Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib

Summary The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of haematology Vol. 141; no. 4; pp. 494 - 503
Main Authors Nerini‐Molteni, Silvia, Ferrarini, Marina, Cozza, Sara, Caligaris‐Cappio, Federico, Sitia, Roberto
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2008
Blackwell
Subjects
Online AccessGet full text
ISSN0007-1048
1365-2141
1365-2141
DOI10.1111/j.1365-2141.2008.07066.x

Cover

Abstract Summary The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib‐mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate‐cysteine ligase (GCLM) and haem‐oxygenase‐1 (HMOX1), two genes involved in the Nrf‐2‐mediated antioxidant response, as well as two eIF2α‐downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox‐related adaptive responses are initiated in bortezomib‐treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.
AbstractList The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib‐mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate‐cysteine ligase ( GCLM ) and haem‐oxygenase‐1 ( HMOX1 ), two genes involved in the Nrf‐2‐mediated antioxidant response, as well as two eIF2α‐downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox‐related adaptive responses are initiated in bortezomib‐treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.
The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib-mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate-cysteine ligase (GCLM) and haem-oxygenase-1 (HMOX1), two genes involved in the Nrf-2-mediated antioxidant response, as well as two eIF2alpha-downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox-related adaptive responses are initiated in bortezomib-treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.
Summary The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib‐mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate‐cysteine ligase (GCLM) and haem‐oxygenase‐1 (HMOX1), two genes involved in the Nrf‐2‐mediated antioxidant response, as well as two eIF2α‐downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox‐related adaptive responses are initiated in bortezomib‐treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.
The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib-mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate-cysteine ligase (GCLM) and haem-oxygenase-1 (HMOX1), two genes involved in the Nrf-2-mediated antioxidant response, as well as two eIF2alpha-downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox-related adaptive responses are initiated in bortezomib-treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A better understanding of the cellular events downstream of proteasome inhibition is essential to improve the response and identify new combination therapies for MM and other malignancies. This study analysed the relationships between redox homeostasis and bortezomib treatment in MM cells. Our data showed that decreasing intracellular glutathione through buthionine sulfoximine treatment strongly enhances bortezomib toxicity, whilst antioxidants protect MM cells from bortezomib-mediated cell death. Bortezomib treatment decreases intracellular glutathione both in MM cell lines and in malignant plasma cells obtained from MM patients. Glutamate-cysteine ligase (GCLM) and haem-oxygenase-1 (HMOX1), two genes involved in the Nrf-2-mediated antioxidant response, as well as two eIF2alpha-downstream transcription factors, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), are upregulated, indicating that redox-related adaptive responses are initiated in bortezomib-treated MM cells. These findings demonstrate tight links between sensitivity to proteasome inhibition and redox homeostasis in MM cells and have potential implications for treatment.
Author Nerini‐Molteni, Silvia
Cozza, Sara
Ferrarini, Marina
Caligaris‐Cappio, Federico
Sitia, Roberto
Author_xml – sequence: 1
  givenname: Silvia
  surname: Nerini‐Molteni
  fullname: Nerini‐Molteni, Silvia
– sequence: 2
  givenname: Marina
  surname: Ferrarini
  fullname: Ferrarini, Marina
– sequence: 3
  givenname: Sara
  surname: Cozza
  fullname: Cozza, Sara
– sequence: 4
  givenname: Federico
  surname: Caligaris‐Cappio
  fullname: Caligaris‐Cappio, Federico
– sequence: 5
  givenname: Roberto
  surname: Sitia
  fullname: Sitia, Roberto
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20315947$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18341633$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQhS0EKgvtX0C-tLekYztxnEMrtagUEBISas-WY0-EV0lMYy_d7a8nYbd74AK-2JK_9_Rm3gk5HMKAhFAGOZvO52XOhCwzzgqWcwCVQwVS5usDsth_HJIFAFQZg0Idk5MYlwBMQMnekWOmRMGkEAtyfYcurOl96DHEZKKPtA9u1ZmEkaZ7pBGH6JN_9GlDQ0v7DXahN9Ri101AoE0YE_4LvW_ek6PWdBE_7O5T8vvix6_zy-zm9ufV-bebzBZcyax21jUlr52qRGHAGq5sVbctYlMJobiqyoZb7syUULZSNa6trQDupDU1yFKckk9b34cx_FlhTLr3cc5jBgyrqGXNmCyEnMCzHbhqenT6YfS9GTf6__QT8HEHmGhN145msD7uOQ6ClXVRTdzXLWfHEOOIrbY-meTDkEbjO81Az7XopZ63r-ft67kW_VyLXk8G6oXBPsvr0i9b6V_f4ebNOv39-nJ-iSdoyqQ-
CODEN BJHEAL
CitedBy_id crossref_primary_10_1021_acsptsci_1c00074
crossref_primary_10_1038_bcj_2012_31
crossref_primary_10_1089_ars_2009_2377
crossref_primary_10_3390_ijms24087661
crossref_primary_10_1016_j_canlet_2017_10_005
crossref_primary_10_3390_cancers13102411
crossref_primary_10_1016_j_drup_2008_08_002
crossref_primary_10_1096_fj_201600654R
crossref_primary_10_3389_fphar_2018_00334
crossref_primary_10_18632_oncotarget_3795
crossref_primary_10_3390_antiox14020128
crossref_primary_10_18632_oncotarget_3237
crossref_primary_10_1007_s10637_017_0557_6
crossref_primary_10_1007_s11864_024_01250_z
crossref_primary_10_1007_s00018_021_03756_3
crossref_primary_10_1038_s41375_020_0865_2
crossref_primary_10_3390_cancers13030504
crossref_primary_10_4161_23723556_2014_974463
crossref_primary_10_3109_10715762_2011_574290
crossref_primary_10_3390_genes15030387
crossref_primary_10_1016_j_yexcr_2009_11_005
crossref_primary_10_1182_blood_2016_08_730978
crossref_primary_10_1089_ars_2011_4252
crossref_primary_10_1093_bioinformatics_btt531
crossref_primary_10_1182_blood_2020009856
crossref_primary_10_1089_ars_2008_2302
crossref_primary_10_1002_cam4_5679
crossref_primary_10_1002_jcb_23387
crossref_primary_10_1038_bcj_2016_56
crossref_primary_10_1089_ars_2010_3590
crossref_primary_10_1089_ars_2013_5794
crossref_primary_10_1016_j_redox_2014_11_002
crossref_primary_10_1007_s10495_016_1303_9
crossref_primary_10_1158_1078_0432_CCR_11_1789
crossref_primary_10_1016_S1016_8478_23_14003_9
crossref_primary_10_1089_ars_2016_6636
crossref_primary_10_1038_leu_2009_83
crossref_primary_10_1038_s41598_025_86222_5
crossref_primary_10_1089_ARS_2008_2377
crossref_primary_10_1016_j_ejmech_2018_09_037
crossref_primary_10_1182_blood_2013_11_539395
crossref_primary_10_1182_blood_2014_04_570044
crossref_primary_10_3390_cells10092287
crossref_primary_10_3390_ijms241612590
crossref_primary_10_1371_journal_pone_0071613
crossref_primary_10_1016_j_yexcr_2014_10_017
crossref_primary_10_1080_15384101_2015_1136038
crossref_primary_10_1038_s41598_021_83829_2
crossref_primary_10_1158_1078_0432_CCR_10_3367
crossref_primary_10_3390_cells9112357
Cites_doi 10.1182/blood.V77.12.2688.2688
10.1158/1078-0432.CCR-05-0085
10.1016/j.immuni.2004.06.010
10.1038/sj.onc.1206951
10.1128/MCB.24.22.9695-9704.2004
10.1038/35085509
10.1006/bbrc.1997.6943
10.1007/s00277-002-0437-8
10.1016/S1097-2765(03)00105-9
10.1111/j.1471-4159.2004.02915.x
10.1016/S0960-894X(98)00029-8
10.1182/blood-2006-07-027326
10.1074/jbc.M413660200
10.1074/jbc.M302559200
10.1016/S0955-0674(97)80079-8
10.1073/pnas.1334037100
10.1158/1078-0432.CCR-05-0503
10.1074/jbc.M501014200
10.1016/j.biocel.2005.09.018
10.1152/physrev.00027.2001
10.1006/scbi.2001.0423
10.1073/pnas.202445099
10.1016/j.cell.2004.05.002
10.1038/sj.onc.1206734
10.1038/sj.cdd.4401148
10.1038/nrm1618
10.1128/MCB.23.20.7198-7209.2003
10.1016/j.freeradbiomed.2006.03.003
10.1158/0008-5472.CAN-05-0731
10.1182/blood-2003-08-2873
10.1038/ni907
10.1016/0003-2697(69)90064-5
10.1158/1078-0432.CCR-03-0561
10.1038/sj.onc.1205905
10.1182/blood-2005-08-3531
10.1038/sj.emboj.7601009
10.1093/jnci/89.23.1789
10.1046/j.1365-2141.1998.00623.x
10.1182/blood-2007-04-082495
10.1016/S1074-7613(03)00024-4
10.1056/NEJMoa043445
10.1101/gad.13.1.76
10.1083/jcb.152.5.997
10.1182/blood.V87.3.1104.bloodjournal8731104
10.1074/jbc.M101198200
ContentType Journal Article
Copyright 2008 The Authors
2008 INIST-CNRS
Copyright_xml – notice: 2008 The Authors
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1365-2141.2008.07066.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2141
EndPage 503
ExternalDocumentID 18341633
20315947
10_1111_j_1365_2141_2008_07066_x
BJH7066
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon
  grantid: GGP06155
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1KJ
1OB
1OC
23N
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYEP
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
J5H
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4286-9dcdb529d8734a0ca28c79ffeeb73382875b2c2da4166f68bdf9c302d6ca90653
IEDL.DBID DR2
ISSN 0007-1048
1365-2141
IngestDate Thu Jul 10 18:56:29 EDT 2025
Fri May 30 11:01:25 EDT 2025
Mon Jul 21 09:17:51 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Tue Jul 01 02:04:17 EDT 2025
Sun Sep 21 06:20:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Antineoplastic agent
Immunopathology
multiple myeloma
Bortezomib
Hematology
Homeostasis
B cell neoplasm
proteasome inhibitors
Malignant hemopathy
redox homeostasis
Lymphoid neoplasm
Myeloma
Sensitivity
Immunoglobulinopathy
Nrf2
Analog
Lymphoproliferative syndrome
Proteasome inhibitor
Dipeptides
Cancer
Glutathione
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4286-9dcdb529d8734a0ca28c79ffeeb73382875b2c2da4166f68bdf9c302d6ca90653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2141.2008.07066.x
PMID 18341633
PQID 69116436
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_69116436
pubmed_primary_18341633
pascalfrancis_primary_20315947
crossref_citationtrail_10_1111_j_1365_2141_2008_07066_x
crossref_primary_10_1111_j_1365_2141_2008_07066_x
wiley_primary_10_1111_j_1365_2141_2008_07066_x_BJH7066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2008
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: May 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle British journal of haematology
PublicationTitleAlternate Br J Haematol
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References 2004; 21
1997; 236
2004; 103
2005; 352
2006; 12
1991; 77
2006; 38
2002; 12
1997; 89
2004; 24
2002; 99
2005; 65
2002; 81
2003; 18
2002; 82
2007; 109
2003; 278
1997; 9
2003; 10
2003; 11
2001; 276
2004; 10
2005; 280
2006; 40
2001; 152
2007; 110
2006; 25
2002; 21
1999; 13
2003; 4
2005; 6
1969; 27
2005; 92
1998; 100
2006; 107
2004; 117
1996; 87
2003; 100
2005; 11
2001; 412
2003; 22
1998; 8
2003; 23
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Emanuele S. (e_1_2_6_13_1) 2002; 21
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Caligaris‐Cappio F. (e_1_2_6_5_1) 1991; 77
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 280
  start-page: 14189
  year: 2005
  end-page: 14202
  article-title: Phosphorylation of the alpha‐subunit of the eukaryotic initiation factor‐2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition
  publication-title: Journal of Biological Chemistry
– volume: 18
  start-page: 243
  year: 2003
  end-page: 253
  article-title: Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion
  publication-title: Immunity
– volume: 276
  start-page: 20858
  year: 2001
  end-page: 20865
  article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2‐interacting Protein. Implication for heme oxygenase‐1 gene regulation
  publication-title: Journal of Biological Chemistry
– volume: 82
  start-page: 373
  year: 2002
  end-page: 428
  article-title: The ubiquitin‐proteasome proteolytic pathway: destruction for the sake of construction
  publication-title: Physiological Reviews
– volume: 24
  start-page: 9695
  year: 2004
  end-page: 9704
  article-title: Proteasome inhibitor PS‐341 induces apoptosis through induction of endoplasmic reticulum stress‐reactive oxygen species in head and neck squamous cell carcinoma cells
  publication-title: Molecular and Cellular Biology
– volume: 13
  start-page: 76
  year: 1999
  end-page: 86
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino‐terminal Neh2 domain
  publication-title: Genes and Development
– volume: 8
  start-page: 333
  year: 1998
  end-page: 338
  article-title: Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids
  publication-title: Bioorganic & Medicinal Chemistry Letters
– volume: 100
  start-page: 9946
  year: 2003
  end-page: 9951
  article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 6829
  year: 2002
  end-page: 6834
  article-title: Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2
  publication-title: Oncogene
– volume: 107
  start-page: 4907
  year: 2006
  end-page: 4916
  article-title: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
  publication-title: Blood
– volume: 6
  start-page: 318
  year: 2005
  end-page: 327
  article-title: Translational control in stress and apoptosis
  publication-title: Nature Review Molecular Cell Biology
– volume: 280
  start-page: 25267
  year: 2005
  end-page: 25276
  article-title: Selective induction of the tumor marker glutathione S‐transferase P1 by proteasome inhibitors
  publication-title: Journal of Biological Chemistry
– volume: 236
  start-page: 313
  year: 1997
  end-page: 322
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochemical and Biophysical Research Communications
– volume: 89
  start-page: 1789
  year: 1997
  end-page: 1796
  article-title: Phase I study of continuous‐infusion L‐S,R‐buthionine sulfoximine with intravenous melphalan
  publication-title: Journal of the National Cancer Institute
– volume: 87
  start-page: 1104
  year: 1996
  end-page: 1112
  article-title: Multiple myeloma cell adhesion‐induced interleukin‐6 expression in bone marrow stromal cells involves activation of NF‐kappa B
  publication-title: Blood
– volume: 22
  start-page: 7512
  year: 2003
  end-page: 7523
  article-title: Strategies for reversing drug resistance
  publication-title: Oncogene
– volume: 38
  start-page: 317
  year: 2006
  end-page: 332
  article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway
  publication-title: International Journal of Biochemistry and Cell Biology
– volume: 278
  start-page: 33714
  year: 2003
  end-page: 33723
  article-title: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non‐small cell lung cancer cells
  publication-title: Journal of Biological Chemistry
– volume: 27
  start-page: 502
  year: 1969
  end-page: 522
  article-title: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues
  publication-title: Analytical Biochemistry
– volume: 25
  start-page: 1104
  year: 2006
  end-page: 1113
  article-title: Progressively impaired proteasomal capacity during terminal plasma cell differentiation
  publication-title: EMBO Journal
– volume: 22
  start-page: 6296
  year: 2003
  end-page: 6300
  article-title: Superoxide‐dependent and ‐independent mitochondrial signaling during apoptosis in multiple myeloma cells
  publication-title: Oncogene
– volume: 9
  start-page: 788
  year: 1997
  end-page: 799
  article-title: Roles of ubiquitin‐mediated proteolysis in cell cycle control
  publication-title: Current Opinion in Cell Biology
– volume: 100
  start-page: 637
  year: 1998
  end-page: 646
  article-title: The myeloma cell antigen syndecan‐1 is lost by apoptotic myeloma cells
  publication-title: British Journal Haematology
– volume: 103
  start-page: 3158
  year: 2004
  end-page: 3166
  article-title: The bortezomib/proteasome inhibitor PS‐341 and triterpenoid CDDO‐Im induce synergistic anti‐multiple myeloma (MM) activity and overcome bortezomib resistance
  publication-title: Blood
– volume: 11
  start-page: 619
  year: 2003
  end-page: 633
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Molecular cell
– volume: 65
  start-page: 7502
  year: 2005
  end-page: 7508
  article-title: MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate‐activated gammadelta lymphocytes
  publication-title: Cancer Research
– volume: 10
  start-page: 3839
  year: 2004
  end-page: 3852
  article-title: Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors
  publication-title: Clinical Cancer Research
– volume: 4
  start-page: 321
  year: 2003
  end-page: 329
  article-title: Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP‐1
  publication-title: Nature immunology
– volume: 81
  start-page: 125
  year: 2002
  end-page: 135
  article-title: Syndecan‐1 in B lymphoid malignancies
  publication-title: Annals of Hematology
– volume: 40
  start-page: 2232
  year: 2006
  article-title: Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells
  publication-title: Free Radical Biology and Medicine
– volume: 12
  start-page: 149
  year: 2002
  end-page: 155
  article-title: Chronic B cell malignancies and bone marrow microenvironment
  publication-title: Seminars in Cancer Biology
– volume: 23
  start-page: 7198
  year: 2003
  end-page: 7209
  article-title: Nrf2 is a direct PERK substrate and effector of PERK‐dependent cell survival
  publication-title: Molecular and Cellular Biology
– volume: 152
  start-page: 997
  year: 2001
  end-page: 1006
  article-title: Regulation of antioxidant metabolism by translation initiation factor 2alpha
  publication-title: Journal of Cell Biology
– volume: 109
  start-page: 2579
  year: 2007
  end-page: 2588
  article-title: Chaetocin: a promising new antimyeloma agent with and activity mediated via imposition of oxidative stress
  publication-title: Blood
– volume: 21
  start-page: 81
  year: 2004
  end-page: 93
  article-title: XBP1, downstream of Blimp‐1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation
  publication-title: Immunity
– volume: 352
  start-page: 2487
  year: 2005
  end-page: 2498
  article-title: Bortezomib or high‐dose dexamethasone for relapsed multiple myeloma
  publication-title: New England Journal of Medicine
– volume: 412
  start-page: 300
  year: 2001
  end-page: 307
  article-title: Plasma cell differentiation requires the transcription factor XBP‐1
  publication-title: Nature
– volume: 77
  start-page: 2688
  year: 1991
  end-page: 2693
  article-title: ‘Role of bone marrow stromal cells in the growth of human multiple myeloma
  publication-title: Blood
– volume: 11
  start-page: 5248
  year: 2005
  end-page: 5256
  article-title: Sulindac enhances the proteasome inhibitor bortezomib‐mediated oxidative stress and anticancer activity
  publication-title: Clinical Cancer Research
– volume: 99
  start-page: 14374
  year: 2002
  end-page: 14379
  article-title: Molecular sequelae of proteasome inhibition in human multiple myeloma cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 273
  year: 2006
  end-page: 280
  article-title: Vitamin C Inactivates the Proteasome Inhibitor PS‐341 in Human Cancer Cells
  publication-title: Clinical Cancer Research
– volume: 10
  start-page: 323
  year: 2003
  end-page: 334
  article-title: The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction
  publication-title: Cell Death and Differentiation
– volume: 92
  start-page: 824
  year: 2005
  end-page: 830
  article-title: Proteasome inhibition protects HT22 neuronal cells from oxidative glutamate toxicity
  publication-title: Journal of Neurochemistry
– volume: 21
  start-page: 857
  year: 2002
  end-page: 865
  article-title: Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl‐XS and activation of caspase‐3
  publication-title: International Journal of Oncolgy
– volume: 117
  start-page: 625
  year: 2004
  article-title: Two Enzymes in One: two yeast peroxiredoxins display oxidative stress‐dependent switching from a peroxidase to a molecular chaperone function
  publication-title: Cell
– volume: 110
  start-page: 2041
  year: 2007
  end-page: 2048
  article-title: The syndecan‐1 heparan sulfate proteoglycan is a viable target for myeloma therapy
  publication-title: Blood
– volume: 77
  start-page: 2688
  year: 1991
  ident: e_1_2_6_5_1
  article-title: ‘Role of bone marrow stromal cells in the growth of human multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.V77.12.2688.2688
– ident: e_1_2_6_34_1
  doi: 10.1158/1078-0432.CCR-05-0085
– ident: e_1_2_6_42_1
  doi: 10.1016/j.immuni.2004.06.010
– ident: e_1_2_6_14_1
  doi: 10.1038/sj.onc.1206951
– ident: e_1_2_6_15_1
  doi: 10.1128/MCB.24.22.9695-9704.2004
– ident: e_1_2_6_38_1
  doi: 10.1038/35085509
– ident: e_1_2_6_24_1
  doi: 10.1006/bbrc.1997.6943
– ident: e_1_2_6_40_1
  doi: 10.1007/s00277-002-0437-8
– ident: e_1_2_6_19_1
  doi: 10.1016/S1097-2765(03)00105-9
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1471-4159.2004.02915.x
– ident: e_1_2_6_2_1
  doi: 10.1016/S0960-894X(98)00029-8
– ident: e_1_2_6_23_1
  doi: 10.1182/blood-2006-07-027326
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M413660200
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M302559200
– ident: e_1_2_6_21_1
  doi: 10.1016/S0955-0674(97)80079-8
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.1334037100
– ident: e_1_2_6_47_1
  doi: 10.1158/1078-0432.CCR-05-0503
– ident: e_1_2_6_45_1
  doi: 10.1074/jbc.M501014200
– ident: e_1_2_6_11_1
  doi: 10.1016/j.biocel.2005.09.018
– ident: e_1_2_6_18_1
  doi: 10.1152/physrev.00027.2001
– ident: e_1_2_6_16_1
  doi: 10.1006/scbi.2001.0423
– ident: e_1_2_6_35_1
  doi: 10.1073/pnas.202445099
– ident: e_1_2_6_27_1
  doi: 10.1016/j.cell.2004.05.002
– ident: e_1_2_6_8_1
  doi: 10.1038/sj.onc.1206734
– ident: e_1_2_6_10_1
  doi: 10.1038/sj.cdd.4401148
– ident: e_1_2_6_22_1
  doi: 10.1038/nrm1618
– ident: e_1_2_6_12_1
  doi: 10.1128/MCB.23.20.7198-7209.2003
– ident: e_1_2_6_33_1
  doi: 10.1016/j.freeradbiomed.2006.03.003
– ident: e_1_2_6_17_1
  doi: 10.1158/0008-5472.CAN-05-0731
– ident: e_1_2_6_9_1
  doi: 10.1182/blood-2003-08-2873
– ident: e_1_2_6_26_1
  doi: 10.1038/ni907
– ident: e_1_2_6_44_1
  doi: 10.1016/0003-2697(69)90064-5
– ident: e_1_2_6_37_1
  doi: 10.1158/1078-0432.CCR-03-0561
– ident: e_1_2_6_41_1
  doi: 10.1038/sj.onc.1205905
– ident: e_1_2_6_36_1
  doi: 10.1182/blood-2005-08-3531
– ident: e_1_2_6_6_1
  doi: 10.1038/sj.emboj.7601009
– volume: 21
  start-page: 857
  year: 2002
  ident: e_1_2_6_13_1
  article-title: Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl‐XS and activation of caspase‐3
  publication-title: International Journal of Oncolgy
– ident: e_1_2_6_4_1
  doi: 10.1093/jnci/89.23.1789
– ident: e_1_2_6_29_1
  doi: 10.1046/j.1365-2141.1998.00623.x
– ident: e_1_2_6_46_1
  doi: 10.1182/blood-2007-04-082495
– ident: e_1_2_6_3_1
  doi: 10.1016/S1074-7613(03)00024-4
– ident: e_1_2_6_39_1
  doi: 10.1056/NEJMoa043445
– ident: e_1_2_6_25_1
  doi: 10.1101/gad.13.1.76
– ident: e_1_2_6_43_1
  doi: 10.1083/jcb.152.5.997
– ident: e_1_2_6_7_1
  doi: 10.1182/blood.V87.3.1104.bloodjournal8731104
– ident: e_1_2_6_20_1
  doi: 10.1074/jbc.M101198200
SSID ssj0013051
Score 2.1404421
Snippet Summary The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely...
The use of proteasome inhibitors have been a major advance in the treatment of multiple myeloma (MM), but their mechanisms of action remain largely unclear. A...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 494
SubjectTerms Acetylcysteine - pharmacology
Activating Transcription Factor 4 - metabolism
Antineoplastic Agents - pharmacology
Antioxidants - pharmacology
Biological and medical sciences
Boronic Acids - antagonists & inhibitors
Boronic Acids - pharmacology
Bortezomib
Cell Death - drug effects
Dose-Response Relationship, Drug
Drug Screening Assays, Antitumor
glutathione
Glutathione - metabolism
Hematologic and hematopoietic diseases
Homeostasis - drug effects
Humans
Immunodeficiencies. Immunoglobulinopathies
Immunoglobulinopathies
Immunopathology
Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis
Medical sciences
multiple myeloma
Multiple Myeloma - metabolism
Multiple Myeloma - pathology
Neoplasm Proteins - metabolism
Nrf2
Oxidation-Reduction - drug effects
Protease Inhibitors - pharmacology
proteasome inhibitors
Pyrazines - antagonists & inhibitors
Pyrazines - pharmacology
redox homeostasis
Transcription Factor CHOP - metabolism
Tumor Cells, Cultured
Title Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2141.2008.07066.x
https://www.ncbi.nlm.nih.gov/pubmed/18341633
https://www.proquest.com/docview/69116436
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDqVQ2vTtpEl16NWLV7b1OCZtwrKQHkIDuRm9TEPiVah3Ic2vz4zt3dQlh1ByM1gjW6MZ6Rvr8wzA19o6U5ZOpLIwIS1kplMThEu9DV6FELjyHUH2h5idFfPz8nzgP9G_MH1-iM0HN_KMbr0mBze2HTt5x9CaFtOBEilx-5wQnsQblEb_-ym_P1DIyqF4nsSVp1BjUs-DHY12qpfXpkWl1X21i4fg6BjddtvT8Wu4XA-sZ6VcTlZLO3G3_-R8fJqRb8OrAcWyg97s3sCzsHgLz0-Gc_p3MD8NPt6wX7EJEeFne9GyJnqqFBZahpCTtcSb7wtXsFiz5k-4io1hdIyADSKzxAG-jc2FfQ9nx0c_v83SoWpD6jCUEan2ztuSa69kXpjMGa6c1HUdgpUYD2OEVlruuDcIBUUtlPW1dnnGvXBGU6bcD7C1iIvwCZj1MnO1ttxia4EdKZfnHgGomNpcK5OAXM9Q5YaU5lRZ46r6K7RBVVWkqqHgJqmquklgupG87tN6PEJmf2QEG0FOlTJ0IRP4sraKCp2UVGYWIa7aSuCWgtBPJPCxN5b7h6qcIHGegOim_NFvUx3OZ3S187-Cu_Ci574QefMzbC1_r8IeAqyl3e9c5w5U2haX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIgES4v0Ij9YHrlllncSPIyCqZWl7qFqpt8iviIrNuiK7UumvZybJbgnqoULccrCdeOyxP3u-zAfwobbOlKUTqSxMSAuZ6dQE4VJvg1chBK58R5A9ErPTYn5Wng1yQPQvTJ8fYnvhRp7Rrdfk4HQhPfbyjqI1LaYDJ1Li_jlBQHm3C9cRQjrm1yGFrBzk8ySuPYUa03pubGm0Vz28MC2are71Lm4CpGN8221Q-49hselaz0v5MVmv7MRd_ZX18T_1_Qk8GoAs-9jPvKdwJyyfwb3DIVT_HObHwcdL9j02ISICbc9b1kRPYmGhZYg6WUvU-V67gsWaNb_CIjaGUSQBC0RmiQZ8FZtz-wJO97-cfJ6lg3BD6vA0I1Ltnbcl117JvDCZM1w5qes6BCvxSIyHtNJyx71BNChqoayvtcsz7oUzmpLlvoSdZVyG18Csl5mrteUWSwtsSLk894hBxdTmWpkE5GaIKjdkNSdxjUX1x-kGTVWRqQbNTTJVdZnAdFvzos_scYs6u6NZsK3ISSxDFzKBvc20qNBPyWRmGeK6rQTuKoj-RAKv-tly_VKVEyrOExDdmN_6a6pP8xk9vfnXintwf3ZyeFAdfD369hYe9FQY4nK-g53Vz3V4j3hrZXc7P_oN0LYatQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KAqFQ-n64aRMdevXilW09jk3aZbttQwkN5Gb0pCHxaol3Icmv78j2buqSQyi9-aCR7dGM5hvr8wzAB6-NKkvDUl4olxY8k6lyzKRWOyucc1TYliB7xKYnxey0PO35T_FfmK4-xOaDW_SMdr-ODr6wfujkLUNrXIx7SiTH8DlCPLldMIyaESAd09sThazsu-dx3HoKMWT13DnTIFQ9WqgGtea7dhd34dEhvG3j0-QJnK_frKOlnI9WSz0yN38Vffw_r_4UHvcwlnzs7O4ZPHDz57DzvT-ofwGzY2fDFfkVahcQfzZnDamDja3CXEMQc5ImEue7zhUkeFJfu4tQKxLPEXBAIDqSgG9CfaZfwsnk88_Dadq3bUgN5jIsldZYXVJpBc8LlRlFheHSe-c0x4QYU7RSU0OtQizIPBPaemnyjFpmlIylcl_B1jzM3Rsg2vLMeKmpxtEMJxImzy0iUDbWuRQqAb5eocr0Nc1ja42L6o_cBlVVRVX1HTejqqqrBMYbyUVX1-MeMnsDI9gI0tgqQxY8gf21VVTopVFlau7CqqkYxhTEfiyB152x3N5U5BET5wmwdsnv_TTVwWwar97-q-A-7Pz4NKm-fTn6ugsPOx5MJHK-g63l5cq9R7C11HutF_0GWVMZZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+homeostasis+modulates+the+sensitivity+of+myeloma+cells+to+bortezomib&rft.jtitle=British+journal+of+haematology&rft.au=Nerini-Molteni%2C+Silvia&rft.au=Ferrarini%2C+Marina&rft.au=Cozza%2C+Sara&rft.au=Caligaris-Cappio%2C+Federico&rft.date=2008-05-01&rft.issn=1365-2141&rft.eissn=1365-2141&rft.volume=141&rft.issue=4&rft.spage=494&rft_id=info:doi/10.1111%2Fj.1365-2141.2008.07066.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1048&client=summon