Constructal design and optimization of a direct contact humidification–dehumidification desalination unit
This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To ana...
Saved in:
Published in | Desalination Vol. 293; pp. 69 - 77 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0011-9164 1873-4464 |
DOI | 10.1016/j.desal.2012.02.025 |
Cover
Abstract | This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption.
► A direct contact humidification–dehumidification desalination unit is modeled and analyzed. ► The constructal theory is incorporated with mathematical modeling to optimize the proposed unit. ► The Genetic Algorithm and Lagrange multiplier methods are used to optimize the fresh water production rate. ► All design parameters change in proportion with the water inlet temperatures of the dehumidifier and humidifier. ► The water to air mass flow rate ratio (saline and fresh water) significantly affects on the main design parameters. ► Recycling ratio is found as an effective way for declining the energy consumption of unit. |
---|---|
AbstractList | This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption. This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption. ► A direct contact humidification–dehumidification desalination unit is modeled and analyzed. ► The constructal theory is incorporated with mathematical modeling to optimize the proposed unit. ► The Genetic Algorithm and Lagrange multiplier methods are used to optimize the fresh water production rate. ► All design parameters change in proportion with the water inlet temperatures of the dehumidifier and humidifier. ► The water to air mass flow rate ratio (saline and fresh water) significantly affects on the main design parameters. ► Recycling ratio is found as an effective way for declining the energy consumption of unit. |
Author | Amidpour, Majid Mehrgoo, Morteza |
Author_xml | – sequence: 1 givenname: Morteza surname: Mehrgoo fullname: Mehrgoo, Morteza – sequence: 2 givenname: Majid surname: Amidpour fullname: Amidpour, Majid email: amidpour@kntu.ac.ir |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26079521$$DView record in Pascal Francis |
BookMark | eNqFkc2KFDEQx4Os4OzsPoEH-yJ46bGSdKe7Dx5k8AsWPOzuOdTkY83Yk4xJekFPvoNv6JOYnl4EPSgUFBV-_6p_qs7JmQ_eEPKUwoYCFS_3G20SjhsGlG1gjvYRWdG-43XTiOaMrAAorQcqmifkPKV9KdnA-Yp83gafcpxUxrEqTdydr9DrKhyzO7hvmF3wVbAVVtpFo3Klgs9Y8qfp4LSzTp2Qn99_aPPnU3Wy5PxSTN7lC_LY4pjM5UNek9u3b2627-urj-8-bF9f1aphXa4tMyi0tcAt6F3TdVQosTMAO973IBq6E1rYFjW1DIGZDm3LZ9LawbIe-Zq8WPoeY_gymZTlwSVlxhG9CVOSVAguWAtlAWvy_AHFpHC0Eb1ySR6jO2D8KpmAbmgZLRxfOBVDStHY3wgFOZ9A7uXpv3I-gYQ52qIa_lIpl0_7yBHd-B_ts0VrMUi8i8XV7XUBWgAYiqu-EK8WwpRd3jsTZVLOeGWWS0kd3D8n_AKTObJL |
CODEN | DSLNAH |
CitedBy_id | crossref_primary_10_1016_j_rser_2024_115313 crossref_primary_10_1016_j_egypro_2017_12_166 crossref_primary_10_1007_s10668_021_01696_3 crossref_primary_10_1016_j_applthermaleng_2020_116433 crossref_primary_10_1016_j_enconman_2019_112016 crossref_primary_10_5004_dwt_2023_29516 crossref_primary_10_1016_j_desal_2018_04_001 crossref_primary_10_1016_j_energy_2019_03_005 crossref_primary_10_5004_dwt_2019_23476 crossref_primary_10_1051_matecconf_202033001027 crossref_primary_10_1016_j_enconman_2022_115520 crossref_primary_10_5004_dwt_2019_23415 crossref_primary_10_1016_j_desal_2015_08_006 crossref_primary_10_1016_j_desal_2018_07_033 crossref_primary_10_1016_j_ijthermalsci_2017_05_027 crossref_primary_10_1016_j_desal_2020_114456 crossref_primary_10_1016_j_jclepro_2019_04_140 crossref_primary_10_1016_j_enconman_2018_06_008 crossref_primary_10_1016_j_rser_2015_12_108 crossref_primary_10_1016_j_icheatmasstransfer_2024_108546 crossref_primary_10_1016_j_energy_2017_02_046 crossref_primary_10_1007_s12206_016_0143_4 crossref_primary_10_1016_j_applthermaleng_2022_119536 crossref_primary_10_1016_j_applthermaleng_2017_04_144 crossref_primary_10_1016_j_desal_2015_12_023 crossref_primary_10_1016_j_enconman_2018_10_044 crossref_primary_10_1016_j_enconman_2019_04_038 crossref_primary_10_1061__ASCE_EY_1943_7897_0000554 crossref_primary_10_3390_w14223681 crossref_primary_10_1016_j_egypro_2016_11_196 crossref_primary_10_5004_dwt_2019_23668 crossref_primary_10_1016_j_desal_2019_06_003 crossref_primary_10_1016_j_enconman_2018_01_048 crossref_primary_10_1016_j_desal_2018_04_016 crossref_primary_10_1016_j_desal_2022_116029 crossref_primary_10_1007_s40333_021_0063_8 crossref_primary_10_1016_j_cherd_2017_06_004 crossref_primary_10_1016_j_enconman_2015_02_082 |
Cites_doi | 10.1016/j.desal.2005.03.039 10.1016/j.energy.2010.11.041 10.1242/jeb.01974 10.1016/S0196-8904(99)00017-5 10.1016/0950-4214(89)80016-7 10.1016/j.apenergy.2006.04.006 10.1016/j.desal.2011.07.067 10.1016/j.desal.2008.01.023 10.1016/j.ijheatmasstransfer.2009.09.026 10.1016/S0196-8904(02)00096-1 10.1016/j.desal.2005.02.047 10.1016/j.cej.2008.04.030 10.1016/j.desal.2006.03.550 10.1016/S1359-4311(02)00031-5 10.1016/S0011-9164(04)00171-7 10.1016/j.desal.2010.12.011 10.1016/j.ijheatmasstransfer.2004.02.025 10.1016/S0017-9310(02)00165-5 10.1016/j.ijheatmasstransfer.2008.09.007 10.1016/j.ijheatmasstransfer.2005.10.037 10.1016/S0011-9164(02)00994-3 10.1016/j.ijthermalsci.2006.05.002 10.1016/S0011-9164(99)00046-6 10.1016/j.desal.2008.03.009 10.1016/j.ijheatmasstransfer.2010.05.050 10.1016/j.ijheatmasstransfer.2004.03.022 10.1002/er.1694 10.1016/j.enbuild.2007.08.005 10.1016/j.ijheatmasstransfer.2008.10.021 10.1016/S0378-4371(98)00085-5 10.1016/j.desal.2008.01.024 10.1016/j.desal.2008.11.015 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.desal.2012.02.025 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-4464 |
EndPage | 77 |
ExternalDocumentID | 26079521 10_1016_j_desal_2012_02_025 US201500090798 S0011916412001269 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SST SSZ T5K ~02 ~G- 29F 6TJ AAQXK ABEFU ABPIF ABPTK ABTAH ASPBG AVWKF AZFZN BBWZM FBQ FEDTE FGOYB HLY HVGLF NDZJH R2- SCE SEW WUQ ZY4 ~KM AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c427t-f2ea6dff03f0db47716c6be00b3880641b6d6f5ad1f2a02e7af530db4ff9f28a3 |
IEDL.DBID | .~1 |
ISSN | 0011-9164 |
IngestDate | Sat Sep 27 22:09:43 EDT 2025 Mon Jul 21 09:16:05 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Tue Jul 01 04:13:33 EDT 2025 Wed Dec 27 19:32:21 EST 2023 Fri Feb 23 02:34:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Humidification–dehumidification Direct contact Desalination Constructal theory System architecture Energy consumption Dehumidification Humidification-dehumidification Modeling Hot water Optimization Design Air flow Genetic algorithm Production Humidification Recycling |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-f2ea6dff03f0db47716c6be00b3880641b6d6f5ad1f2a02e7af530db4ff9f28a3 |
Notes | http://dx.doi.org/10.1016/j.desal.2012.02.025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663625093 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1663625093 pascalfrancis_primary_26079521 crossref_primary_10_1016_j_desal_2012_02_025 crossref_citationtrail_10_1016_j_desal_2012_02_025 fao_agris_US201500090798 elsevier_sciencedirect_doi_10_1016_j_desal_2012_02_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Desalination |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Muzychka (bb0040) 2007; 46 Arion, Cojocari, Bejan (bb0070) 2003; 44 Bejan (bb0030) 2004; 47 Bejan, Marden (bb0085) 2006; 209 Zamen, Amidpour, Soufari (bb0135) 2009; 239 Wu, Chen, Sun (bb0055) 2007; 84 Azoumah, Mazet, Neveu (bb0065) 2004; 47 Mehrgoo, Amidpour (bb0100) 2011; 281 Yuan, Zhang (bb0115) 2007; 156 Reis, Bejan (bb0075) 2006; 49 Bejan, Ledezma (bb0080) 1998; A 255 Hou, Ye, Zhang (bb0110) 2005; 183 Vahdat Azad, Amidpour (bb0045) 2011; 36 Bejan, Lorente (bb0005) 2008 Eslamimanesh, Hatamipour (bb0145) 2010; 250 Miguel (bb0025) 2008; 40 Eslamimanesh, Hatamipour (bb0140) 2009; 237 Hashemifard, Azin (bb0175) 2004; 164 Muller-Holst, Engelhardt, Scholkopf (bb0120) 1999; 122 Van Wylen, Sonntag, Borgnakke (bb0160) 2003 Kim, Lorente, Bejan (bb0010) 2011; 35 Kim, Lorente, Bejan (bb0015) 2009; 52 Lorenzini, Oliveira Rocha (bb0020) 2009; 52 Stichlmair, Bravo, Fair (bb0155) 1989; 3 Al-Sahali, Ettouney (bb0165) 2008; 143 Koonsrisuk, Lorente, Bejan (bb0060) 2010; 57 Nawayseh, Farid, Omar, Sabirin (bb0125) 1999; 40 Ravindran, Ragsdell, Reklaitis (bb0170) 2006 Soufari, Zamen, Amidpour (bb0130) 2009; 237 Ettouney (bb0105) 2005; 183 Mehrgoo, Amidpour (bb0095) 2011; 271 Bejan (bb0035) 2002; 45 Fan, Wang (bb0050) 2010; 53 Farid, Parekh, Selman, Al-Hallaj (bb0090) 2002; 151 Gandhidasan (bb0150) 2002; 22 Bejan (10.1016/j.desal.2012.02.025_bb0005) 2008 Farid (10.1016/j.desal.2012.02.025_bb0090) 2002; 151 Mehrgoo (10.1016/j.desal.2012.02.025_bb0100) 2011; 281 Muller-Holst (10.1016/j.desal.2012.02.025_bb0120) 1999; 122 Wu (10.1016/j.desal.2012.02.025_bb0055) 2007; 84 Al-Sahali (10.1016/j.desal.2012.02.025_bb0165) 2008; 143 Ettouney (10.1016/j.desal.2012.02.025_bb0105) 2005; 183 Van Wylen (10.1016/j.desal.2012.02.025_bb0160) 2003 Ravindran (10.1016/j.desal.2012.02.025_bb0170) 2006 Muzychka (10.1016/j.desal.2012.02.025_bb0040) 2007; 46 Kim (10.1016/j.desal.2012.02.025_bb0015) 2009; 52 Bejan (10.1016/j.desal.2012.02.025_bb0030) 2004; 47 Koonsrisuk (10.1016/j.desal.2012.02.025_bb0060) 2010; 57 Hashemifard (10.1016/j.desal.2012.02.025_bb0175) 2004; 164 Azoumah (10.1016/j.desal.2012.02.025_bb0065) 2004; 47 Fan (10.1016/j.desal.2012.02.025_bb0050) 2010; 53 Bejan (10.1016/j.desal.2012.02.025_bb0085) 2006; 209 Eslamimanesh (10.1016/j.desal.2012.02.025_bb0140) 2009; 237 Lorenzini (10.1016/j.desal.2012.02.025_bb0020) 2009; 52 Miguel (10.1016/j.desal.2012.02.025_bb0025) 2008; 40 Gandhidasan (10.1016/j.desal.2012.02.025_bb0150) 2002; 22 Eslamimanesh (10.1016/j.desal.2012.02.025_bb0145) 2010; 250 Arion (10.1016/j.desal.2012.02.025_bb0070) 2003; 44 Mehrgoo (10.1016/j.desal.2012.02.025_bb0095) 2011; 271 Soufari (10.1016/j.desal.2012.02.025_bb0130) 2009; 237 Bejan (10.1016/j.desal.2012.02.025_bb0080) 1998; A 255 Hou (10.1016/j.desal.2012.02.025_bb0110) 2005; 183 Vahdat Azad (10.1016/j.desal.2012.02.025_bb0045) 2011; 36 Yuan (10.1016/j.desal.2012.02.025_bb0115) 2007; 156 Kim (10.1016/j.desal.2012.02.025_bb0010) 2011; 35 Reis (10.1016/j.desal.2012.02.025_bb0075) 2006; 49 Nawayseh (10.1016/j.desal.2012.02.025_bb0125) 1999; 40 Stichlmair (10.1016/j.desal.2012.02.025_bb0155) 1989; 3 Bejan (10.1016/j.desal.2012.02.025_bb0035) 2002; 45 Zamen (10.1016/j.desal.2012.02.025_bb0135) 2009; 239 |
References_xml | – volume: 84 start-page: 39 year: 2007 end-page: 47 ident: bb0055 article-title: Heat-conduction optimization based on constructal theory publication-title: Appl. Energy – volume: A 255 start-page: 211 year: 1998 end-page: 217 ident: bb0080 article-title: Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point publication-title: Physica – volume: 237 start-page: 305 year: 2009 end-page: 317 ident: bb0130 article-title: Performance optimization of the humidification–dehumidification desalination process using mathematical programming publication-title: Desalination – year: 2008 ident: bb0005 article-title: Design with Constructal Theory – volume: 183 start-page: 143 year: 2005 end-page: 149 ident: bb0110 article-title: Performance optimization of solar humidification–dehumidification desalination process using pinch technology publication-title: Desalination – year: 2003 ident: bb0160 article-title: Fundamentals of Thermodynamics – volume: 52 start-page: 1458 year: 2009 end-page: 1463 ident: bb0020 article-title: Constructal design of T–Y assembly of fins for an optimized heat removal publication-title: Int. J. Heat Mass Transfer – volume: 40 start-page: 1020 year: 2008 end-page: 1030 ident: bb0025 article-title: Constructal design of solar energy-based systems for buildings publication-title: Energy Build. – volume: 47 start-page: 3073 year: 2004 end-page: 3083 ident: bb0030 article-title: Designed porous media: maximal heat transfer density at decreasing length scales publication-title: Int. J. Heat Mass Transfer – volume: 151 start-page: 153 year: 2002 end-page: 164 ident: bb0090 article-title: Solar desalination with a humidification–dehumidification cycle: mathematical modeling of the unit publication-title: Desalination – volume: 271 start-page: 62 year: 2011 end-page: 71 ident: bb0095 article-title: Constructal design of humidification–dehumidification desalination unit architecture publication-title: Desalination – volume: 44 start-page: 867 year: 2003 end-page: 891 ident: bb0070 article-title: Integral measures of electric power distribution networks: load–length curves and line-network multipliers publication-title: Energy Convers. Manage. – volume: 35 start-page: 336 year: 2011 end-page: 345 ident: bb0010 article-title: Steam generator structure: continuous model and constructal design publication-title: Energy Res. – volume: 209 start-page: 238 year: 2006 end-page: 248 ident: bb0085 article-title: Unifying constructal theory for scale effects in running, swimming and flying publication-title: J. Exp. Biol. – volume: 143 start-page: 257 year: 2008 end-page: 264 ident: bb0165 article-title: Humidification–dehumidification desalination process: design and performance evaluation publication-title: Chem. Eng. J. – volume: 45 start-page: 4607 year: 2002 end-page: 4620 ident: bb0035 article-title: Dendritic constructal heat exchanger with small-scale cross-flows and larger-scales counter flows publication-title: Int. J. Heat Mass Transfer – volume: 40 start-page: 1441 year: 1999 end-page: 1461 ident: bb0125 article-title: Solar desalination based on humidification process: II. Computer simulation publication-title: Energy Convers. Manage. – volume: 239 start-page: 92 year: 2009 end-page: 99 ident: bb0135 article-title: Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming publication-title: Desalination – volume: 53 start-page: 4238 year: 2010 end-page: 4247 ident: bb0050 article-title: Constructal design of nanofluids publication-title: Int. J. Heat Mass Transfer – volume: 47 start-page: 2961 year: 2004 end-page: 2970 ident: bb0065 article-title: Constructal network for heat and mass transfer in a solid–gas reactive porous medium publication-title: Int. J. Heat Mass Transfer – volume: 46 start-page: 245 year: 2007 end-page: 252 ident: bb0040 article-title: Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers publication-title: Int. J. Therm. Sci. – volume: 122 start-page: 255 year: 1999 end-page: 262 ident: bb0120 article-title: Small-scale thermal seawater desalination simulation and optimization of system design publication-title: Desalination – volume: 164 start-page: 125 year: 2004 end-page: 133 ident: bb0175 article-title: New experimental aspects of the carrier gas process (CGP) publication-title: Desalination – volume: 36 start-page: 1087 year: 2011 end-page: 1096 ident: bb0045 article-title: Economic optimization of shell and tube heat exchanger based on constructal theory publication-title: Energy – volume: 57 start-page: 327 year: 2010 end-page: 333 ident: bb0060 article-title: Constructal solar chimney configuration publication-title: Int. J. Heat Mass Transfer – volume: 281 start-page: 234 year: 2011 end-page: 242 ident: bb0100 article-title: Derivation of optimal geometry of a multi-effect humidification dehumidification desalination unit: a constructal design publication-title: Desalination – volume: 3 start-page: 19 year: 1989 end-page: 28 ident: bb0155 article-title: General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns publication-title: Gas Sep. Purif. – year: 2006 ident: bb0170 article-title: Engineering Optimization Methods and Applications – volume: 250 start-page: 203 year: 2010 end-page: 207 ident: bb0145 article-title: Economical study of a small-scale direct contact humidification–dehumidification desalination plant publication-title: Desalination – volume: 49 start-page: 1857 year: 2006 end-page: 1875 ident: bb0075 article-title: Constructal theory of global circulation and climate publication-title: Int. J. Heat Mass Transfer – volume: 183 start-page: 341 year: 2005 end-page: 352 ident: bb0105 article-title: Design and analysis of humidification dehumidification desalination process publication-title: Desalination – volume: 156 start-page: 156 year: 2007 end-page: 162 ident: bb0115 article-title: Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification publication-title: Desalination – volume: 22 start-page: 1117 year: 2002 end-page: 1127 ident: bb0150 article-title: Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant publication-title: Appl. Therm. Eng. – volume: 52 start-page: 2362 year: 2009 end-page: 2369 ident: bb0015 article-title: Constructal steam generator architecture publication-title: Int. J. Heat Mass Transfer – volume: 237 start-page: 296 year: 2009 end-page: 304 ident: bb0140 article-title: Mathematical modeling of a direct contact humidification–dehumidification desalination process publication-title: Desalination – volume: 183 start-page: 341 year: 2005 ident: 10.1016/j.desal.2012.02.025_bb0105 article-title: Design and analysis of humidification dehumidification desalination process publication-title: Desalination doi: 10.1016/j.desal.2005.03.039 – volume: 36 start-page: 1087 year: 2011 ident: 10.1016/j.desal.2012.02.025_bb0045 article-title: Economic optimization of shell and tube heat exchanger based on constructal theory publication-title: Energy doi: 10.1016/j.energy.2010.11.041 – volume: 209 start-page: 238 year: 2006 ident: 10.1016/j.desal.2012.02.025_bb0085 article-title: Unifying constructal theory for scale effects in running, swimming and flying publication-title: J. Exp. Biol. doi: 10.1242/jeb.01974 – volume: 40 start-page: 1441 year: 1999 ident: 10.1016/j.desal.2012.02.025_bb0125 article-title: Solar desalination based on humidification process: II. Computer simulation publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(99)00017-5 – year: 2008 ident: 10.1016/j.desal.2012.02.025_bb0005 – volume: 3 start-page: 19 year: 1989 ident: 10.1016/j.desal.2012.02.025_bb0155 article-title: General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns publication-title: Gas Sep. Purif. doi: 10.1016/0950-4214(89)80016-7 – volume: 84 start-page: 39 year: 2007 ident: 10.1016/j.desal.2012.02.025_bb0055 article-title: Heat-conduction optimization based on constructal theory publication-title: Appl. Energy doi: 10.1016/j.apenergy.2006.04.006 – volume: 281 start-page: 234 year: 2011 ident: 10.1016/j.desal.2012.02.025_bb0100 article-title: Derivation of optimal geometry of a multi-effect humidification dehumidification desalination unit: a constructal design publication-title: Desalination doi: 10.1016/j.desal.2011.07.067 – volume: 237 start-page: 296 year: 2009 ident: 10.1016/j.desal.2012.02.025_bb0140 article-title: Mathematical modeling of a direct contact humidification–dehumidification desalination process publication-title: Desalination doi: 10.1016/j.desal.2008.01.023 – volume: 57 start-page: 327 year: 2010 ident: 10.1016/j.desal.2012.02.025_bb0060 article-title: Constructal solar chimney configuration publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.09.026 – volume: 44 start-page: 867 year: 2003 ident: 10.1016/j.desal.2012.02.025_bb0070 article-title: Integral measures of electric power distribution networks: load–length curves and line-network multipliers publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(02)00096-1 – volume: 183 start-page: 143 year: 2005 ident: 10.1016/j.desal.2012.02.025_bb0110 article-title: Performance optimization of solar humidification–dehumidification desalination process using pinch technology publication-title: Desalination doi: 10.1016/j.desal.2005.02.047 – volume: 143 start-page: 257 year: 2008 ident: 10.1016/j.desal.2012.02.025_bb0165 article-title: Humidification–dehumidification desalination process: design and performance evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.04.030 – volume: 156 start-page: 156 year: 2007 ident: 10.1016/j.desal.2012.02.025_bb0115 article-title: Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification publication-title: Desalination doi: 10.1016/j.desal.2006.03.550 – volume: 22 start-page: 1117 year: 2002 ident: 10.1016/j.desal.2012.02.025_bb0150 article-title: Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00031-5 – volume: 164 start-page: 125 year: 2004 ident: 10.1016/j.desal.2012.02.025_bb0175 article-title: New experimental aspects of the carrier gas process (CGP) publication-title: Desalination doi: 10.1016/S0011-9164(04)00171-7 – volume: 271 start-page: 62 year: 2011 ident: 10.1016/j.desal.2012.02.025_bb0095 article-title: Constructal design of humidification–dehumidification desalination unit architecture publication-title: Desalination doi: 10.1016/j.desal.2010.12.011 – volume: 47 start-page: 3073 year: 2004 ident: 10.1016/j.desal.2012.02.025_bb0030 article-title: Designed porous media: maximal heat transfer density at decreasing length scales publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.02.025 – volume: 45 start-page: 4607 year: 2002 ident: 10.1016/j.desal.2012.02.025_bb0035 article-title: Dendritic constructal heat exchanger with small-scale cross-flows and larger-scales counter flows publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00165-5 – volume: 52 start-page: 1458 year: 2009 ident: 10.1016/j.desal.2012.02.025_bb0020 article-title: Constructal design of T–Y assembly of fins for an optimized heat removal publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.09.007 – volume: 49 start-page: 1857 year: 2006 ident: 10.1016/j.desal.2012.02.025_bb0075 article-title: Constructal theory of global circulation and climate publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.10.037 – volume: 151 start-page: 153 year: 2002 ident: 10.1016/j.desal.2012.02.025_bb0090 article-title: Solar desalination with a humidification–dehumidification cycle: mathematical modeling of the unit publication-title: Desalination doi: 10.1016/S0011-9164(02)00994-3 – year: 2006 ident: 10.1016/j.desal.2012.02.025_bb0170 – volume: 46 start-page: 245 year: 2007 ident: 10.1016/j.desal.2012.02.025_bb0040 article-title: Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.05.002 – volume: 122 start-page: 255 year: 1999 ident: 10.1016/j.desal.2012.02.025_bb0120 article-title: Small-scale thermal seawater desalination simulation and optimization of system design publication-title: Desalination doi: 10.1016/S0011-9164(99)00046-6 – volume: 239 start-page: 92 year: 2009 ident: 10.1016/j.desal.2012.02.025_bb0135 article-title: Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming publication-title: Desalination doi: 10.1016/j.desal.2008.03.009 – volume: 53 start-page: 4238 year: 2010 ident: 10.1016/j.desal.2012.02.025_bb0050 article-title: Constructal design of nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.05.050 – volume: 47 start-page: 2961 year: 2004 ident: 10.1016/j.desal.2012.02.025_bb0065 article-title: Constructal network for heat and mass transfer in a solid–gas reactive porous medium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.03.022 – year: 2003 ident: 10.1016/j.desal.2012.02.025_bb0160 – volume: 35 start-page: 336 year: 2011 ident: 10.1016/j.desal.2012.02.025_bb0010 article-title: Steam generator structure: continuous model and constructal design publication-title: Energy Res. doi: 10.1002/er.1694 – volume: 40 start-page: 1020 year: 2008 ident: 10.1016/j.desal.2012.02.025_bb0025 article-title: Constructal design of solar energy-based systems for buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.08.005 – volume: 52 start-page: 2362 year: 2009 ident: 10.1016/j.desal.2012.02.025_bb0015 article-title: Constructal steam generator architecture publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.10.021 – volume: A 255 start-page: 211 year: 1998 ident: 10.1016/j.desal.2012.02.025_bb0080 article-title: Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point publication-title: Physica doi: 10.1016/S0378-4371(98)00085-5 – volume: 237 start-page: 305 year: 2009 ident: 10.1016/j.desal.2012.02.025_bb0130 article-title: Performance optimization of the humidification–dehumidification desalination process using mathematical programming publication-title: Desalination doi: 10.1016/j.desal.2008.01.024 – volume: 250 start-page: 203 year: 2010 ident: 10.1016/j.desal.2012.02.025_bb0145 article-title: Economical study of a small-scale direct contact humidification–dehumidification desalination plant publication-title: Desalination doi: 10.1016/j.desal.2008.11.015 |
SSID | ssj0012933 |
Score | 2.229641 |
Snippet | This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 69 |
SubjectTerms | air air flow algorithms Applied sciences cold Constructal theory Desalination Direct contact Drinking water and swimming-pool water. Desalination energy Exact sciences and technology freshwater heat Humidification–dehumidification multipliers Pollution recycling water temperature Water treatment and pollution |
Title | Constructal design and optimization of a direct contact humidification–dehumidification desalination unit |
URI | https://dx.doi.org/10.1016/j.desal.2012.02.025 https://www.proquest.com/docview/1663625093 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4464 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012933 issn: 0011-9164 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4464 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012933 issn: 0011-9164 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4464 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012933 issn: 0011-9164 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-4464 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012933 issn: 0011-9164 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4464 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012933 issn: 0011-9164 databaseCode: AKRWK dateStart: 19660401 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NIeQtMH2bRdVOixbmTZlq1jCA2bhuSSLuQm9Gy3bezAZq8h_6H_sL-kM7K9dCnNoSAwFiOQR-N5SN-MAN4pSnd0MWQOxQkDFFNkNog8c6qRxjWNb0pKcD6_kLN5-emqutqC4zEXhmCVg-7vdXrS1kPP4cDNw5vFgnJ8qTiZLHOCBQlJSXxU_Qtl-sPdGuZB5qw_Zc7zjKjHykMJ4-XD0tD5A20IUqv-ZZ0eRdMRbNIskXOxv_LiL-2dTNLJU9gdfEl21E93D7ZC-wye_FFh8Dl8pws5U4lYJPQJrcFM61mHmuJ6SMFkXWSG9XxgBF03-Py6ul54ghElkl_3P33Y7GLpqxb9ZiJboWZ4AfOTj5-PZ9lwv0LmSlHfZlEEI32MvIjc27LG0MlJGzi3VCEGGWull7EyPo_CcBFqE6uCKGNUUTSmeAnbbdeGfWCNtI57KQx6Z2jzrWqUi6Xiha3R4wpmAmLkq3ZD8XG6A-OHHlFm33SatqbF0JxaNYH360E3fe2Nh8nluGB6Q4Q0WoeHB-7j8mrzBdWqnl8K2gRC15PXqpnAdGPN1_PAMLBW6PpM4O0oBBp_TDptMW3oVkudoy-HwSVXxcH_TuwVPKa3Hl_5GrZRXMIb9IFu7TQJ-RR2jk7PZhe_AWppB4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB6SzaHNIfSXbJumKvRYE61sy9YxhIZNk-ylWchN6LfdNrEDm733HfqGfZLO2PLSpTSHgsAgj0CeGY9G0jczAO8VhTu6GDKH6oQbFJNnNohJ5lQtjatrXxcU4Hw5k9N58em6vN6CkyEWhmCVyfb3Nr2z1qnnKHHz6G6xoBhfSk4miwnBgoRU27BTlGiTR7BzfHY-na0vE0SqKE-ngTRgSD7Uwbx8WBq6gqAzQWrlvxao7WhaQk6aJTIv9lUv_jLg3ap0-gT2kjvJjvsZP4Wt0DyD3T-SDD6H71STs8sSi4S-A2ww03jWorG4TVGYrI3MsJ4VjNDrBp9fV7cLT0iijuTXj58-bHax7qsW_XkiW6FxeAHz049XJ9MslVjIXCGq-yyKYKSPkeeRe1tUuHty0gbOLSWJQd5a6WUsjZ9EYbgIlYllTpQxqihqk7-EUdM2YR9YLa3jXgqDDhou-1bVysVC8dxW6HQFMwYx8FW7lH-cymDc6AFo9k1309YkDM2plWP4sB5016ffeJhcDgLTG1qkcYF4eOA-ilebL2hZ9fyzoHMg9D55peoxHG7IfD0P3AlWCr2fMbwblEDjv0kXLqYJ7WqpJ-jO4f6Sq_zV_07sLTyaXl1e6Iuz2flreExverjlAYxQdcIbdInu7WFS-d9UNgov |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructal+design+and+optimization+of+a+direct+contact+humidification%E2%80%93dehumidification+desalination+unit&rft.jtitle=Desalination&rft.au=Mehrgoo%2C+Morteza&rft.au=Amidpour%2C+Majid&rft.date=2012-05-01&rft.pub=Elsevier+B.V&rft.issn=0011-9164&rft.eissn=1873-4464&rft.volume=293&rft.spage=69&rft.epage=77&rft_id=info:doi/10.1016%2Fj.desal.2012.02.025&rft.externalDocID=US201500090798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |