013.18 10.1007/BF00615409 10.2165/00003088-200140010-00002 10.1093/acprof:oso/9780199575312.001.0001 10.18632/oncotarget.17064 10.1038/s41375-018-0334-3 10.1200/CCI.20.00089 10.1038/nrmicro.2016.34 10.1158/1535-7163.MCT-08-0972 10.1007/s10928-018-9568-y 10.1016/0022-5193(66)90018-X 10.1016/j.tips.2020.09.005 10.1126/science.1099390 10.1111/bcp.13119 10.1016/j.jtbi.2003.11.024 10.1002/psp4.12703 10.1002/pst.2399 10.1016/j.coi.2009.09.008 10.1038/ncomms3467 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U9 H94 K9. M7N 7X8 5PM |
DOI | 10.1007/s10928-025-09974-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1573-8744 |
ExternalDocumentID | PMC12053371 40325283 10_1007_s10928_025_09974_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Union’s Horizon 2020 programme H2020-MSCA-ITN grantid: 76469 – fundername: European Union's Horizon 2020 programme H2020-MSCA-ITN grantid: 76469 |
GroupedDBID | --- .86 .VR 06C 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67N 67Z 6NX 78A 7X7 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AZFZN B-. BA0 BENPR BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM LSO M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA -Y2 .GJ 1SB 2.D 2P1 2VQ 3SX 53G 5QI 88E 8AO 8FI 8FJ AANXM AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ADHKG ADPHR ADYPR AEBTG AEFIE AEKMD AFEXP AFGCZ AFKRA AGGDS AGQPQ AI. AJBLW BDATZ BPHCQ BVXVI CAG CCPQU CITATION COF EBD EJD EMOBN EN4 FINBP FSGXE FYUFA H13 HMCUK IHE M1P MK0 N2Q NDZJH O9- OVD PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO Q2X RNI RZC RZE RZK S26 S28 SCLPG SV3 T16 TEORI TUS UKHRP UZXMN VFIZW VH1 CGR CUY CVF ECM EIF NPM 7U9 H94 K9. M7N 7X8 5PM |
ID | FETCH-LOGICAL-c428t-57918147a4c8d45f7c39875c611c67fd0d1b0b8109c3b4d5f2e9ccbb2ba5f3cb3 |
IEDL.DBID | U2A |
ISSN | 1567-567X 1573-8744 |
IngestDate | Thu Aug 21 18:27:27 EDT 2025 Fri Sep 05 17:17:08 EDT 2025 Sun Jul 27 04:10:34 EDT 2025 Sat Jul 19 01:30:21 EDT 2025 Thu Sep 11 00:18:41 EDT 2025 Fri Jul 18 01:12:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Heterogeneity Pharmacodynamics Modelling Stochastic Targeted therapy Cancer |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-57918147a4c8d45f7c39875c611c67fd0d1b0b8109c3b4d5f2e9ccbb2ba5f3cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s10928-025-09974-7 |
PMID | 40325283 |
PQID | 3203404482 |
PQPubID | 55470 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12053371 proquest_miscellaneous_3200817298 proquest_journals_3203404482 pubmed_primary_40325283 crossref_primary_10_1007_s10928_025_09974_7 springer_journals_10_1007_s10928_025_09974_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of pharmacokinetics and pharmacodynamics |
PublicationTitleAbbrev | J Pharmacokinet Pharmacodyn |
PublicationTitleAlternate | J Pharmacokinet Pharmacodyn |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | AO Pisco (9974_CR25) 2013; 4 E Renshaw (9974_CR21) 2011 R Wang (9974_CR30) 2017; 8 J Yang (9974_CR19) 2021; 16 E Widmark (9974_CR13) 1924; 147 JF Standing (9974_CR2) 2017; 83 V Bonato (9974_CR28) 2024; 24 N Holford (9974_CR18) 2013; 2 R Allen (9974_CR4) 2019; 81 H Moore (9974_CR6) 2018; 45 JWT Yates (9974_CR26) 2020; 4 I Irurzun-Arana (9974_CR9) 2020; 41 L Dewachter (9974_CR36) 2019; 76 O Gefen (9974_CR8) 2009; 33 TJ Snowden (9974_CR7) 2018; 45 R Felten (9974_CR33) 2023; 90 VT Truong (9974_CR12) 2022; 11 9974_CR22 9974_CR23 M Centanni (9974_CR3) 2019; 58 E William St Clair (9974_CR34) 2009; 21 H Moore (9974_CR5) 2004; 227 G An (9974_CR11) 2017; 79 E Krüger-Thiemer (9974_CR15) 1966; 13 H Wong (9974_CR17) 2012; 18 A Brauner (9974_CR31) 2016; 14 A-M Tsimberidou (9974_CR35) 2015; 76 H Schwilden (9974_CR16) 1981; 20 SS Jambhekar (9974_CR20) 2009 P Bonate (9974_CR1) 2016; 187 DT Saenz (9974_CR32) 2019; 33 EJ Gumbel (9974_CR24) 1935; 5 9974_CR14 JJ Yeh (9974_CR27) 2009; 8 PL Bonate (9974_CR10) 2001; 40 NQ Balaban (9974_CR29) 2004; 305 |
References_xml | – ident: 9974_CR23 – volume: 81 start-page: 3425 year: 2019 ident: 9974_CR4 publication-title: Bull Math Biol doi: 10.1007/s11538-018-00556-y – volume: 33 start-page: 704 issue: 4 year: 2009 ident: 9974_CR8 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2008.00156.x – volume: 76 start-page: 255 year: 2019 ident: 9974_CR36 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.09.028 – volume: 79 start-page: 63 year: 2017 ident: 9974_CR11 publication-title: Bull Math Biol doi: 10.1007/s11538-016-0225-6 – volume: 18 start-page: 3090 issue: 11 year: 2012 ident: 9974_CR17 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-0445 – volume: 16 start-page: e0240765 issue: 7 year: 2021 ident: 9974_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0240765 – volume: 76 start-page: 1113 year: 2015 ident: 9974_CR35 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-015-2861-1 – volume: 90 year: 2023 ident: 9974_CR33 publication-title: Jt Bone Spine doi: 10.1016/j.jbspin.2023.105523 – volume: 45 start-page: 537 year: 2018 ident: 9974_CR7 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-018-9584-y – volume: 58 start-page: 835 year: 2019 ident: 9974_CR3 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-019-00748-2 – volume: 2 start-page: 1 issue: 5 year: 2013 ident: 9974_CR18 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2013.18 – ident: 9974_CR14 – volume: 20 start-page: 379 year: 1981 ident: 9974_CR16 publication-title: Eur J Clin Pharmacol doi: 10.1007/BF00615409 – volume: 40 start-page: 15 year: 2001 ident: 9974_CR10 publication-title: Clin Pharmacokinet doi: 10.2165/00003088-200140010-00002 – volume-title: Stochastic population processes: analysis, approximations, simulations year: 2011 ident: 9974_CR21 doi: 10.1093/acprof:oso/9780199575312.001.0001 – volume: 8 start-page: 41113 issue: 25 year: 2017 ident: 9974_CR30 publication-title: Oncotarget doi: 10.18632/oncotarget.17064 – volume: 33 start-page: 1373 issue: 6 year: 2019 ident: 9974_CR32 publication-title: Leukemia doi: 10.1038/s41375-018-0334-3 – volume: 4 start-page: 938 year: 2020 ident: 9974_CR26 publication-title: JCO Clin Cancer Inform doi: 10.1200/CCI.20.00089 – volume: 147 start-page: 358 year: 1924 ident: 9974_CR13 publication-title: Biochem Z – volume: 187 start-page: 141 year: 2016 ident: 9974_CR1 publication-title: Preclin Drug Dev – volume: 14 start-page: 320 issue: 5 year: 2016 ident: 9974_CR31 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.34 – ident: 9974_CR22 – volume: 8 start-page: 834 issue: 4 year: 2009 ident: 9974_CR27 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-08-0972 – volume: 45 start-page: 127 year: 2018 ident: 9974_CR6 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-018-9568-y – volume: 5 start-page: 115 issue: 2 year: 1935 ident: 9974_CR24 publication-title: Ann l’inst Henri Poincaré – volume: 13 start-page: 212 year: 1966 ident: 9974_CR15 publication-title: J Theor Biol doi: 10.1016/0022-5193(66)90018-X – volume: 41 start-page: 882 issue: 11 year: 2020 ident: 9974_CR9 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2020.09.005 – volume: 305 start-page: 1622 issue: 5690 year: 2004 ident: 9974_CR29 publication-title: Science doi: 10.1126/science.1099390 – volume: 83 start-page: 247 issue: 2 year: 2017 ident: 9974_CR2 publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.13119 – volume: 227 start-page: 513 issue: 4 year: 2004 ident: 9974_CR5 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2003.11.024 – volume: 11 start-page: 133 issue: 2 year: 2022 ident: 9974_CR12 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12703 – volume: 24 start-page: e2399 issue: 1 year: 2024 ident: 9974_CR28 publication-title: Pharm Stat doi: 10.1002/pst.2399 – volume-title: Basic pharmacokinetics year: 2009 ident: 9974_CR20 – volume: 21 start-page: 648 year: 2009 ident: 9974_CR34 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2009.09.008 – volume: 4 start-page: 2467 issue: 1 year: 2013 ident: 9974_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms3467 |
SSID | ssj0016520 |
Score | 2.3908937 |
Snippet | Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. We develop and analyse a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 28 |
SubjectTerms | Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Cell culture Cell death Cell Death - drug effects Humans Models, Biological Neoplasms - drug therapy Neoplasms - pathology Ordinary differential equations Original Paper Pharmacodynamics Pharmacology/Toxicology Pharmacy Population growth Species extinction Stochastic models Stochastic Processes Stochasticity Tumors Veterinary Medicine/Veterinary Science |
Title | Stochastic pharmacodynamics of a heterogeneous tumour-cell population |
URI | https://link.springer.com/article/10.1007/s10928-025-09974-7 https://www.ncbi.nlm.nih.gov/pubmed/40325283 https://www.proquest.com/docview/3203404482 https://www.proquest.com/docview/3200817298 https://pubmed.ncbi.nlm.nih.gov/PMC12053371 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB2xuxcuiG8CS2UktBdqKXHs2D52q5YViNVKbKVyimwnVjnQVCQ97L9nnK9SFg4cohxsJfHMOJ5n-z0DvI-dLx2mEbTMpKW8iBVVJXY8r3XBnHepVYGc_OU6u1rxT2ux7klh9bDbfViSbP_Uv5HddFBTZoIGtien8gTOBGL30B1XbDauHWSiFWNEYCIpXuueKvP3ZxwPR_dyzPtbJf9YL22HoeVjeNTnj2TWOfwJPCi3T-HiphOgvpuS2wOfqp6SC3JzkKa-ewaLr03lNiZoM5NdX1J0Z9LXpPLEkE3YHlNhVJXVvibN_ge-kIbZfbIbj_p6Dqvl4nZ-RfuDFKhDdNFQITUO5Fwa7lTBhZcu1YhTXJYkLpO-iIvExlahcdA3vBCeldo5a5k1wqfOpi_gdFtty1dAmDeY8RhElUJyq6xWxgTM47RHjysdwYfBnvmu08vID8rIwfo5Wj9vrZ_LCM4Hk-d936nzlMUpjxE2sgjejcUY9aGxpm1-qIO5DAIDFcHLzkPj63icsiBZE4E68t1YIShqH5dsv29aZe2EBWqyTCKYDm4-fNe_m_H6_6q_gYesDcEwl3MOp83PffkWU5vGTuBstry8vA73j98-LyZwMs_mkza-fwGuPPYo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5B9wAX3iyBBYyE9kK9Shwnto8r1KWwD61EK5VTZDuxihBNRdLD8usZ51W6C4c95GQrznhmkvkyM58B3ofWFRbDCFqkwlCeh5LKAh3PKZUz62xspG9OPr9Ip3P-ZZEsuqawqq9271OSzZv6r2Y35dmUWUJ9tyen4i7sccTg4Qj2jj99O50M2YM0aegYEZoIiteia5b59112P0g3osybxZLXMqbNh-jkIcx7Edr6kx9Hm9oc2d_X2B1vK-MjeNBFpuS4NaXHcKdYPYHDy5ba-mpMZttOrWpMDsnllvT66ilMvtalXWrP-kzW3UjennZfkdIRTZa-8KZEey3KTUXqzU9ckPq8AVkPh4g9g_nJZPZxSrsjGqhF3FLTRCgMEbjQ3MqcJ07YWCECsmkU2VS4PMwjExqJYqHWeZ44VihrjWFGJy62Jn4Oo1W5Kl4AYU5jLKURryaCG2mU1NqjKasc2pJUAXzo9ZStWyaObMu57Pctw33Lmn3LRAAHvSqzziurLGZhzEMEpCyAd8Mw-pMXVjfi-zkYJSHkkAHst5ofluNhzDwZTgByxyaGCZ6re3dk9X3ZcHZHzDc9iyiAca_57XP9X4yXt5v-Fu5NZ-dn2dnni9NXcJ81huT_GB3AqP61KV5jAFWbN52__AG1wRJE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7amDTtgmA_A2XzJMRltUgcJ7aPFaNiP0CVoFJvke3E6g4kFU0P_Pc8J2lKYTvskJOtOH7vOX6f7e8zwHFoXWExjaBFKgzleSipLHDgOaVyZp2NjfTk5Mur9GLKf86S2SMWf3Pafb0l2XIavEpTWZ8ucnf6iPimvLIyS6hnfnIqXsIr_B1HPtKnbNTvI6RJI8yIIEVQfGYdbebv79iemp7lm8-PTT7ZO22mpPEe7Ha5JBm1zt-HF0X5Fk4mrRj1_ZDcbLhVyyE5IZONTPX9Ozi_ris7116nmSy6kry9n35JKkc0mfujMhVGWFGtlqRe3WKD1K_0k0V_7dd7mI7Pb84uaHepArWINGqaCIWTOheaW5nzxAkbK8QsNo0imwqXh3lkQiPROOgnnieOFcpaY5jRiYutiT_ATlmVxScgzGnMfjQizERwI42SWnv8Y5VD70sVwLe1PbNFq52RbVSSvfUztH7WWD8TAQzWJs-6cbTMYhbGPEQIyQL42hfjCPCd1U33fR3MaxAkyAA-th7qm-NhzLx8TQByy3d9Ba-uvV1S_pk3KtsR8zRlEQUwXLt5813_7sbB_1X_Aq8n38fZ7x9Xvw7hDWui0S_xDGCnvlsVR5jx1OZzE9QPOmX5ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+pharmacodynamics+of+a+heterogeneous+tumour-cell+population&rft.jtitle=Journal+of+pharmacokinetics+and+pharmacodynamics&rft.au=Truong%2C+Van+Thuy&rft.au=Vicini%2C+Paolo&rft.au=Yates%2C+James&rft.au=Dubois%2C+Vincent&rft.date=2025-06-01&rft.issn=1573-8744&rft.eissn=1573-8744&rft.volume=52&rft.issue=3&rft.spage=28&rft_id=info:doi/10.1007%2Fs10928-025-09974-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-567X&client=summon |