Constructal design and optimization of a direct contact humidification–dehumidification desalination unit

This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To ana...

Full description

Saved in:
Bibliographic Details
Published inDesalination Vol. 293; pp. 69 - 77
Main Authors Mehrgoo, Morteza, Amidpour, Majid
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0011-9164
1873-4464
DOI10.1016/j.desal.2012.02.025

Cover

Abstract This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption. ► A direct contact humidification–dehumidification desalination unit is modeled and analyzed. ► The constructal theory is incorporated with mathematical modeling to optimize the proposed unit. ► The Genetic Algorithm and Lagrange multiplier methods are used to optimize the fresh water production rate. ► All design parameters change in proportion with the water inlet temperatures of the dehumidifier and humidifier. ► The water to air mass flow rate ratio (saline and fresh water) significantly affects on the main design parameters. ► Recycling ratio is found as an effective way for declining the energy consumption of unit.
AbstractList This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption.
This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the method of the constructal design. A direct contact HD unit has three main sections: the humidifier, the dehumidifier and the heat source. To analyze and optimize such unit, two flow models for air circulation are considered: natural and forced circulations. The objective is increasing the water production rate over the volume occupied by the plant. The parameters considered in this work are the air flow rate, tube diameters ratio, temperatures and flow rates of inlet saline and fresh water. The Lagrangian multipliers and genetic algorithm (GA) methods are used to optimize the production rate subject to global constraint (fixed volume). The constructal design developed in this paper explains the influences of the inlet cold and hot water temperatures and air flow rate on the basic design parameters of HD system architecture. It shows that the optimal configuration of HD system is consequently temperature dependent. Finally, the analysis shows that if the humidifier inlet water temperature is high, recycling of the humidifier outlet water results in about 15–25% reduction in the specific thermal energy consumption. ► A direct contact humidification–dehumidification desalination unit is modeled and analyzed. ► The constructal theory is incorporated with mathematical modeling to optimize the proposed unit. ► The Genetic Algorithm and Lagrange multiplier methods are used to optimize the fresh water production rate. ► All design parameters change in proportion with the water inlet temperatures of the dehumidifier and humidifier. ► The water to air mass flow rate ratio (saline and fresh water) significantly affects on the main design parameters. ► Recycling ratio is found as an effective way for declining the energy consumption of unit.
Author Amidpour, Majid
Mehrgoo, Morteza
Author_xml – sequence: 1
  givenname: Morteza
  surname: Mehrgoo
  fullname: Mehrgoo, Morteza
– sequence: 2
  givenname: Majid
  surname: Amidpour
  fullname: Amidpour, Majid
  email: amidpour@kntu.ac.ir
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26079521$$DView record in Pascal Francis
BookMark eNqFkc2KFDEQx4Os4OzsPoEH-yJ46bGSdKe7Dx5k8AsWPOzuOdTkY83Yk4xJekFPvoNv6JOYnl4EPSgUFBV-_6p_qs7JmQ_eEPKUwoYCFS_3G20SjhsGlG1gjvYRWdG-43XTiOaMrAAorQcqmifkPKV9KdnA-Yp83gafcpxUxrEqTdydr9DrKhyzO7hvmF3wVbAVVtpFo3Klgs9Y8qfp4LSzTp2Qn99_aPPnU3Wy5PxSTN7lC_LY4pjM5UNek9u3b2627-urj-8-bF9f1aphXa4tMyi0tcAt6F3TdVQosTMAO973IBq6E1rYFjW1DIGZDm3LZ9LawbIe-Zq8WPoeY_gymZTlwSVlxhG9CVOSVAguWAtlAWvy_AHFpHC0Eb1ySR6jO2D8KpmAbmgZLRxfOBVDStHY3wgFOZ9A7uXpv3I-gYQ52qIa_lIpl0_7yBHd-B_ts0VrMUi8i8XV7XUBWgAYiqu-EK8WwpRd3jsTZVLOeGWWS0kd3D8n_AKTObJL
CODEN DSLNAH
CitedBy_id crossref_primary_10_1016_j_rser_2024_115313
crossref_primary_10_1016_j_egypro_2017_12_166
crossref_primary_10_1007_s10668_021_01696_3
crossref_primary_10_1016_j_applthermaleng_2020_116433
crossref_primary_10_1016_j_enconman_2019_112016
crossref_primary_10_5004_dwt_2023_29516
crossref_primary_10_1016_j_desal_2018_04_001
crossref_primary_10_1016_j_energy_2019_03_005
crossref_primary_10_5004_dwt_2019_23476
crossref_primary_10_1051_matecconf_202033001027
crossref_primary_10_1016_j_enconman_2022_115520
crossref_primary_10_5004_dwt_2019_23415
crossref_primary_10_1016_j_desal_2015_08_006
crossref_primary_10_1016_j_desal_2018_07_033
crossref_primary_10_1016_j_ijthermalsci_2017_05_027
crossref_primary_10_1016_j_desal_2020_114456
crossref_primary_10_1016_j_jclepro_2019_04_140
crossref_primary_10_1016_j_enconman_2018_06_008
crossref_primary_10_1016_j_rser_2015_12_108
crossref_primary_10_1016_j_icheatmasstransfer_2024_108546
crossref_primary_10_1016_j_energy_2017_02_046
crossref_primary_10_1007_s12206_016_0143_4
crossref_primary_10_1016_j_applthermaleng_2022_119536
crossref_primary_10_1016_j_applthermaleng_2017_04_144
crossref_primary_10_1016_j_desal_2015_12_023
crossref_primary_10_1016_j_enconman_2018_10_044
crossref_primary_10_1016_j_enconman_2019_04_038
crossref_primary_10_1061__ASCE_EY_1943_7897_0000554
crossref_primary_10_3390_w14223681
crossref_primary_10_1016_j_egypro_2016_11_196
crossref_primary_10_5004_dwt_2019_23668
crossref_primary_10_1016_j_desal_2019_06_003
crossref_primary_10_1016_j_enconman_2018_01_048
crossref_primary_10_1016_j_desal_2018_04_016
crossref_primary_10_1016_j_desal_2022_116029
crossref_primary_10_1007_s40333_021_0063_8
crossref_primary_10_1016_j_cherd_2017_06_004
crossref_primary_10_1016_j_enconman_2015_02_082
Cites_doi 10.1016/j.desal.2005.03.039
10.1016/j.energy.2010.11.041
10.1242/jeb.01974
10.1016/S0196-8904(99)00017-5
10.1016/0950-4214(89)80016-7
10.1016/j.apenergy.2006.04.006
10.1016/j.desal.2011.07.067
10.1016/j.desal.2008.01.023
10.1016/j.ijheatmasstransfer.2009.09.026
10.1016/S0196-8904(02)00096-1
10.1016/j.desal.2005.02.047
10.1016/j.cej.2008.04.030
10.1016/j.desal.2006.03.550
10.1016/S1359-4311(02)00031-5
10.1016/S0011-9164(04)00171-7
10.1016/j.desal.2010.12.011
10.1016/j.ijheatmasstransfer.2004.02.025
10.1016/S0017-9310(02)00165-5
10.1016/j.ijheatmasstransfer.2008.09.007
10.1016/j.ijheatmasstransfer.2005.10.037
10.1016/S0011-9164(02)00994-3
10.1016/j.ijthermalsci.2006.05.002
10.1016/S0011-9164(99)00046-6
10.1016/j.desal.2008.03.009
10.1016/j.ijheatmasstransfer.2010.05.050
10.1016/j.ijheatmasstransfer.2004.03.022
10.1002/er.1694
10.1016/j.enbuild.2007.08.005
10.1016/j.ijheatmasstransfer.2008.10.021
10.1016/S0378-4371(98)00085-5
10.1016/j.desal.2008.01.024
10.1016/j.desal.2008.11.015
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.desal.2012.02.025
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4464
EndPage 77
ExternalDocumentID 26079521
10_1016_j_desal_2012_02_025
US201500090798
S0011916412001269
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JJJVA
KCYFY
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SST
SSZ
T5K
~02
~G-
29F
6TJ
AAQXK
ABEFU
ABPIF
ABPTK
ABTAH
ASPBG
AVWKF
AZFZN
BBWZM
FBQ
FEDTE
FGOYB
HLY
HVGLF
NDZJH
R2-
SCE
SEW
WUQ
ZY4
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c427t-f2ea6dff03f0db47716c6be00b3880641b6d6f5ad1f2a02e7af530db4ff9f28a3
IEDL.DBID .~1
ISSN 0011-9164
IngestDate Sat Sep 27 22:09:43 EDT 2025
Mon Jul 21 09:16:05 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Tue Jul 01 04:13:33 EDT 2025
Wed Dec 27 19:32:21 EST 2023
Fri Feb 23 02:34:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Humidification–dehumidification
Direct contact
Desalination
Constructal theory
System architecture
Energy consumption
Dehumidification
Humidification-dehumidification
Modeling
Hot water
Optimization
Design
Air flow
Genetic algorithm
Production
Humidification
Recycling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-f2ea6dff03f0db47716c6be00b3880641b6d6f5ad1f2a02e7af530db4ff9f28a3
Notes http://dx.doi.org/10.1016/j.desal.2012.02.025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663625093
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_1663625093
pascalfrancis_primary_26079521
crossref_primary_10_1016_j_desal_2012_02_025
crossref_citationtrail_10_1016_j_desal_2012_02_025
fao_agris_US201500090798
elsevier_sciencedirect_doi_10_1016_j_desal_2012_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Desalination
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Muzychka (bb0040) 2007; 46
Arion, Cojocari, Bejan (bb0070) 2003; 44
Bejan (bb0030) 2004; 47
Bejan, Marden (bb0085) 2006; 209
Zamen, Amidpour, Soufari (bb0135) 2009; 239
Wu, Chen, Sun (bb0055) 2007; 84
Azoumah, Mazet, Neveu (bb0065) 2004; 47
Mehrgoo, Amidpour (bb0100) 2011; 281
Yuan, Zhang (bb0115) 2007; 156
Reis, Bejan (bb0075) 2006; 49
Bejan, Ledezma (bb0080) 1998; A 255
Hou, Ye, Zhang (bb0110) 2005; 183
Vahdat Azad, Amidpour (bb0045) 2011; 36
Bejan, Lorente (bb0005) 2008
Eslamimanesh, Hatamipour (bb0145) 2010; 250
Miguel (bb0025) 2008; 40
Eslamimanesh, Hatamipour (bb0140) 2009; 237
Hashemifard, Azin (bb0175) 2004; 164
Muller-Holst, Engelhardt, Scholkopf (bb0120) 1999; 122
Van Wylen, Sonntag, Borgnakke (bb0160) 2003
Kim, Lorente, Bejan (bb0010) 2011; 35
Kim, Lorente, Bejan (bb0015) 2009; 52
Lorenzini, Oliveira Rocha (bb0020) 2009; 52
Stichlmair, Bravo, Fair (bb0155) 1989; 3
Al-Sahali, Ettouney (bb0165) 2008; 143
Koonsrisuk, Lorente, Bejan (bb0060) 2010; 57
Nawayseh, Farid, Omar, Sabirin (bb0125) 1999; 40
Ravindran, Ragsdell, Reklaitis (bb0170) 2006
Soufari, Zamen, Amidpour (bb0130) 2009; 237
Ettouney (bb0105) 2005; 183
Mehrgoo, Amidpour (bb0095) 2011; 271
Bejan (bb0035) 2002; 45
Fan, Wang (bb0050) 2010; 53
Farid, Parekh, Selman, Al-Hallaj (bb0090) 2002; 151
Gandhidasan (bb0150) 2002; 22
Bejan (10.1016/j.desal.2012.02.025_bb0005) 2008
Farid (10.1016/j.desal.2012.02.025_bb0090) 2002; 151
Mehrgoo (10.1016/j.desal.2012.02.025_bb0100) 2011; 281
Muller-Holst (10.1016/j.desal.2012.02.025_bb0120) 1999; 122
Wu (10.1016/j.desal.2012.02.025_bb0055) 2007; 84
Al-Sahali (10.1016/j.desal.2012.02.025_bb0165) 2008; 143
Ettouney (10.1016/j.desal.2012.02.025_bb0105) 2005; 183
Van Wylen (10.1016/j.desal.2012.02.025_bb0160) 2003
Ravindran (10.1016/j.desal.2012.02.025_bb0170) 2006
Muzychka (10.1016/j.desal.2012.02.025_bb0040) 2007; 46
Kim (10.1016/j.desal.2012.02.025_bb0015) 2009; 52
Bejan (10.1016/j.desal.2012.02.025_bb0030) 2004; 47
Koonsrisuk (10.1016/j.desal.2012.02.025_bb0060) 2010; 57
Hashemifard (10.1016/j.desal.2012.02.025_bb0175) 2004; 164
Azoumah (10.1016/j.desal.2012.02.025_bb0065) 2004; 47
Fan (10.1016/j.desal.2012.02.025_bb0050) 2010; 53
Bejan (10.1016/j.desal.2012.02.025_bb0085) 2006; 209
Eslamimanesh (10.1016/j.desal.2012.02.025_bb0140) 2009; 237
Lorenzini (10.1016/j.desal.2012.02.025_bb0020) 2009; 52
Miguel (10.1016/j.desal.2012.02.025_bb0025) 2008; 40
Gandhidasan (10.1016/j.desal.2012.02.025_bb0150) 2002; 22
Eslamimanesh (10.1016/j.desal.2012.02.025_bb0145) 2010; 250
Arion (10.1016/j.desal.2012.02.025_bb0070) 2003; 44
Mehrgoo (10.1016/j.desal.2012.02.025_bb0095) 2011; 271
Soufari (10.1016/j.desal.2012.02.025_bb0130) 2009; 237
Bejan (10.1016/j.desal.2012.02.025_bb0080) 1998; A 255
Hou (10.1016/j.desal.2012.02.025_bb0110) 2005; 183
Vahdat Azad (10.1016/j.desal.2012.02.025_bb0045) 2011; 36
Yuan (10.1016/j.desal.2012.02.025_bb0115) 2007; 156
Kim (10.1016/j.desal.2012.02.025_bb0010) 2011; 35
Reis (10.1016/j.desal.2012.02.025_bb0075) 2006; 49
Nawayseh (10.1016/j.desal.2012.02.025_bb0125) 1999; 40
Stichlmair (10.1016/j.desal.2012.02.025_bb0155) 1989; 3
Bejan (10.1016/j.desal.2012.02.025_bb0035) 2002; 45
Zamen (10.1016/j.desal.2012.02.025_bb0135) 2009; 239
References_xml – volume: 84
  start-page: 39
  year: 2007
  end-page: 47
  ident: bb0055
  article-title: Heat-conduction optimization based on constructal theory
  publication-title: Appl. Energy
– volume: A 255
  start-page: 211
  year: 1998
  end-page: 217
  ident: bb0080
  article-title: Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point
  publication-title: Physica
– volume: 237
  start-page: 305
  year: 2009
  end-page: 317
  ident: bb0130
  article-title: Performance optimization of the humidification–dehumidification desalination process using mathematical programming
  publication-title: Desalination
– year: 2008
  ident: bb0005
  article-title: Design with Constructal Theory
– volume: 183
  start-page: 143
  year: 2005
  end-page: 149
  ident: bb0110
  article-title: Performance optimization of solar humidification–dehumidification desalination process using pinch technology
  publication-title: Desalination
– year: 2003
  ident: bb0160
  article-title: Fundamentals of Thermodynamics
– volume: 52
  start-page: 1458
  year: 2009
  end-page: 1463
  ident: bb0020
  article-title: Constructal design of T–Y assembly of fins for an optimized heat removal
  publication-title: Int. J. Heat Mass Transfer
– volume: 40
  start-page: 1020
  year: 2008
  end-page: 1030
  ident: bb0025
  article-title: Constructal design of solar energy-based systems for buildings
  publication-title: Energy Build.
– volume: 47
  start-page: 3073
  year: 2004
  end-page: 3083
  ident: bb0030
  article-title: Designed porous media: maximal heat transfer density at decreasing length scales
  publication-title: Int. J. Heat Mass Transfer
– volume: 151
  start-page: 153
  year: 2002
  end-page: 164
  ident: bb0090
  article-title: Solar desalination with a humidification–dehumidification cycle: mathematical modeling of the unit
  publication-title: Desalination
– volume: 271
  start-page: 62
  year: 2011
  end-page: 71
  ident: bb0095
  article-title: Constructal design of humidification–dehumidification desalination unit architecture
  publication-title: Desalination
– volume: 44
  start-page: 867
  year: 2003
  end-page: 891
  ident: bb0070
  article-title: Integral measures of electric power distribution networks: load–length curves and line-network multipliers
  publication-title: Energy Convers. Manage.
– volume: 35
  start-page: 336
  year: 2011
  end-page: 345
  ident: bb0010
  article-title: Steam generator structure: continuous model and constructal design
  publication-title: Energy Res.
– volume: 209
  start-page: 238
  year: 2006
  end-page: 248
  ident: bb0085
  article-title: Unifying constructal theory for scale effects in running, swimming and flying
  publication-title: J. Exp. Biol.
– volume: 143
  start-page: 257
  year: 2008
  end-page: 264
  ident: bb0165
  article-title: Humidification–dehumidification desalination process: design and performance evaluation
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 4607
  year: 2002
  end-page: 4620
  ident: bb0035
  article-title: Dendritic constructal heat exchanger with small-scale cross-flows and larger-scales counter flows
  publication-title: Int. J. Heat Mass Transfer
– volume: 40
  start-page: 1441
  year: 1999
  end-page: 1461
  ident: bb0125
  article-title: Solar desalination based on humidification process: II. Computer simulation
  publication-title: Energy Convers. Manage.
– volume: 239
  start-page: 92
  year: 2009
  end-page: 99
  ident: bb0135
  article-title: Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming
  publication-title: Desalination
– volume: 53
  start-page: 4238
  year: 2010
  end-page: 4247
  ident: bb0050
  article-title: Constructal design of nanofluids
  publication-title: Int. J. Heat Mass Transfer
– volume: 47
  start-page: 2961
  year: 2004
  end-page: 2970
  ident: bb0065
  article-title: Constructal network for heat and mass transfer in a solid–gas reactive porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: 46
  start-page: 245
  year: 2007
  end-page: 252
  ident: bb0040
  article-title: Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers
  publication-title: Int. J. Therm. Sci.
– volume: 122
  start-page: 255
  year: 1999
  end-page: 262
  ident: bb0120
  article-title: Small-scale thermal seawater desalination simulation and optimization of system design
  publication-title: Desalination
– volume: 164
  start-page: 125
  year: 2004
  end-page: 133
  ident: bb0175
  article-title: New experimental aspects of the carrier gas process (CGP)
  publication-title: Desalination
– volume: 36
  start-page: 1087
  year: 2011
  end-page: 1096
  ident: bb0045
  article-title: Economic optimization of shell and tube heat exchanger based on constructal theory
  publication-title: Energy
– volume: 57
  start-page: 327
  year: 2010
  end-page: 333
  ident: bb0060
  article-title: Constructal solar chimney configuration
  publication-title: Int. J. Heat Mass Transfer
– volume: 281
  start-page: 234
  year: 2011
  end-page: 242
  ident: bb0100
  article-title: Derivation of optimal geometry of a multi-effect humidification dehumidification desalination unit: a constructal design
  publication-title: Desalination
– volume: 3
  start-page: 19
  year: 1989
  end-page: 28
  ident: bb0155
  article-title: General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns
  publication-title: Gas Sep. Purif.
– year: 2006
  ident: bb0170
  article-title: Engineering Optimization Methods and Applications
– volume: 250
  start-page: 203
  year: 2010
  end-page: 207
  ident: bb0145
  article-title: Economical study of a small-scale direct contact humidification–dehumidification desalination plant
  publication-title: Desalination
– volume: 49
  start-page: 1857
  year: 2006
  end-page: 1875
  ident: bb0075
  article-title: Constructal theory of global circulation and climate
  publication-title: Int. J. Heat Mass Transfer
– volume: 183
  start-page: 341
  year: 2005
  end-page: 352
  ident: bb0105
  article-title: Design and analysis of humidification dehumidification desalination process
  publication-title: Desalination
– volume: 156
  start-page: 156
  year: 2007
  end-page: 162
  ident: bb0115
  article-title: Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification
  publication-title: Desalination
– volume: 22
  start-page: 1117
  year: 2002
  end-page: 1127
  ident: bb0150
  article-title: Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 2362
  year: 2009
  end-page: 2369
  ident: bb0015
  article-title: Constructal steam generator architecture
  publication-title: Int. J. Heat Mass Transfer
– volume: 237
  start-page: 296
  year: 2009
  end-page: 304
  ident: bb0140
  article-title: Mathematical modeling of a direct contact humidification–dehumidification desalination process
  publication-title: Desalination
– volume: 183
  start-page: 341
  year: 2005
  ident: 10.1016/j.desal.2012.02.025_bb0105
  article-title: Design and analysis of humidification dehumidification desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.03.039
– volume: 36
  start-page: 1087
  year: 2011
  ident: 10.1016/j.desal.2012.02.025_bb0045
  article-title: Economic optimization of shell and tube heat exchanger based on constructal theory
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.041
– volume: 209
  start-page: 238
  year: 2006
  ident: 10.1016/j.desal.2012.02.025_bb0085
  article-title: Unifying constructal theory for scale effects in running, swimming and flying
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01974
– volume: 40
  start-page: 1441
  year: 1999
  ident: 10.1016/j.desal.2012.02.025_bb0125
  article-title: Solar desalination based on humidification process: II. Computer simulation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(99)00017-5
– year: 2008
  ident: 10.1016/j.desal.2012.02.025_bb0005
– volume: 3
  start-page: 19
  year: 1989
  ident: 10.1016/j.desal.2012.02.025_bb0155
  article-title: General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns
  publication-title: Gas Sep. Purif.
  doi: 10.1016/0950-4214(89)80016-7
– volume: 84
  start-page: 39
  year: 2007
  ident: 10.1016/j.desal.2012.02.025_bb0055
  article-title: Heat-conduction optimization based on constructal theory
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2006.04.006
– volume: 281
  start-page: 234
  year: 2011
  ident: 10.1016/j.desal.2012.02.025_bb0100
  article-title: Derivation of optimal geometry of a multi-effect humidification dehumidification desalination unit: a constructal design
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.07.067
– volume: 237
  start-page: 296
  year: 2009
  ident: 10.1016/j.desal.2012.02.025_bb0140
  article-title: Mathematical modeling of a direct contact humidification–dehumidification desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.01.023
– volume: 57
  start-page: 327
  year: 2010
  ident: 10.1016/j.desal.2012.02.025_bb0060
  article-title: Constructal solar chimney configuration
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.09.026
– volume: 44
  start-page: 867
  year: 2003
  ident: 10.1016/j.desal.2012.02.025_bb0070
  article-title: Integral measures of electric power distribution networks: load–length curves and line-network multipliers
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(02)00096-1
– volume: 183
  start-page: 143
  year: 2005
  ident: 10.1016/j.desal.2012.02.025_bb0110
  article-title: Performance optimization of solar humidification–dehumidification desalination process using pinch technology
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.02.047
– volume: 143
  start-page: 257
  year: 2008
  ident: 10.1016/j.desal.2012.02.025_bb0165
  article-title: Humidification–dehumidification desalination process: design and performance evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.04.030
– volume: 156
  start-page: 156
  year: 2007
  ident: 10.1016/j.desal.2012.02.025_bb0115
  article-title: Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.550
– volume: 22
  start-page: 1117
  year: 2002
  ident: 10.1016/j.desal.2012.02.025_bb0150
  article-title: Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00031-5
– volume: 164
  start-page: 125
  year: 2004
  ident: 10.1016/j.desal.2012.02.025_bb0175
  article-title: New experimental aspects of the carrier gas process (CGP)
  publication-title: Desalination
  doi: 10.1016/S0011-9164(04)00171-7
– volume: 271
  start-page: 62
  year: 2011
  ident: 10.1016/j.desal.2012.02.025_bb0095
  article-title: Constructal design of humidification–dehumidification desalination unit architecture
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.12.011
– volume: 47
  start-page: 3073
  year: 2004
  ident: 10.1016/j.desal.2012.02.025_bb0030
  article-title: Designed porous media: maximal heat transfer density at decreasing length scales
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.02.025
– volume: 45
  start-page: 4607
  year: 2002
  ident: 10.1016/j.desal.2012.02.025_bb0035
  article-title: Dendritic constructal heat exchanger with small-scale cross-flows and larger-scales counter flows
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00165-5
– volume: 52
  start-page: 1458
  year: 2009
  ident: 10.1016/j.desal.2012.02.025_bb0020
  article-title: Constructal design of T–Y assembly of fins for an optimized heat removal
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.09.007
– volume: 49
  start-page: 1857
  year: 2006
  ident: 10.1016/j.desal.2012.02.025_bb0075
  article-title: Constructal theory of global circulation and climate
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.10.037
– volume: 151
  start-page: 153
  year: 2002
  ident: 10.1016/j.desal.2012.02.025_bb0090
  article-title: Solar desalination with a humidification–dehumidification cycle: mathematical modeling of the unit
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)00994-3
– year: 2006
  ident: 10.1016/j.desal.2012.02.025_bb0170
– volume: 46
  start-page: 245
  year: 2007
  ident: 10.1016/j.desal.2012.02.025_bb0040
  article-title: Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.05.002
– volume: 122
  start-page: 255
  year: 1999
  ident: 10.1016/j.desal.2012.02.025_bb0120
  article-title: Small-scale thermal seawater desalination simulation and optimization of system design
  publication-title: Desalination
  doi: 10.1016/S0011-9164(99)00046-6
– volume: 239
  start-page: 92
  year: 2009
  ident: 10.1016/j.desal.2012.02.025_bb0135
  article-title: Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.03.009
– volume: 53
  start-page: 4238
  year: 2010
  ident: 10.1016/j.desal.2012.02.025_bb0050
  article-title: Constructal design of nanofluids
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.05.050
– volume: 47
  start-page: 2961
  year: 2004
  ident: 10.1016/j.desal.2012.02.025_bb0065
  article-title: Constructal network for heat and mass transfer in a solid–gas reactive porous medium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.03.022
– year: 2003
  ident: 10.1016/j.desal.2012.02.025_bb0160
– volume: 35
  start-page: 336
  year: 2011
  ident: 10.1016/j.desal.2012.02.025_bb0010
  article-title: Steam generator structure: continuous model and constructal design
  publication-title: Energy Res.
  doi: 10.1002/er.1694
– volume: 40
  start-page: 1020
  year: 2008
  ident: 10.1016/j.desal.2012.02.025_bb0025
  article-title: Constructal design of solar energy-based systems for buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.08.005
– volume: 52
  start-page: 2362
  year: 2009
  ident: 10.1016/j.desal.2012.02.025_bb0015
  article-title: Constructal steam generator architecture
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.10.021
– volume: A 255
  start-page: 211
  year: 1998
  ident: 10.1016/j.desal.2012.02.025_bb0080
  article-title: Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point
  publication-title: Physica
  doi: 10.1016/S0378-4371(98)00085-5
– volume: 237
  start-page: 305
  year: 2009
  ident: 10.1016/j.desal.2012.02.025_bb0130
  article-title: Performance optimization of the humidification–dehumidification desalination process using mathematical programming
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.01.024
– volume: 250
  start-page: 203
  year: 2010
  ident: 10.1016/j.desal.2012.02.025_bb0145
  article-title: Economical study of a small-scale direct contact humidification–dehumidification desalination plant
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.11.015
SSID ssj0012933
Score 2.229641
Snippet This study shows that the main design features of a direct contact humidification–dehumidification (HD) desalination process can be determined based on the...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms air
air flow
algorithms
Applied sciences
cold
Constructal theory
Desalination
Direct contact
Drinking water and swimming-pool water. Desalination
energy
Exact sciences and technology
freshwater
heat
Humidification–dehumidification
multipliers
Pollution
recycling
water temperature
Water treatment and pollution
Title Constructal design and optimization of a direct contact humidification–dehumidification desalination unit
URI https://dx.doi.org/10.1016/j.desal.2012.02.025
https://www.proquest.com/docview/1663625093
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4464
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012933
  issn: 0011-9164
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4464
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012933
  issn: 0011-9164
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4464
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012933
  issn: 0011-9164
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-4464
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012933
  issn: 0011-9164
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4464
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012933
  issn: 0011-9164
  databaseCode: AKRWK
  dateStart: 19660401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NIeQtMH2bRdVOixbmTZlq1jCA2bhuSSLuQm9Gy3bezAZq8h_6H_sL-kM7K9dCnNoSAwFiOQR-N5SN-MAN4pSnd0MWQOxQkDFFNkNog8c6qRxjWNb0pKcD6_kLN5-emqutqC4zEXhmCVg-7vdXrS1kPP4cDNw5vFgnJ8qTiZLHOCBQlJSXxU_Qtl-sPdGuZB5qw_Zc7zjKjHykMJ4-XD0tD5A20IUqv-ZZ0eRdMRbNIskXOxv_LiL-2dTNLJU9gdfEl21E93D7ZC-wye_FFh8Dl8pws5U4lYJPQJrcFM61mHmuJ6SMFkXWSG9XxgBF03-Py6ul54ghElkl_3P33Y7GLpqxb9ZiJboWZ4AfOTj5-PZ9lwv0LmSlHfZlEEI32MvIjc27LG0MlJGzi3VCEGGWull7EyPo_CcBFqE6uCKGNUUTSmeAnbbdeGfWCNtI57KQx6Z2jzrWqUi6Xiha3R4wpmAmLkq3ZD8XG6A-OHHlFm33SatqbF0JxaNYH360E3fe2Nh8nluGB6Q4Q0WoeHB-7j8mrzBdWqnl8K2gRC15PXqpnAdGPN1_PAMLBW6PpM4O0oBBp_TDptMW3oVkudoy-HwSVXxcH_TuwVPKa3Hl_5GrZRXMIb9IFu7TQJ-RR2jk7PZhe_AWppB4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB6SzaHNIfSXbJumKvRYE61sy9YxhIZNk-ylWchN6LfdNrEDm733HfqGfZLO2PLSpTSHgsAgj0CeGY9G0jczAO8VhTu6GDKH6oQbFJNnNohJ5lQtjatrXxcU4Hw5k9N58em6vN6CkyEWhmCVyfb3Nr2z1qnnKHHz6G6xoBhfSk4miwnBgoRU27BTlGiTR7BzfHY-na0vE0SqKE-ngTRgSD7Uwbx8WBq6gqAzQWrlvxao7WhaQk6aJTIv9lUv_jLg3ap0-gT2kjvJjvsZP4Wt0DyD3T-SDD6H71STs8sSi4S-A2ww03jWorG4TVGYrI3MsJ4VjNDrBp9fV7cLT0iijuTXj58-bHax7qsW_XkiW6FxeAHz049XJ9MslVjIXCGq-yyKYKSPkeeRe1tUuHty0gbOLSWJQd5a6WUsjZ9EYbgIlYllTpQxqihqk7-EUdM2YR9YLa3jXgqDDhou-1bVysVC8dxW6HQFMwYx8FW7lH-cymDc6AFo9k1309YkDM2plWP4sB5016ffeJhcDgLTG1qkcYF4eOA-ilebL2hZ9fyzoHMg9D55peoxHG7IfD0P3AlWCr2fMbwblEDjv0kXLqYJ7WqpJ-jO4f6Sq_zV_07sLTyaXl1e6Iuz2flreExverjlAYxQdcIbdInu7WFS-d9UNgov
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructal+design+and+optimization+of+a+direct+contact+humidification%E2%80%93dehumidification+desalination+unit&rft.jtitle=Desalination&rft.au=Mehrgoo%2C+Morteza&rft.au=Amidpour%2C+Majid&rft.date=2012-05-01&rft.pub=Elsevier+B.V&rft.issn=0011-9164&rft.eissn=1873-4464&rft.volume=293&rft.spage=69&rft.epage=77&rft_id=info:doi/10.1016%2Fj.desal.2012.02.025&rft.externalDocID=US201500090798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon