Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach

In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis...

Full description

Saved in:
Bibliographic Details
Published inPreparative biochemistry & biotechnology Vol. 53; no. 6; pp. 634 - 652
Main Authors Sarkar, Sreya, Sarkar, Sambit, Bhowmick, Tridib Kumar, Gayen, Kalyan
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1082-6068
1532-2297
1532-2297
DOI10.1080/10826068.2022.2119578

Cover

Abstract In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m −2  s −1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
AbstractList In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m⁻² s⁻¹ after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m −2  s −1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m-2 s-1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m-2 s-1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m  s after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m−2 s−1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.
Author Gayen, Kalyan
Bhowmick, Tridib Kumar
Sarkar, Sreya
Sarkar, Sambit
Author_xml – sequence: 1
  givenname: Sreya
  surname: Sarkar
  fullname: Sarkar, Sreya
  organization: Department of Chemical engineering, National Institute of Technology Agartala
– sequence: 2
  givenname: Sambit
  surname: Sarkar
  fullname: Sarkar, Sambit
  organization: Department of Chemical engineering, National Institute of Technology Agartala
– sequence: 3
  givenname: Tridib Kumar
  surname: Bhowmick
  fullname: Bhowmick, Tridib Kumar
  organization: Department of Bioengineering, National Institute of Technology Agartala
– sequence: 4
  givenname: Kalyan
  orcidid: 0000-0003-1841-0959
  surname: Gayen
  fullname: Gayen, Kalyan
  organization: Department of Chemical engineering, National Institute of Technology Agartala
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36093762$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhi1URNuBRwBZYsMmgy9xnMCm1ahcpEqwgLVlOw5x5djB9qgMD8Rz1pnLpgu6sb34_v_4nPNfgjMfvAHgNUZrjFr0vhykQU27JoiQNcG4Y7x9Bi4wo6QipONn5V2YaoHOwWVKdwjhjuP2BTinDeoob8gF-Pc9Bm1SgtZn45MdrJbZBg-HEGEeDTR-lF6byfgMwwB_xXCfRyh9D_XoQgzzuHMOTsEZvXUmLYxNwclserhZCOOcXJziVFjr5Ad4DdMuZTOVQhqaP7OJdrGXbm8b5mwn-_fwCznPMUg9vgTPB-mSeXW8V-Dnp5sfmy_V7bfPXzfXt5WuCc_VgJRUSncN4o2iZBiYZFizFuG-Vq3ibaMQarRGUitZ67qjA28Y6xSve1wjRFfg3cG3lP29NSmLySa9tOBN2CZB2rprO0QpeRrlmFLEWFnICrx9hN6FbfSlkWJICeaU7w3fHKmtmkwv5jIWGXfitKwCfDwAOoaUohmEtnk_pxyldQIjsURDnKIhlmiIYzSKmj1Snwo8pbs66KwvmZjkfYiuF1nuym6HWLJhk6D_t3gAI5vSpQ
CitedBy_id crossref_primary_10_1007_s11356_024_34390_8
crossref_primary_10_1080_10826068_2023_2241898
crossref_primary_10_1515_psr_2022_0101
Cites_doi 10.3390/molecules24010154
10.1111/j.1365-2672.2006.03173.x
10.3354/ame01213
10.1016/j.biortech.2014.07.066
10.1016/0022-0981(88)90232-8
10.1016/j.algal.2018.03.015
10.1155/2014/701596
10.1016/j.renene.2018.07.082
10.1016/j.procbio.2006.03.035
10.1016/j.renene.2016.03.063
10.1016/j.dyepig.2017.09.073
10.1007/s10499-011-9440-1
10.1016/j.biortech.2015.04.017
10.1002/bit.10719
10.1002/ep.13378
10.1002/jobm.201000095
10.3390/en14030778
10.1155/2010/391632
10.1016/S0032-9592(03)00207-3
10.1146/annurev.arplant.50.1.601
10.1385/ABAB:134:2:143
10.1007/s10811-012-9849-6
10.1039/C5RA26117A
10.1002/bit.24948
10.1080/13102818.2018.1562381
10.1016/j.apenergy.2014.01.044
10.1016/0076-6879(87)48036-1
10.1080/19397038.2018.1521882
10.1111/j.1365-2672.2007.03605.x
10.1016/j.bej.2017.04.001
10.3390/en6094607
10.1093/jxb/eru004
10.1111/jpy.12173
10.1007/BF00180409
10.1016/j.plaphy.2016.05.021
10.1007/s10295-013-1397-9
10.1016/j.fbp.2018.02.002
10.1080/10826068.2022.2033995
10.3354/meps034281
10.1016/j.biortech.2005.07.015
10.1016/j.algal.2016.09.010
10.1016/j.scitotenv.2018.03.240
10.1002/apj.2114
10.1016/S0923-2508(03)00029-9
10.1002/bp060065r
10.1002/app.30194
10.1080/07388551.2020.1753649
10.1016/j.nexus.2022.100042
10.1016/j.enconman.2017.05.001
10.1016/j.biortech.2010.06.158
10.1016/j.biortech.2018.09.065
10.1186/1754-6834-6-100
10.1080/17597269.2015.1045274
10.1126/science.1064082
10.1016/j.rser.2015.05.024
10.1016/j.algal.2016.03.039
10.1016/S0032-9592(02)00094-8
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7QL
7QO
7QR
7T7
7TK
7TM
8FD
C1K
FR3
M7N
P64
7X8
7S9
L.6
DOI 10.1080/10826068.2022.2119578
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1532-2297
EndPage 652
ExternalDocumentID 36093762
10_1080_10826068_2022_2119578
2119578
Genre Research Article
Journal Article
GroupedDBID ---
-~X
.7F
.QJ
0BK
0R~
123
29O
30N
36B
4.4
53G
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
ECGQY
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
.GJ
07J
1TA
AAAJW
AAPPP
ABKVM
ABZMO
ACMLV
ACYAP
ADBHG
ADOGB
ADYSH
AEUXM
AFOFI
AFWJF
AGGGY
AOWVY
AWFQP
BDVFT
BKMSO
C5E
CAG
COF
CTOBV
CXCUG
C~V
EJD
HJQDS
LZ8
NPM
NUSFT
OCADI
OEUFU
TAV
TCCYZ
TFMCV
UA2
~KM
7QL
7QO
7QR
7T7
7TK
7TM
8FD
C1K
FR3
M7N
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c427t-f0babbc96076b32ff5a51c5801d4b8b786b006cc0acba4c493f76559b74d14003
ISSN 1082-6068
1532-2297
IngestDate Fri Sep 05 17:22:30 EDT 2025
Thu Oct 02 11:43:01 EDT 2025
Wed Aug 13 11:06:18 EDT 2025
Mon Jul 21 05:27:32 EDT 2025
Wed Oct 01 01:57:48 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Mon Oct 20 23:45:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords genetic algorithm
chlorophyll
Chlorella thermophila
Artificial neural network
Taguchi orthogonal array
process engineering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-f0babbc96076b32ff5a51c5801d4b8b786b006cc0acba4c493f76559b74d14003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1841-0959
PMID 36093762
PQID 2832173732
PQPubID 196140
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_10826068_2022_2119578
informaworld_taylorfrancis_310_1080_10826068_2022_2119578
proquest_miscellaneous_2849890332
pubmed_primary_36093762
proquest_miscellaneous_2713305515
proquest_journals_2832173732
crossref_primary_10_1080_10826068_2022_2119578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Preparative biochemistry & biotechnology
PublicationTitleAlternate Prep Biochem Biotechnol
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Taguchi G. (CIT0041) 1986
Arulsudar N. (CIT0025) 2005; 8
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0060
CIT0021
CIT0020
CIT0023
CIT0022
Clark M. (CIT0004) 2011
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0006
  doi: 10.3390/molecules24010154
– ident: CIT0020
  doi: 10.1111/j.1365-2672.2006.03173.x
– ident: CIT0052
  doi: 10.3354/ame01213
– ident: CIT0028
  doi: 10.1016/j.biortech.2014.07.066
– ident: CIT0051
  doi: 10.1016/0022-0981(88)90232-8
– ident: CIT0045
  doi: 10.1016/j.algal.2018.03.015
– ident: CIT0048
  doi: 10.1155/2014/701596
– ident: CIT0002
  doi: 10.1016/j.renene.2018.07.082
– ident: CIT0022
  doi: 10.1016/j.procbio.2006.03.035
– ident: CIT0056
  doi: 10.1016/j.renene.2016.03.063
– ident: CIT0007
  doi: 10.1016/j.dyepig.2017.09.073
– volume: 8
  start-page: 243
  year: 2005
  ident: CIT0025
  publication-title: J. Pharm. Pharm. Sci.
– ident: CIT0012
  doi: 10.1007/s10499-011-9440-1
– ident: CIT0036
  doi: 10.1016/j.biortech.2015.04.017
– ident: CIT0037
  doi: 10.1002/bit.10719
– ident: CIT0032
  doi: 10.1002/ep.13378
– ident: CIT0049
  doi: 10.1002/jobm.201000095
– ident: CIT0053
  doi: 10.3390/en14030778
– ident: CIT0008
  doi: 10.1155/2010/391632
– ident: CIT0024
  doi: 10.1016/S0032-9592(03)00207-3
– ident: CIT0016
  doi: 10.1146/annurev.arplant.50.1.601
– ident: CIT0021
  doi: 10.1385/ABAB:134:2:143
– ident: CIT0040
  doi: 10.1007/s10811-012-9849-6
– ident: CIT0011
  doi: 10.1039/C5RA26117A
– ident: CIT0046
  doi: 10.1002/bit.24948
– ident: CIT0060
  doi: 10.1080/13102818.2018.1562381
– ident: CIT0038
  doi: 10.1016/j.apenergy.2014.01.044
– ident: CIT0035
  doi: 10.1016/0076-6879(87)48036-1
– ident: CIT0001
  doi: 10.1080/19397038.2018.1521882
– ident: CIT0027
  doi: 10.1111/j.1365-2672.2007.03605.x
– ident: CIT0031
  doi: 10.1016/j.bej.2017.04.001
– volume-title: Introduction to Quality Engineering: Designing Quality into Products and Processes
  year: 1986
  ident: CIT0041
– ident: CIT0010
  doi: 10.3390/en6094607
– ident: CIT0017
  doi: 10.1093/jxb/eru004
– ident: CIT0044
  doi: 10.1111/jpy.12173
– ident: CIT0026
  doi: 10.1007/BF00180409
– ident: CIT0043
  doi: 10.1016/j.plaphy.2016.05.021
– ident: CIT0058
  doi: 10.1007/s10295-013-1397-9
– ident: CIT0005
  doi: 10.1016/j.fbp.2018.02.002
– ident: CIT0039
  doi: 10.1080/10826068.2022.2033995
– ident: CIT0054
  doi: 10.3354/meps034281
– ident: CIT0019
  doi: 10.1016/j.biortech.2005.07.015
– ident: CIT0014
  doi: 10.1016/j.algal.2016.09.010
– ident: CIT0018
  doi: 10.1016/j.scitotenv.2018.03.240
– ident: CIT0013
  doi: 10.1002/apj.2114
– ident: CIT0055
  doi: 10.1016/S0923-2508(03)00029-9
– ident: CIT0030
  doi: 10.1002/bp060065r
– ident: CIT0050
  doi: 10.1002/app.30194
– ident: CIT0033
  doi: 10.1080/07388551.2020.1753649
– ident: CIT0003
  doi: 10.1016/j.nexus.2022.100042
– volume-title: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes
  year: 2011
  ident: CIT0004
– ident: CIT0034
  doi: 10.1016/j.enconman.2017.05.001
– ident: CIT0009
  doi: 10.1016/j.biortech.2010.06.158
– ident: CIT0015
  doi: 10.1016/j.biortech.2018.09.065
– ident: CIT0059
  doi: 10.1186/1754-6834-6-100
– ident: CIT0042
  doi: 10.1080/17597269.2015.1045274
– ident: CIT0029
  doi: 10.1126/science.1064082
– ident: CIT0047
  doi: 10.1016/j.rser.2015.05.024
– ident: CIT0057
  doi: 10.1016/j.algal.2016.03.039
– ident: CIT0023
  doi: 10.1016/S0032-9592(02)00094-8
SSID ssj0019718
Score 2.3218198
Snippet In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 634
SubjectTerms Algae
algorithms
Artificial neural network
Artificial neural networks
Biofuels
Biomass
Biosynthesis
Biotechnology
carbon
Carbon sources
Chlorella
Chlorella thermophila
Chlorophyll
experimental design
Fresh water
freshwater
genetic algorithm
Genetic algorithms
Inoculum
Light intensity
Luminous intensity
microalgae
Neural networks
nitrogen
Nutrients
Optimization
Orthogonal arrays
Parameters
photophase
Photosynthesis
Physicochemical properties
process engineering
Process intensification
Productivity
salt concentration
Sucrose
Taguchi orthogonal array
Urea
Title Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach
URI https://www.tandfonline.com/doi/abs/10.1080/10826068.2022.2119578
https://www.ncbi.nlm.nih.gov/pubmed/36093762
https://www.proquest.com/docview/2832173732
https://www.proquest.com/docview/2713305515
https://www.proquest.com/docview/2849890332
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-2297
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019718
  issn: 1082-6068
  databaseCode: AHDZW
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-2297
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019718
  issn: 1082-6068
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbKIiQuiH8KCzISt1VKEjtOwm1ZgVYgVkjblfYW2a5DK9oEddNDeSDejbdgJnbclC0sP5eqchzb7XwZzzjfzBDyYpKoKDJCBmzCRQD2LQ9gE47AS9HC5JlQUYbByR9OxPEZf3eenA8G33uspVWjRvrrzriSf5EqtIFcMUr2LyTrB4UG-A7yhU-QMHz-kYwdy7_N-VBdIOlnmzpoqikKtXvf_wlc7i6SbQp-eg1_8Xx-sLAVcl32WVixRCv0CHsgNQpHWi6g72wubRx7L_vzVoEAHLgGFbRwsZ0-YXnfAv64ND7duJphvS5bcK7FIDQ0l876T-Xys6WBnwLu5I5muVAzT995Pa3xBNUywJezyUwdtDxyzzSSa6tq38v52j0b7tgjZi1Flnmgji9VIOkpcTBrAnDMrF43nWKPgzi2XOBO89s0xQ7hfTUu3AGrtQiEzbF7abOx7EycDScbwSrjESbMS9Jss7t6zqO7co1cj2EDwiojLDzxL7zyNLJRm27pXbBZFr7cOcGWGbWVZPfXrlJrMo1vk1vO16GHFrh3yMBUd8kNW_10fY98c_ClP8GXwiwUQEd78KV1SS18KaCM9uBLPXyxTwdf6uFLe_B9RQ_pBry0D9522D54aQfe--Ts7Zvx0XHgyoYEmsdpE5ShkkppcM1ToVhclolMIp2AKTbhKlMpKCDYarQOpVaSa56zMhXgWKuUTyLY0tgDslfVlXlEKJoROIBRWclT8ESMBIcCDDhdljop5ZDwTgqFdjn1sbTLvIhc6t1OeAUKr3DCG5KRv-2LTSpz1Q15X8RF06K_tMAv2BX37nd4KJzuuijaAmUpS1k8JM_9ZXje8XWhrEy9gj54fhWCR5X8pk_G8ywPGY7z0GLN_yImQvB9RPz4Pxb_hNzcPPz7ZK9ZrsxT8AIa9ax9fn4A7M0KDg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGF92OhgJG4ZpXEjp1wqyqqBdo9tVJvlu3Y7IpsgrbZA_wgficzsbNskUoPPeWQ8SjWjGe-ceZByIe6MFnmhE5YzUUC-JYn4IQziFKscFUpTFZicfLJXMzO-Jfz4nynFgbTKjGG9qFRxGCr8XDjZfSYEgdPAMWpwMysPJ9ijzLQu9vkTgFgH6cYsHS-_ZNQySyUwwGSxDVjFc9VbC75p0vdS6_GoIMvOnpI7LiLkILyfbrpzdT--qfB4822-Yg8iFCVHgTdekxuufYJuRuGV_58Sn7HGgO6DFnwPt7-UdgLBVhJXbtAlcLrR9p5-g0C_n5B4XOoXTTdugMBNw1dhfm87gJplnASAPzW9BApMDELOa1XQLts9Ed6QP92nqa7wwkGth2Yv1WsK6Vjs_Rn5Ozo0-nhLIlTHxLLc9knPjXaGAuRlRSG5d4XushsAZ605qY0EvQHLIW1qbZGc8sr5qWAuMhIXkO0mLLnZK_tWveSUPQCyMCZ0nMJQNJpwIPgf633tvB6Qvgoa2VjS3SczNGoLHZOHUWgUAQqimBCpttlP0JPkOsWVLuKpPrhMsaHySmKXbN2f9Q6Fc3LhRrmS0kmWT4h77evwTDg3x7dum4DNHj9kAIgLv5DU_KqrFKGfF4Ejd7uiIkUoKvIX93g49-Re7PTk2N1_Hn-9TW5D6_YkOrM9slev964NwDoevN2OLF_AFu3Ppw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJG4ZpXEjp1wqwqr8lpxoBI3y3bs7opsUu1mD_CD-J3MxM7SIpUeesrB9ijWjGe-sedByJu6MFnmhE5YzUUC-JYnYIQz8FKscFUpTFZicvKXuTg65h-_F2M04SaGVaIP7UOhiEFX4-E-rf0YEQdfwMSpwMCsPJ9iiTIQu-vkhsBXMcziSOe7h4RKZiEbDoAkrhmTeC4ic848nSteejEEHUzR7C4x4yZCBMqP6bY3U_vrn_qOV9rlPXInAlV6ECTrPrnm2gfkZmhd-fMh-R0zDOgyxMD7ePdHYSsUQCV17QIFCi8faefpCbj7_YLC31C7aLp1B-xtGroK3XndBucs4RwA9K3pIc7AsCyktF7B3GWj39ID-rfuND3bmmAg24HyW8WsUjqWSn9Ejmfvvx0eJbHnQ2J5LvvEp0YbY8GvksKw3PtCF5ktwI7W3JRGgvSAnrA21dZobnnFvBTgFRnJa_AVU_aY7LVd654SijYACThTei4BRjoNaBCsr_XeFl5PCB9ZrWwsiI59ORqVxbqpIwsUskBFFkzIdLfsNFQEuWxBdVaOVD9cxfjQN0WxS9buj0KnonLZqKG7lGSS5RPyejcMagHfenTrui3MwcuHFOBw8Z85Ja_KKmVI50kQ6N2OmEgBuIr82RV-_hW59fXdTH3-MP_0nNyGETbEObN9stevt-4FoLnevBzO6x86Dj1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+intensification+for+the+enhancement+of+growth+and+chlorophyll+molecules+of+isolated+Chlorella+thermophila%3A+A+systematic+experimental+and+optimization+approach&rft.jtitle=Preparative+biochemistry+%26+biotechnology&rft.au=Sarkar%2C+Sreya&rft.au=Sarkar%2C+Sambit&rft.au=Bhowmick%2C+Tridib+Kumar&rft.au=Gayen%2C+Kalyan&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1082-6068&rft.eissn=1532-2297&rft.volume=53&rft.issue=6&rft.spage=634&rft.epage=652&rft_id=info:doi/10.1080%2F10826068.2022.2119578&rft.externalDocID=2119578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-6068&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-6068&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-6068&client=summon