Solvent-accessible surface area: How well can be applied to hot-spot detection?

ABSTRACT A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA‐based features for their ability to correlate an...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 82; no. 3; pp. 479 - 490
Main Authors Martins, João M., Ramos, Rui M., Pimenta, António C., Moreira, Irina S.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.03.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.24413

Cover

Abstract ABSTRACT A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA‐based features for their ability to correlate and differentiate hot‐ and null‐spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot‐ and null‐spots, while presenting low correlations. Residue standardization such as relSASAi or rel/resSASAi, improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa‐Based Hot‐spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Proteins 2014; 82:479–490. © 2013 Wiley Periodicals, Inc.
AbstractList ABSTRACT A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA‐based features for their ability to correlate and differentiate hot‐ and null‐spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot‐ and null‐spots, while presenting low correlations. Residue standardization such as relSASAi or rel/resSASAi, improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa‐Based Hot‐spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Proteins 2014; 82:479–490. © 2013 Wiley Periodicals, Inc.
A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as rel SASAi or rel/res SASAi , improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set.
A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as sub(rel)SASA sub(i) or sub(rel/res)SASA sub(i), improved the features as a tool to predict Delta Delta G sub(binding) values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Proteins 2014; 82:479-490. copyright 2013 Wiley Periodicals, Inc.
A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as relSASAi or rel/resSASAi, improved the features as a tool to predict [Delta][Delta]Gbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Proteins 2014; 82:479-490. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as rel SASAi or rel/res SASAi , improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set.A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as rel SASAi or rel/res SASAi , improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set.
A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA‐based features for their ability to correlate and differentiate hot‐ and null‐spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot‐ and null‐spots, while presenting low correlations. Residue standardization such as rel SASA i or rel/res SASA i , improved the features as a tool to predict ΔΔ G binding values. A new method using support machine learning algorithms was developed: SBHD (Sasa‐Based Hot‐spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Proteins 2014; 82:479–490. © 2013 Wiley Periodicals, Inc.
Author Moreira, Irina S.
Martins, João M.
Ramos, Rui M.
Pimenta, António C.
Author_xml – sequence: 1
  givenname: João M.
  surname: Martins
  fullname: Martins, João M.
  organization: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
– sequence: 2
  givenname: Rui M.
  surname: Ramos
  fullname: Ramos, Rui M.
  organization: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
– sequence: 3
  givenname: António C.
  surname: Pimenta
  fullname: Pimenta, António C.
  organization: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
– sequence: 4
  givenname: Irina S.
  surname: Moreira
  fullname: Moreira, Irina S.
  email: irina.moreira@fc.up.pt
  organization: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24105801$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1v1DAQBmALFdFty4UfgCJxQUgp49iJbS4IVbCLVLFtKR83y7EnIiUbB9th6b8nYdseKgQXW7Ked-SZOSB7ve-RkCcUjilA8XIIPh0XnFP2gCwoKJEDZXyPLEBKkbNSlvvkIMYrAKgUqx6R_YJTKCXQBVl_9N1P7FNurMUY27rDLI6hMRYzE9C8ylZ-m22x6zJr-qyeXoeha9FlyWfffMrj4FPmMKFNre9fH5GHjekiPr65D8mnd28vT1b56Xr5_uTNaW55IVlOFTeuFLRmAhk6ISsn6sJCw9EpZqyBAqQrK1U5CY0qqKIFAkXghWLUOHZInu_qTs3_GDEmvWmjnb5pevRj1LSEknEuqfw_5UpRqqSY6bN79MqPoZ8amRWv2HTwST29UWO9QaeH0G5MuNa3U53Aix2wwccYsLkjFPS8Mj2vTP9Z2YThHrZtMvMwUzBt9_cI3UW2bYfX_yiuzy7Wl7eZfJdpY8JfdxkTvutKMFHqLx-WesnhfAVfP2vBfgMnPrUr
CitedBy_id crossref_primary_10_1021_jacs_3c11717
crossref_primary_10_7717_peerj_10381
crossref_primary_10_1021_acs_jcim_8b00146
crossref_primary_10_1007_s11030_024_11022_4
crossref_primary_10_3390_ijms23062986
crossref_primary_10_1002_ange_202307092
crossref_primary_10_1016_j_csbj_2022_12_031
crossref_primary_10_3390_ijms17081215
crossref_primary_10_3390_ijms21197281
crossref_primary_10_1007_s00726_017_2474_6
crossref_primary_10_1002_anie_202307092
crossref_primary_10_1002_wcms_1602
crossref_primary_10_3390_ph17111536
crossref_primary_10_1021_ci500760m
crossref_primary_10_1080_07391102_2022_2054471
crossref_primary_10_1002_bab_2625
crossref_primary_10_1002_efd2_42
crossref_primary_10_1016_j_jmgm_2016_07_002
crossref_primary_10_1021_acs_jcim_5b00517
crossref_primary_10_1186_1471_2105_15_57
crossref_primary_10_1039_C4CP04688A
crossref_primary_10_1093_database_baab013
crossref_primary_10_1002_fft2_122
crossref_primary_10_1038_s41598_017_08321_2
crossref_primary_10_1016_j_enzmictec_2024_110552
crossref_primary_10_1021_ci500101n
Cites_doi 10.1073/pnas.0505425102
10.1002/jcc.10349
10.1002/prot.22102
10.1093/nar/gkp132
10.1186/1471-2105-11-174
10.1016/0021-9991(77)90098-5
10.1093/emboj/18.23.6610
10.1016/S0092-8674(00)80456-0
10.1073/pnas.202485799
10.1093/nar/gkm813
10.1016/S0022-2836(02)00442-4
10.1002/prot.22583
10.1073/pnas.96.3.811
10.1126/science.287.5456.1279
10.1016/S1097-2765(00)00073-3
10.1021/ct4000372
10.1063/1.445869
10.1146/annurev.biophys.30.1.211
10.1006/jmbi.1998.2247
10.1063/1.1332996
10.1002/prot.22838
10.1021/ja00124a002
10.1002/bip.360320508
10.1002/jcc.20566
10.1002/pro.5560060902
10.1093/emboj/16.17.5162
10.1002/prot.20660
10.1093/bioinformatics/btp240
10.1002/prot.340210105
10.1038/374183a0
10.1093/emboj/19.13.3179
10.1063/1.464397
10.1021/jp067096p
10.1007/s00214-006-0151-z
10.4208/cicp.300711.230911s
10.1093/nar/gkh381
10.1080/07391102.2012.758598
10.1186/1471-2105-11-244
10.1007/s00894-003-0168-3
10.1073/pnas.93.1.13
10.1002/prot.22252
10.1016/0022-2836(87)90038-6
10.1038/35563
10.1006/jmbi.1998.1669
10.1006/jmbi.1998.1843
10.1006/jmbi.1996.0629
10.1186/1471-2105-11-286
10.1002/prot.23094
10.1007/s10969-011-9108-0
10.1073/pnas.91.3.1089
10.1021/ct100578z
10.1038/328834a0
10.1021/bi00196a004
10.1016/0092-8674(94)90549-5
10.1002/prot.20033
10.1016/S0969-2126(01)00157-5
10.1002/prot.10461
10.1021/ja990935j
10.1002/prot.10085
10.1021/ar000033j
10.1186/1752-0509-5-S1-S5
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.24413
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Engineering Research Database
Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 490
ExternalDocumentID 3206458851
24105801
10_1002_prot_24413
PROT24413
ark_67375_WNG_G40QH0XV_7
Genre article
Journal Article
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4283-194ad571b37e3ed786d7b2c0f4ed93aca0208d5696d80f921912e01e042931ad3
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Tue Oct 07 09:22:49 EDT 2025
Thu Oct 02 06:51:22 EDT 2025
Tue Oct 07 05:59:59 EDT 2025
Mon Jul 21 05:22:02 EDT 2025
Wed Oct 01 01:19:00 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Wed Aug 20 07:25:13 EDT 2025
Sun Sep 21 06:18:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords feature based algorithms
hot-spot
support vector machine
solvent accessible surface area
computational alanine scanning mutagenesis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4283-194ad571b37e3ed786d7b2c0f4ed93aca0208d5696d80f921912e01e042931ad3
Notes istex:5CFF50F822D71E7B12E16FA22679A92EB9D731B0
ark:/67375/WNG-G40QH0XV-7
ArticleID:PROT24413
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24105801
PQID 1494634944
PQPubID 1016441
PageCount 12
ParticipantIDs proquest_miscellaneous_1505344818
proquest_miscellaneous_1499119878
proquest_journals_1494634944
pubmed_primary_24105801
crossref_primary_10_1002_prot_24413
crossref_citationtrail_10_1002_prot_24413
wiley_primary_10_1002_prot_24413_PROT24413
istex_primary_ark_67375_WNG_G40QH0XV_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03
March 2014
2014-03-00
2014-Mar
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 2008;73:765-783.
Guney E, Tuncbag N, Keskin O, Gursoy A. HotSprint: database of computational hot spots in protein interfaces. Nucleic Acids Res 2007;36:662-666.
Li Z, Li J. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules. Proteins 2010;78:3304-3316.
Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004;55:383-394.
Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 1994;91:1089-1093.
Cho KI, Kim D, Lee D. A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Res 2009;37:2672-2687.
Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM. Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 1997;91:695-704.
Miller S, Lesk AM, Janin J, Chothia C. The accessible surface area and stability of oligomeric proteins. Nature 1987;328:834-836.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995;117:5179-5197.
Gao Y, Wang R, Lai L. Structure-based method for analyzing protein-protein interfaces. J Mol Model 2004;10:44-54.
Moreira IS, Martins JM, Ramos MJ, Fernandes PA, Ramos MJ. Understanding the importance of the aromatic amino-acid residues as hot-spots. Biochem Biophys Acta 2013;1834:401-414.
Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ. Are hot-spots occluded from water? J Biomol Struct Dyn 2013; doi:10.1080/07391102.2012.758598.
Tuncbag N, Gursoy A, Keskin O. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 2009; 25:1513-1520.
Guharoy M, Pal A, Dasgupta M, Chakrabarti P. PRICE (PRotein Interface Conservation and Energetics): a server for the analysis of protein-protein interfaces. J Struct Funct Genomics 2011;12:33-41.
Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theor Comput 2011;7:525-537.
Liu Q, Li J. Propensity vectors of low-ASA residue pairs in the distinction of protein interactions. Proteins 2010;78:589-602.
Martins SA, Perez MAS, Moreira IS, Sousa SF, Ramos MJ, Fernandes PA. Computational alanine scanning mutagenesis: MM-PBSA vs. TI. J Chem Theor Comput 2013;9:1311-1319.
Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999;121:8133-8143.
Martins JM, Ramos RM, Moreira IS. Structural determinats of a typical leucine-rich repeat protein. Commun Comput Phys 2013;13:238-255.
Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998;280:1-9.
Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889-897.
Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996;93:13-20.
Tan S, Richmond TJ. Crystal structure of the yeast MAT alpha 2/MCM1/DNA ternary complex. Nature 1998;391:660-666.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926-935.
Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 2000;19:3179-3191.
Moreira IS, Fernandes PA, Ramos MJ. Unravelling hot spots: a comprehensive computational mutagenesis study. Theor Chem Account 2007;117:99-113.
Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 2011;79:2671-2683.
Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the MYB DNA-binding domain with cooperative recognition helices. Cell 1994;79:639-648.
Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics. J Chem Phys 2001;114:2090-2098.
DeLano WL, Ultsch MH, de Vos AM, Wells JA. Convergent solutions to binding at a protein-protein interface. Science 2000;287:1279-1283.
Buckle AM, Schreiber G, Fersht AR. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0A resolution. Biochemistry 1994;33:8878-8889.
Moreira IS, Fernandes PA, Ramos MJ. Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 2007;111:2697-2706.
Loncharich RJ, Brooks BR, Pastor RW. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers 1992;32:523-535.
Guharoy M, Chakrabarti P. Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci USA 2005;102:15447-15452.
Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis-an improved methodological approach. J Comput Chem 2007;28:644-654.
Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 1995;3:265-278.
Bahadur RP, Chakrabarti P, Rodier F, Janin J. Dissecting subunit interfaces in homodimeric proteins. Proteins 2003;53:708-719.
Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 2001;30:211-243.
Braden BC, Fields BA, Ysern X, Dall'Acqua W, Goldbaum FA, Poljak RJ, Mariuzza RA. Crystal structure of an Fv-Fv idiotope-anti-idiotope complex at 1.9 resolution. J Mol Biol 1996;264:137-151.
Papageorgiou AC, Shapiro R, Acharya KR. Molecular recognition of human angiogenin by placental ribonuclease inhibitor[mdash]an X-ray crystallographic study at 2.0 A resolution. EMBO J 1997;16:5162-5177.
Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995;374:183-186.
Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 2002;99:14116-14121.
Liang SD, Meroueh SO, Wang GC, Qiu C, Zhou YQ. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Proteins 2009;75:397-403.
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003;24:1999-2012.
Liu Q, Li J. Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinformatics 2010;11:244.
Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005;61:704-721.
Xia JF, Zhao XM, Song JN, Huang DS. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics 2010;11:174.
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 2004;32:W665-W667.
Murphy FV, Sweet RM, Churchill MEA. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J 1999;18:6610-6618.
Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977;23:327-341.
Clackson T, Ultsch MH, Wells JA, de Vos AM. Structural and functional analysis of the 1:1 growth hormone: receptor complex reveals the molecular basis for receptor affinity. J Mol Biol 1998;277:1111-1128.
Janin J. Elusive affinities. Proteins 1995;21:30-39.
Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002;320:369-387.
Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of alzheimer's amyloid β-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): Engineering of inhibitors with altered specificities. Protein Sci 1997;6:1806-1824.
Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The 2.2 angstrom structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol 1998;284:1273-1278.
Miller S, Janin J, Lesk AM, Chothia C. Interior and surface of monomeric proteins. J Mol Biol 1987;196:641-656.
Guharoy M, Chakrabarti P. Conserved residue clusters at protein-protein interfaces and their use in binding site identification. BMC Bioinformatics 2010;11:286.
Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089-10092.
Li Z, Wong L, Li J. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic cont
2010; 11
1998; 280
2000; 6
2002; 99
1999; 121
2011; 12
1996; 264
2005; 61
1977; 23
1995; 374
1997; 6
2008; 73
1998; 277
2003; 53
2007; 36
2013; 9
2007; 28
1997; 91
2004; 32
1987; 196
2002; 47
2000; 19
2013; 13
2005; 102
1999; 18
1995; 21
1994; 33
1997; 16
1994; 79
1999; 96
2000; 287
1998; 284
2010; 78
2013; 1834
2009; 25
1987; 328
1995; 117
1996; 93
2006
2011; 79
1992; 32
2011; 5
1995; 3
1983; 79
2011; 7
2004; 10
2004; 55
1998; 391
2007; 117
2009; 75
2000; 33
2007; 111
1993; 98
2002; 320
2003; 24
2013
1994; 91
2001; 30
2001; 114
2009; 37
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Moreira IS (e_1_2_5_32_1) 2013; 1834
Braden BC (e_1_2_5_35_1) 1996; 264
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – reference: Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926-935.
– reference: Braden BC, Fields BA, Ysern X, Dall'Acqua W, Goldbaum FA, Poljak RJ, Mariuzza RA. Crystal structure of an Fv-Fv idiotope-anti-idiotope complex at 1.9 resolution. J Mol Biol 1996;264:137-151.
– reference: Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 1995;3:265-278.
– reference: Liang SD, Meroueh SO, Wang GC, Qiu C, Zhou YQ. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Proteins 2009;75:397-403.
– reference: Guharoy M, Chakrabarti P. Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci USA 2005;102:15447-15452.
– reference: Martins SA, Perez MAS, Moreira IS, Sousa SF, Ramos MJ, Fernandes PA. Computational alanine scanning mutagenesis: MM-PBSA vs. TI. J Chem Theor Comput 2013;9:1311-1319.
– reference: Liu Q, Li J. Propensity vectors of low-ASA residue pairs in the distinction of protein interactions. Proteins 2010;78:589-602.
– reference: Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977;23:327-341.
– reference: Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 1994;91:1089-1093.
– reference: Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005;61:704-721.
– reference: Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theor Comput 2011;7:525-537.
– reference: DeLano WL, Ultsch MH, de Vos AM, Wells JA. Convergent solutions to binding at a protein-protein interface. Science 2000;287:1279-1283.
– reference: Schildbach JF, Karzai AW, Raumann BE, Sauer RT. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. Proc Natl Acad Sci USA 1999;96:811-817.
– reference: Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002;320:369-387.
– reference: Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004;55:383-394.
– reference: Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics. J Chem Phys 2001;114:2090-2098.
– reference: Moreira IS, Fernandes PA, Ramos MJ. Unravelling hot spots: a comprehensive computational mutagenesis study. Theor Chem Account 2007;117:99-113.
– reference: Bahadur RP, Chakrabarti P, Rodier F, Janin J. Dissecting subunit interfaces in homodimeric proteins. Proteins 2003;53:708-719.
– reference: Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of alzheimer's amyloid β-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): Engineering of inhibitors with altered specificities. Protein Sci 1997;6:1806-1824.
– reference: Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996;93:13-20.
– reference: Papageorgiou AC, Shapiro R, Acharya KR. Molecular recognition of human angiogenin by placental ribonuclease inhibitor[mdash]an X-ray crystallographic study at 2.0 A resolution. EMBO J 1997;16:5162-5177.
– reference: Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The 2.2 angstrom structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol 1998;284:1273-1278.
– reference: Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089-10092.
– reference: Li Z, Li J. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules. Proteins 2010;78:3304-3316.
– reference: Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999;121:8133-8143.
– reference: Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis-an improved methodological approach. J Comput Chem 2007;28:644-654.
– reference: Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM. Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 1997;91:695-704.
– reference: Tan S, Richmond TJ. Crystal structure of the yeast MAT alpha 2/MCM1/DNA ternary complex. Nature 1998;391:660-666.
– reference: Li Z, Wong L, Li J. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts. BMC Syst Biol 2011;5:5.
– reference: Clackson T, Ultsch MH, Wells JA, de Vos AM. Structural and functional analysis of the 1:1 growth hormone: receptor complex reveals the molecular basis for receptor affinity. J Mol Biol 1998;277:1111-1128.
– reference: Miller S, Janin J, Lesk AM, Chothia C. Interior and surface of monomeric proteins. J Mol Biol 1987;196:641-656.
– reference: Janin J. Elusive affinities. Proteins 1995;21:30-39.
– reference: Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003;24:1999-2012.
– reference: Cho KI, Kim D, Lee D. A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Res 2009;37:2672-2687.
– reference: Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the MYB DNA-binding domain with cooperative recognition helices. Cell 1994;79:639-648.
– reference: Gao Y, Wang R, Lai L. Structure-based method for analyzing protein-protein interfaces. J Mol Model 2004;10:44-54.
– reference: Moreira IS, Fernandes PA, Ramos MJ. Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 2007;111:2697-2706.
– reference: Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 2011;79:2671-2683.
– reference: Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995;117:5179-5197.
– reference: Guney E, Tuncbag N, Keskin O, Gursoy A. HotSprint: database of computational hot spots in protein interfaces. Nucleic Acids Res 2007;36:662-666.
– reference: Murphy FV, Sweet RM, Churchill MEA. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J 1999;18:6610-6618.
– reference: Martins JM, Ramos RM, Moreira IS. Structural determinats of a typical leucine-rich repeat protein. Commun Comput Phys 2013;13:238-255.
– reference: Moreira IS, Martins JM, Ramos MJ, Fernandes PA, Ramos MJ. Understanding the importance of the aromatic amino-acid residues as hot-spots. Biochem Biophys Acta 2013;1834:401-414.
– reference: Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998;280:1-9.
– reference: Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol cell 2000;6:743-750.
– reference: Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 2004;32:W665-W667.
– reference: Miller S, Lesk AM, Janin J, Chothia C. The accessible surface area and stability of oligomeric proteins. Nature 1987;328:834-836.
– reference: Guharoy M, Chakrabarti P. Conserved residue clusters at protein-protein interfaces and their use in binding site identification. BMC Bioinformatics 2010;11:286.
– reference: Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ. Are hot-spots occluded from water? J Biomol Struct Dyn 2013; doi:10.1080/07391102.2012.758598.
– reference: Loncharich RJ, Brooks BR, Pastor RW. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers 1992;32:523-535.
– reference: Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 2000;19:3179-3191.
– reference: Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 2001;30:211-243.
– reference: Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 2002;99:14116-14121.
– reference: Buckle AM, Schreiber G, Fersht AR. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0A resolution. Biochemistry 1994;33:8878-8889.
– reference: Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 2008;73:765-783.
– reference: Tuncbag N, Gursoy A, Keskin O. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 2009; 25:1513-1520.
– reference: Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995;374:183-186.
– reference: Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889-897.
– reference: Xia JF, Zhao XM, Song JN, Huang DS. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics 2010;11:174.
– reference: Guharoy M, Pal A, Dasgupta M, Chakrabarti P. PRICE (PRotein Interface Conservation and Energetics): a server for the analysis of protein-protein interfaces. J Struct Funct Genomics 2011;12:33-41.
– reference: Liu Q, Li J. Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinformatics 2010;11:244.
– reference: Chakrabarti P, Janin J. Dissecting protein-protein recognition sites. Proteins 2002;47:334-343.
– volume: 320
  start-page: 369
  year: 2002
  end-page: 387
  article-title: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations
  publication-title: J Mol Biol
– volume: 93
  start-page: 13
  year: 1996
  end-page: 20
  article-title: Principles of protein‐protein interactions
  publication-title: Proc Natl Acad Sci USA
– volume: 264
  start-page: 137
  year: 1996
  end-page: 151
  article-title: Crystal structure of an Fv‐Fv idiotope‐anti‐idiotope complex at 1.9 resolution
  publication-title: J Mol Biol
– volume: 75
  start-page: 397
  year: 2009
  end-page: 403
  article-title: Consensus scoring for enriching near‐native structures from protein‐protein docking decoys
  publication-title: Proteins
– volume: 117
  start-page: 99
  year: 2007
  end-page: 113
  article-title: Unravelling hot spots: a comprehensive computational mutagenesis study
  publication-title: Theor Chem Account
– volume: 6
  start-page: 743
  year: 2000
  end-page: 750
  article-title: Crystal structure of a ternary FGF‐FGFR‐heparin complex reveals a dual role for heparin in FGFR binding and dimerization
  publication-title: Mol cell
– volume: 391
  start-page: 660
  year: 1998
  end-page: 666
  article-title: Crystal structure of the yeast MAT alpha 2/MCM1/DNA ternary complex
  publication-title: Nature
– volume: 10
  start-page: 44
  year: 2004
  end-page: 54
  article-title: Structure‐based method for analyzing protein‐protein interfaces
  publication-title: J Mol Model
– volume: 32
  start-page: 523
  year: 1992
  end-page: 535
  article-title: Langevin dynamics of peptides: the frictional dependence of isomerization rates of N‐acetylalanyl‐N'‐methylamide
  publication-title: Biopolymers
– volume: 111
  start-page: 2697
  year: 2007
  end-page: 2706
  article-title: Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3
  publication-title: J Phys Chem B
– volume: 16
  start-page: 5162
  year: 1997
  end-page: 5177
  article-title: Molecular recognition of human angiogenin by placental ribonuclease inhibitor[mdash]an X‐ray crystallographic study at 2.0 A resolution
  publication-title: EMBO J
– volume: 28
  start-page: 644
  year: 2007
  end-page: 654
  article-title: Computational alanine scanning mutagenesis—an improved methodological approach
  publication-title: J Comput Chem
– volume: 78
  start-page: 589
  year: 2010
  end-page: 602
  article-title: Propensity vectors of low‐ASA residue pairs in the distinction of protein interactions
  publication-title: Proteins
– volume: 7
  start-page: 525
  year: 2011
  end-page: 537
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J Chem Theor Comput
– volume: 13
  start-page: 238
  year: 2013
  end-page: 255
  article-title: Structural determinats of a typical leucine‐rich repeat protein
  publication-title: Commun Comput Phys
– year: 2013
  article-title: Are hot‐spots occluded from water?
  publication-title: J Biomol Struct Dyn
– volume: 277
  start-page: 1111
  year: 1998
  end-page: 1128
  article-title: Structural and functional analysis of the 1:1 growth hormone: receptor complex reveals the molecular basis for receptor affinity
  publication-title: J Mol Biol
– volume: 280
  start-page: 1
  year: 1998
  end-page: 9
  article-title: Anatomy of hot spots in protein interfaces
  publication-title: J Mol Biol
– volume: 114
  start-page: 2090
  year: 2001
  end-page: 2098
  article-title: Langevin stabilization of molecular dynamics
  publication-title: J Chem Phys
– volume: 47
  start-page: 334
  year: 2002
  end-page: 343
  article-title: Dissecting protein‐protein recognition sites
  publication-title: Proteins
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  article-title: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n‐alkanes
  publication-title: J Comput Phys
– volume: 3
  start-page: 265
  year: 1995
  end-page: 278
  article-title: Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG
  publication-title: Structure
– volume: 11
  start-page: 244
  year: 2010
  article-title: Protein binding hot spots and the residue‐residue pairing preference: a water exclusion perspective
  publication-title: BMC Bioinformatics
– volume: 21
  start-page: 30
  year: 1995
  end-page: 39
  article-title: Elusive affinities
  publication-title: Proteins
– volume: 99
  start-page: 14116
  year: 2002
  end-page: 14121
  article-title: A simple physical model for binding energy hot spots in protein‐protein complexes
  publication-title: Proc Natl Acad Sci USA
– volume: 78
  start-page: 3304
  year: 2010
  end-page: 3316
  article-title: Geometrically centered region: a “wet” model of protein binding hot spots not excluding water molecules
  publication-title: Proteins
– volume: 53
  start-page: 708
  year: 2003
  end-page: 719
  article-title: Dissecting subunit interfaces in homodimeric proteins
  publication-title: Proteins
– volume: 5
  start-page: 5
  year: 2011
  article-title: DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts
  publication-title: BMC Syst Biol
– volume: 61
  start-page: 704
  year: 2005
  end-page: 721
  article-title: Very fast empirical prediction and rationalization of protein pKa values
  publication-title: Proteins
– volume: 73
  start-page: 765
  year: 2008
  end-page: 783
  article-title: Very fast prediction and rationalization of pKa values for protein–ligand complexes
  publication-title: Proteins
– volume: 374
  start-page: 183
  year: 1995
  end-page: 186
  article-title: A structural basis of the interactions between leucine‐rich repeats and protein ligands
  publication-title: Nature
– volume: 287
  start-page: 1279
  year: 2000
  end-page: 1283
  article-title: Convergent solutions to binding at a protein‐protein interface
  publication-title: Science
– volume: 11
  start-page: 174
  year: 2010
  article-title: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility
  publication-title: BMC Bioinformatics
– volume: 18
  start-page: 6610
  year: 1999
  end-page: 6618
  article-title: The structure of a chromosomal high mobility group protein‐DNA complex reveals sequence‐neutral mechanisms important for non‐sequence‐specific DNA recognition
  publication-title: EMBO J
– volume: 79
  start-page: 2671
  year: 2011
  end-page: 2683
  article-title: KFC2: a knowledge‐based hot spot prediction method based on interface solvation, atomic density, and plasticity features
  publication-title: Proteins
– volume: 11
  start-page: 286
  year: 2010
  article-title: Conserved residue clusters at protein‐protein interfaces and their use in binding site identification
  publication-title: BMC Bioinformatics
– volume: 328
  start-page: 834
  year: 1987
  end-page: 836
  article-title: The accessible surface area and stability of oligomeric proteins
  publication-title: Nature
– volume: 1834
  start-page: 401
  year: 2013
  end-page: 414
  article-title: Understanding the importance of the aromatic amino‐acid residues as hot‐spots
  publication-title: Biochem Biophys Acta
– volume: 117
  start-page: 5179
  year: 1995
  end-page: 5197
  article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
  publication-title: J Am Chem Soc
– volume: 36
  start-page: 662
  year: 2007
  end-page: 666
  article-title: HotSprint: database of computational hot spots in protein interfaces
  publication-title: Nucleic Acids Res
– volume: 25
  start-page: 1513
  year: 2009
  end-page: 1520
  article-title: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter‐residue potentials improves the accuracy
  publication-title: Bioinformatics
– volume: 91
  start-page: 695
  year: 1997
  end-page: 704
  article-title: Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt‐1 receptor
  publication-title: Cell
– volume: 102
  start-page: 15447
  year: 2005
  end-page: 15452
  article-title: Conservation and relative importance of residues across protein‐protein interfaces
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 3179
  year: 2000
  end-page: 3191
  article-title: The bacterial cell‐division protein ZipA and its interaction with an FtsZ fragment revealed by X‐ray crystallography
  publication-title: EMBO J
– volume: 32
  start-page: W665
  year: 2004
  end-page: W667
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson‐Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Research
– volume: 196
  start-page: 641
  year: 1987
  end-page: 656
  article-title: Interior and surface of monomeric proteins
  publication-title: J Mol Biol
– volume: 33
  start-page: 8878
  year: 1994
  end-page: 8889
  article-title: Protein‐protein recognition: crystal structural analysis of a barnase‐barstar complex at 2.0A resolution
  publication-title: Biochemistry
– volume: 12
  start-page: 33
  year: 2011
  end-page: 41
  article-title: PRICE (PRotein Interface Conservation and Energetics): a server for the analysis of protein‐protein interfaces
  publication-title: J Struct Funct Genomics
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  article-title: Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems
  publication-title: J Chem Phys
– volume: 284
  start-page: 1273
  year: 1998
  end-page: 1278
  article-title: The 2.2 angstrom structure of a permanganate‐sensitive DNA site bound by the Epstein‐Barr virus origin binding protein, EBNA1
  publication-title: J Mol Biol
– volume: 55
  start-page: 383
  year: 2004
  end-page: 394
  article-title: Exploring protein native states and large‐scale conformational changes with a modified generalized born model
  publication-title: Proteins
– volume: 6
  start-page: 1806
  year: 1997
  end-page: 1824
  article-title: Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of alzheimer's amyloid β‐protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): Engineering of inhibitors with altered specificities
  publication-title: Protein Sci
– volume: 24
  start-page: 1999
  year: 2003
  end-page: 2012
  article-title: A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations
  publication-title: J Comput Chem
– year: 2006
– volume: 9
  start-page: 1311
  year: 2013
  end-page: 1319
  article-title: Computational alanine scanning mutagenesis: MM‐PBSA vs
  publication-title: TI. J Chem Theor Comput
– volume: 91
  start-page: 1089
  year: 1994
  end-page: 1093
  article-title: Bound water molecules and conformational stabilization help mediate an antigen‐antibody association
  publication-title: Proc Natl Acad Sci USA
– volume: 79
  start-page: 639
  year: 1994
  end-page: 648
  article-title: Solution structure of a specific DNA complex of the MYB DNA‐binding domain with cooperative recognition helices
  publication-title: Cell
– volume: 121
  start-page: 8133
  year: 1999
  end-page: 8143
  article-title: Computational alanine scanning to probe protein‐protein interactions: a novel approach to evaluate binding free energies
  publication-title: J Am Chem Soc
– volume: 96
  start-page: 811
  year: 1999
  end-page: 817
  article-title: Origins of DNA‐binding specificity: role of protein contacts with the DNA backbone
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 211
  year: 2001
  end-page: 243
  article-title: Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein‐ligand, protein‐protein, and protein‐nucleic acid noncovalent interactions
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 37
  start-page: 2672
  year: 2009
  end-page: 2687
  article-title: A feature‐based approach to modeling protein‐protein interaction hot spots
  publication-title: Nucleic Acids Res
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
– volume: 33
  start-page: 889
  year: 2000
  end-page: 897
  article-title: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models
  publication-title: Acc Chem Res
– ident: e_1_2_5_17_1
  doi: 10.1073/pnas.0505425102
– ident: e_1_2_5_55_1
  doi: 10.1002/jcc.10349
– ident: e_1_2_5_50_1
  doi: 10.1002/prot.22102
– ident: e_1_2_5_64_1
  doi: 10.1093/nar/gkp132
– ident: e_1_2_5_22_1
  doi: 10.1186/1471-2105-11-174
– ident: e_1_2_5_61_1
  doi: 10.1016/0021-9991(77)90098-5
– ident: e_1_2_5_47_1
  doi: 10.1093/emboj/18.23.6610
– ident: e_1_2_5_38_1
  doi: 10.1016/S0092-8674(00)80456-0
– ident: e_1_2_5_15_1
  doi: 10.1073/pnas.202485799
– ident: e_1_2_5_16_1
  doi: 10.1093/nar/gkm813
– ident: e_1_2_5_14_1
  doi: 10.1016/S0022-2836(02)00442-4
– ident: e_1_2_5_23_1
  doi: 10.1002/prot.22583
– ident: e_1_2_5_45_1
  doi: 10.1073/pnas.96.3.811
– ident: e_1_2_5_5_1
  doi: 10.1126/science.287.5456.1279
– ident: e_1_2_5_39_1
  doi: 10.1016/S1097-2765(00)00073-3
– ident: e_1_2_5_9_1
  doi: 10.1021/ct4000372
– ident: e_1_2_5_57_1
  doi: 10.1063/1.445869
– ident: e_1_2_5_8_1
  doi: 10.1146/annurev.biophys.30.1.211
– ident: e_1_2_5_44_1
  doi: 10.1006/jmbi.1998.2247
– ident: e_1_2_5_60_1
  doi: 10.1063/1.1332996
– ident: e_1_2_5_20_1
  doi: 10.1002/prot.22838
– ident: e_1_2_5_54_1
  doi: 10.1021/ja00124a002
– ident: e_1_2_5_59_1
  doi: 10.1002/bip.360320508
– ident: e_1_2_5_13_1
  doi: 10.1002/jcc.20566
– ident: e_1_2_5_43_1
  doi: 10.1002/pro.5560060902
– ident: e_1_2_5_41_1
  doi: 10.1093/emboj/16.17.5162
– ident: e_1_2_5_51_1
  doi: 10.1002/prot.20660
– ident: e_1_2_5_26_1
  doi: 10.1093/bioinformatics/btp240
– ident: e_1_2_5_2_1
  doi: 10.1002/prot.340210105
– ident: e_1_2_5_36_1
  doi: 10.1038/374183a0
– ident: e_1_2_5_37_1
  doi: 10.1093/emboj/19.13.3179
– ident: e_1_2_5_58_1
  doi: 10.1063/1.464397
– ident: e_1_2_5_31_1
  doi: 10.1021/jp067096p
– ident: e_1_2_5_12_1
  doi: 10.1007/s00214-006-0151-z
– ident: e_1_2_5_30_1
  doi: 10.4208/cicp.300711.230911s
– ident: e_1_2_5_49_1
  doi: 10.1093/nar/gkh381
– ident: e_1_2_5_33_1
  doi: 10.1080/07391102.2012.758598
– ident: e_1_2_5_21_1
  doi: 10.1186/1471-2105-11-244
– ident: e_1_2_5_7_1
  doi: 10.1007/s00894-003-0168-3
– ident: e_1_2_5_3_1
  doi: 10.1073/pnas.93.1.13
– ident: e_1_2_5_29_1
  doi: 10.1002/prot.22252
– ident: e_1_2_5_62_1
  doi: 10.1016/0022-2836(87)90038-6
– ident: e_1_2_5_48_1
  doi: 10.1038/35563
– ident: e_1_2_5_53_1
– ident: e_1_2_5_4_1
  doi: 10.1006/jmbi.1998.1669
– ident: e_1_2_5_6_1
  doi: 10.1006/jmbi.1998.1843
– volume: 264
  start-page: 137
  year: 1996
  ident: e_1_2_5_35_1
  article-title: Crystal structure of an Fv‐Fv idiotope‐anti‐idiotope complex at 1.9 resolution
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0629
– ident: e_1_2_5_18_1
  doi: 10.1186/1471-2105-11-286
– ident: e_1_2_5_25_1
  doi: 10.1002/prot.23094
– ident: e_1_2_5_19_1
  doi: 10.1007/s10969-011-9108-0
– ident: e_1_2_5_40_1
  doi: 10.1073/pnas.91.3.1089
– ident: e_1_2_5_52_1
  doi: 10.1021/ct100578z
– ident: e_1_2_5_63_1
  doi: 10.1038/328834a0
– ident: e_1_2_5_34_1
  doi: 10.1021/bi00196a004
– ident: e_1_2_5_46_1
  doi: 10.1016/0092-8674(94)90549-5
– ident: e_1_2_5_56_1
  doi: 10.1002/prot.20033
– ident: e_1_2_5_42_1
  doi: 10.1016/S0969-2126(01)00157-5
– volume: 1834
  start-page: 401
  year: 2013
  ident: e_1_2_5_32_1
  article-title: Understanding the importance of the aromatic amino‐acid residues as hot‐spots
  publication-title: Biochem Biophys Acta
– ident: e_1_2_5_27_1
  doi: 10.1002/prot.10461
– ident: e_1_2_5_11_1
  doi: 10.1021/ja990935j
– ident: e_1_2_5_28_1
  doi: 10.1002/prot.10085
– ident: e_1_2_5_10_1
  doi: 10.1021/ar000033j
– ident: e_1_2_5_24_1
  doi: 10.1186/1752-0509-5-S1-S5
SSID ssj0006936
Score 2.2849035
Snippet ABSTRACT A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is...
A detailed comprehension of protein‐based interfaces is essential for the rational drug development. One of the key features of these interfaces is their...
A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 479
SubjectTerms Bioinformatics
computational alanine scanning mutagenesis
Computational Biology - methods
Databases, Protein
feature based algorithms
hot-spot
Molecular Dynamics Simulation
Proteins - chemistry
solvent accessible surface area
Solvents
Solvents - chemistry
Support Vector Machine
Surface area
Surface Properties
Thermodynamics
Title Solvent-accessible surface area: How well can be applied to hot-spot detection?
URI https://api.istex.fr/ark:/67375/WNG-G40QH0XV-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24413
https://www.ncbi.nlm.nih.gov/pubmed/24105801
https://www.proquest.com/docview/1494634944
https://www.proquest.com/docview/1499119878
https://www.proquest.com/docview/1505344818
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KRfRLq60v21aJKAWFvW422c1GBKnF9hCs2jfvi4Qkm6PSc1fu9qj6yZ_gb_SXmJfbPSqloN-W3QkkmUzmmezkGYAnWElGMpLGxnAeUyKLWJZGx0mqM0YlU8pfpH27n_eP6ZtBNliAF-1dmMAP0R24Ocvw-7UzcKkmW3PSUMdj0LPOyZesxST38dTBnDsq574-YLAiC4o7btJ0a970gje65ib222VQ8yJy9a5ndxk-tZ0OGSdnvWmjevrHX3yO_zuqW7A0w6RoOyyi27BgqhVY3a5sPP7lO9pEPkvUH7-vwPVX7dONnbZW3CocHtYjlzj5--cv6SswflYjgybT8VBqg6QFps9Rvz5H7qQQWWUiZd8G_IuaGp3WrqUNsBtUmsYnh1Uv78Dx7uujnX48K9cQa8faFmNOZZkxrAgzxJSsyEumUp0MqSk5kVq6eqBllvO8LJIht1slTk2CjXOJBMuS3IXFqq7MfUCOw3-os0RzrCnlihuc2thQ88Qolessgqet2oSecZm7khojEViYU-HmUfh5jOBxJ_s1MHhcKrXptd-JyPGZy3ljmfi4vyf2aPKhnwxOBItgo10eYmbuExs_cZo7oh8awaPus9WB-_siK1NPvYx1LLxgxRUyFo8SGzBjK3MvLL2uQ6lLyLV4IoJnfgFdMRjx_uDdkX9a-xfhdbhp4SANGXYbsNiMp-aBhVyNeuhN6w8fBycY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVQK1ReCrRcAgWMQJVAyjYXJ455QaWiDdAu0G5h3yzb8aqoS4J2s-LyxCfwjXwJM042q6KqErxZyViKL-M5MxmfIeRxqBWPkzjyrRXCZ7HKfFVY4weRSThTXGt3kfagn-bH7PUwGba5OXgXpuGH6AJuqBnuvEYFx4D01oI1FIkMemCdsGbtMkvBUUFMdLhgj0qFqxDY6BHA4o6dNNpa9D1jj5Zxar-dBzbPYldnfHavNhVWp46zEHNOTnuzWvfMj78YHf97XNfIagtL6Xazj66TS7ZcI-vbJbjkn7_TTeoSRV0Efo1cfjFvrezMy8Wtk6Ojaoy5k79__lKuCOMnPbZ0OpuMlLFUATZ9RvPqK8VgIYX1pBqeNhCY1hU9qbAn-Ng1LWzt8sPK5zfI8e7LwU7utxUbfIPEbX4omCoSHuqY29gWPEsLriMTjJgtRKyMwpKgRZKKtMiCkYDTMoxsEFq0inGoivgmWSqr0t4mFGn8RyYJjAgNY0ILG0bgHhoRWK1Tk3jkyXzdpGnpzLGqxlg2RMyRxHmUbh498qiT_dKQeJwrtemWvxNRk1NMe-OJ_Njfk3sseJ8Hww-Se2Rjvj9kq_FTcKEES5Hrh3nkYfca1gB_wKjSVjMnA7ZFZDy7QAYgaQw-cwgyt5q9131QhDm5ACk88tTtoAsGI98dvh241p1_EX5AVvLBwb7cf9V_c5dcAXTImoS7DbJUT2b2HiCwWt93evYHiNArOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLVQK5YXlpYlUMAIVAmkTOPEiWNeUGmZDttQusC8Wd4iUIekmsmI5YlP4Bv5EnydTEZFVSV4i5JrKbF9fc91js9F6BFRkiVpEofWch7SROahNFaHUaxTRiVTyh-kfTvMBof01SgdtdwcOAvT6EN0G27gGX69Bge3x6bYWKiGgpBBz0UnqFm7TFOeA6Nve2-hHpVxXyGw8SMHizt10nhj0fZEPFqGrv12Gtg8iV198OlfaSqsTr1mIXBOjnqzWvX0j78UHf_7u66iyy0sxZvNPLqGztlyBa1uli4l__Idr2NPFPU78Cvo_PP51cWtebm4VbS_X42BO_n75y_pizB-VmOLp7NJIbXF0mHTp3hQfcWwWYjdeGLl7jYQGNcV_lRBS5dj19jY2vPDymfX0WH_xcHWIGwrNoQahNtCwqk0KSMqYTaxhuWZYSrWUUGt4YnUEkqCmjTjmcmjgrvVksQ2IhaiYkKkSW6gpbIq7S2EQca_0GmkOdGUcsUtiV16qHlklcp0GqDH83ETupUzh6oaY9EIMccC-lH4fgzQw872uBHxONVq3Q9_ZyInR0B7Y6n4ONwROzR6P4hGHwQL0Np8fojW46cuheI0A60fGqAH3WM3BvADRpa2mnkbF1t4zvIzbBwkTVzOTJzNzWbudS8UAyfXQYoAPfEz6IyPEbt77w781e1_Mb6PLuxu98Wbl8PXd9AlBw5pw7dbQ0v1ZGbvOgBWq3vezf4A9nEqvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent%E2%80%90accessible+surface+area%3A+How+well+can+be+applied+to+hot%E2%80%90spot+detection%3F&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Martins%2C+Jo%C3%A3o+M.&rft.au=Ramos%2C+Rui+M.&rft.au=Pimenta%2C+Ant%C3%B3nio+C.&rft.au=Moreira%2C+Irina+S.&rft.date=2014-03-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=82&rft.issue=3&rft.spage=479&rft.epage=490&rft_id=info:doi/10.1002%2Fprot.24413&rft.externalDBID=10.1002%252Fprot.24413&rft.externalDocID=PROT24413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon