Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach
In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis...
        Saved in:
      
    
          | Published in | Preparative biochemistry & biotechnology Vol. 53; no. 6; pp. 634 - 652 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Taylor & Francis
    
        03.07.2023
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1082-6068 1532-2297 1532-2297  | 
| DOI | 10.1080/10826068.2022.2119578 | 
Cover
| Abstract | In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m
−2
 s
−1
after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity. | 
    
|---|---|
| AbstractList | In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m⁻² s⁻¹ after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity. In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m −2 s −1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity. In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m-2 s-1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m-2 s-1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity. In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m s after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity. In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m−2 s−1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.  | 
    
| Author | Gayen, Kalyan Bhowmick, Tridib Kumar Sarkar, Sreya Sarkar, Sambit  | 
    
| Author_xml | – sequence: 1 givenname: Sreya surname: Sarkar fullname: Sarkar, Sreya organization: Department of Chemical engineering, National Institute of Technology Agartala – sequence: 2 givenname: Sambit surname: Sarkar fullname: Sarkar, Sambit organization: Department of Chemical engineering, National Institute of Technology Agartala – sequence: 3 givenname: Tridib Kumar surname: Bhowmick fullname: Bhowmick, Tridib Kumar organization: Department of Bioengineering, National Institute of Technology Agartala – sequence: 4 givenname: Kalyan orcidid: 0000-0003-1841-0959 surname: Gayen fullname: Gayen, Kalyan organization: Department of Chemical engineering, National Institute of Technology Agartala  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36093762$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkstu1DAUhi1URNuBRwBZYsMmgy9xnMCm1ahcpEqwgLVlOw5x5djB9qgMD8Rz1pnLpgu6sb34_v_4nPNfgjMfvAHgNUZrjFr0vhykQU27JoiQNcG4Y7x9Bi4wo6QipONn5V2YaoHOwWVKdwjhjuP2BTinDeoob8gF-Pc9Bm1SgtZn45MdrJbZBg-HEGEeDTR-lF6byfgMwwB_xXCfRyh9D_XoQgzzuHMOTsEZvXUmLYxNwclserhZCOOcXJziVFjr5Ad4DdMuZTOVQhqaP7OJdrGXbm8b5mwn-_fwCznPMUg9vgTPB-mSeXW8V-Dnp5sfmy_V7bfPXzfXt5WuCc_VgJRUSncN4o2iZBiYZFizFuG-Vq3ibaMQarRGUitZ67qjA28Y6xSve1wjRFfg3cG3lP29NSmLySa9tOBN2CZB2rprO0QpeRrlmFLEWFnICrx9hN6FbfSlkWJICeaU7w3fHKmtmkwv5jIWGXfitKwCfDwAOoaUohmEtnk_pxyldQIjsURDnKIhlmiIYzSKmj1Snwo8pbs66KwvmZjkfYiuF1nuym6HWLJhk6D_t3gAI5vSpQ | 
    
| CitedBy_id | crossref_primary_10_1007_s11356_024_34390_8 crossref_primary_10_1080_10826068_2023_2241898 crossref_primary_10_1515_psr_2022_0101  | 
    
| Cites_doi | 10.3390/molecules24010154 10.1111/j.1365-2672.2006.03173.x 10.3354/ame01213 10.1016/j.biortech.2014.07.066 10.1016/0022-0981(88)90232-8 10.1016/j.algal.2018.03.015 10.1155/2014/701596 10.1016/j.renene.2018.07.082 10.1016/j.procbio.2006.03.035 10.1016/j.renene.2016.03.063 10.1016/j.dyepig.2017.09.073 10.1007/s10499-011-9440-1 10.1016/j.biortech.2015.04.017 10.1002/bit.10719 10.1002/ep.13378 10.1002/jobm.201000095 10.3390/en14030778 10.1155/2010/391632 10.1016/S0032-9592(03)00207-3 10.1146/annurev.arplant.50.1.601 10.1385/ABAB:134:2:143 10.1007/s10811-012-9849-6 10.1039/C5RA26117A 10.1002/bit.24948 10.1080/13102818.2018.1562381 10.1016/j.apenergy.2014.01.044 10.1016/0076-6879(87)48036-1 10.1080/19397038.2018.1521882 10.1111/j.1365-2672.2007.03605.x 10.1016/j.bej.2017.04.001 10.3390/en6094607 10.1093/jxb/eru004 10.1111/jpy.12173 10.1007/BF00180409 10.1016/j.plaphy.2016.05.021 10.1007/s10295-013-1397-9 10.1016/j.fbp.2018.02.002 10.1080/10826068.2022.2033995 10.3354/meps034281 10.1016/j.biortech.2005.07.015 10.1016/j.algal.2016.09.010 10.1016/j.scitotenv.2018.03.240 10.1002/apj.2114 10.1016/S0923-2508(03)00029-9 10.1002/bp060065r 10.1002/app.30194 10.1080/07388551.2020.1753649 10.1016/j.nexus.2022.100042 10.1016/j.enconman.2017.05.001 10.1016/j.biortech.2010.06.158 10.1016/j.biortech.2018.09.065 10.1186/1754-6834-6-100 10.1080/17597269.2015.1045274 10.1126/science.1064082 10.1016/j.rser.2015.05.024 10.1016/j.algal.2016.03.039 10.1016/S0032-9592(02)00094-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC  | 
    
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC  | 
    
| DBID | AAYXX CITATION NPM 7QL 7QO 7QR 7T7 7TK 7TM 8FD C1K FR3 M7N P64 7X8 7S9 L.6  | 
    
| DOI | 10.1080/10826068.2022.2119578 | 
    
| DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed Biotechnology Research Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1532-2297 | 
    
| EndPage | 652 | 
    
| ExternalDocumentID | 36093762 10_1080_10826068_2022_2119578 2119578  | 
    
| Genre | Research Article Journal Article  | 
    
| GroupedDBID | --- -~X .7F .QJ 0BK 0R~ 123 29O 30N 36B 4.4 53G 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS ECGQY E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NW0 O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION .GJ 07J 1TA AAAJW AAPPP ABKVM ABZMO ACMLV ACYAP ADBHG ADOGB ADYSH AEUXM AFOFI AFWJF AGGGY AOWVY AWFQP BDVFT BKMSO C5E CAG COF CTOBV CXCUG C~V EJD HJQDS LZ8 NPM NUSFT OCADI OEUFU TAV TCCYZ TFMCV UA2 ~KM 7QL 7QO 7QR 7T7 7TK 7TM 8FD C1K FR3 M7N P64 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c427t-f0babbc96076b32ff5a51c5801d4b8b786b006cc0acba4c493f76559b74d14003 | 
    
| ISSN | 1082-6068 1532-2297  | 
    
| IngestDate | Fri Sep 05 17:22:30 EDT 2025 Thu Oct 02 11:43:01 EDT 2025 Wed Aug 13 11:06:18 EDT 2025 Mon Jul 21 05:27:32 EDT 2025 Wed Oct 01 01:57:48 EDT 2025 Thu Apr 24 22:50:46 EDT 2025 Mon Oct 20 23:45:49 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | genetic algorithm chlorophyll Chlorella thermophila Artificial neural network Taguchi orthogonal array process engineering  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c427t-f0babbc96076b32ff5a51c5801d4b8b786b006cc0acba4c493f76559b74d14003 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1841-0959 | 
    
| PMID | 36093762 | 
    
| PQID | 2832173732 | 
    
| PQPubID | 196140 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_10826068_2022_2119578 informaworld_taylorfrancis_310_1080_10826068_2022_2119578 proquest_miscellaneous_2849890332 pubmed_primary_36093762 proquest_miscellaneous_2713305515 proquest_journals_2832173732 crossref_primary_10_1080_10826068_2022_2119578  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-07-03 | 
    
| PublicationDateYYYYMMDD | 2023-07-03 | 
    
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Philadelphia  | 
    
| PublicationTitle | Preparative biochemistry & biotechnology | 
    
| PublicationTitleAlternate | Prep Biochem Biotechnol | 
    
| PublicationYear | 2023 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Taguchi G. (CIT0041) 1986 Arulsudar N. (CIT0025) 2005; 8 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0060 CIT0021 CIT0020 CIT0023 CIT0022 Clark M. (CIT0004) 2011 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028  | 
    
| References_xml | – ident: CIT0006 doi: 10.3390/molecules24010154 – ident: CIT0020 doi: 10.1111/j.1365-2672.2006.03173.x – ident: CIT0052 doi: 10.3354/ame01213 – ident: CIT0028 doi: 10.1016/j.biortech.2014.07.066 – ident: CIT0051 doi: 10.1016/0022-0981(88)90232-8 – ident: CIT0045 doi: 10.1016/j.algal.2018.03.015 – ident: CIT0048 doi: 10.1155/2014/701596 – ident: CIT0002 doi: 10.1016/j.renene.2018.07.082 – ident: CIT0022 doi: 10.1016/j.procbio.2006.03.035 – ident: CIT0056 doi: 10.1016/j.renene.2016.03.063 – ident: CIT0007 doi: 10.1016/j.dyepig.2017.09.073 – volume: 8 start-page: 243 year: 2005 ident: CIT0025 publication-title: J. Pharm. Pharm. Sci. – ident: CIT0012 doi: 10.1007/s10499-011-9440-1 – ident: CIT0036 doi: 10.1016/j.biortech.2015.04.017 – ident: CIT0037 doi: 10.1002/bit.10719 – ident: CIT0032 doi: 10.1002/ep.13378 – ident: CIT0049 doi: 10.1002/jobm.201000095 – ident: CIT0053 doi: 10.3390/en14030778 – ident: CIT0008 doi: 10.1155/2010/391632 – ident: CIT0024 doi: 10.1016/S0032-9592(03)00207-3 – ident: CIT0016 doi: 10.1146/annurev.arplant.50.1.601 – ident: CIT0021 doi: 10.1385/ABAB:134:2:143 – ident: CIT0040 doi: 10.1007/s10811-012-9849-6 – ident: CIT0011 doi: 10.1039/C5RA26117A – ident: CIT0046 doi: 10.1002/bit.24948 – ident: CIT0060 doi: 10.1080/13102818.2018.1562381 – ident: CIT0038 doi: 10.1016/j.apenergy.2014.01.044 – ident: CIT0035 doi: 10.1016/0076-6879(87)48036-1 – ident: CIT0001 doi: 10.1080/19397038.2018.1521882 – ident: CIT0027 doi: 10.1111/j.1365-2672.2007.03605.x – ident: CIT0031 doi: 10.1016/j.bej.2017.04.001 – volume-title: Introduction to Quality Engineering: Designing Quality into Products and Processes year: 1986 ident: CIT0041 – ident: CIT0010 doi: 10.3390/en6094607 – ident: CIT0017 doi: 10.1093/jxb/eru004 – ident: CIT0044 doi: 10.1111/jpy.12173 – ident: CIT0026 doi: 10.1007/BF00180409 – ident: CIT0043 doi: 10.1016/j.plaphy.2016.05.021 – ident: CIT0058 doi: 10.1007/s10295-013-1397-9 – ident: CIT0005 doi: 10.1016/j.fbp.2018.02.002 – ident: CIT0039 doi: 10.1080/10826068.2022.2033995 – ident: CIT0054 doi: 10.3354/meps034281 – ident: CIT0019 doi: 10.1016/j.biortech.2005.07.015 – ident: CIT0014 doi: 10.1016/j.algal.2016.09.010 – ident: CIT0018 doi: 10.1016/j.scitotenv.2018.03.240 – ident: CIT0013 doi: 10.1002/apj.2114 – ident: CIT0055 doi: 10.1016/S0923-2508(03)00029-9 – ident: CIT0030 doi: 10.1002/bp060065r – ident: CIT0050 doi: 10.1002/app.30194 – ident: CIT0033 doi: 10.1080/07388551.2020.1753649 – ident: CIT0003 doi: 10.1016/j.nexus.2022.100042 – volume-title: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes year: 2011 ident: CIT0004 – ident: CIT0034 doi: 10.1016/j.enconman.2017.05.001 – ident: CIT0009 doi: 10.1016/j.biortech.2010.06.158 – ident: CIT0015 doi: 10.1016/j.biortech.2018.09.065 – ident: CIT0059 doi: 10.1186/1754-6834-6-100 – ident: CIT0042 doi: 10.1080/17597269.2015.1045274 – ident: CIT0029 doi: 10.1126/science.1064082 – ident: CIT0047 doi: 10.1016/j.rser.2015.05.024 – ident: CIT0057 doi: 10.1016/j.algal.2016.03.039 – ident: CIT0023 doi: 10.1016/S0032-9592(02)00094-8  | 
    
| SSID | ssj0019718 | 
    
| Score | 2.3218198 | 
    
| Snippet | In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt... | 
    
| SourceID | proquest pubmed crossref informaworld  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 634 | 
    
| SubjectTerms | Algae algorithms Artificial neural network Artificial neural networks Biofuels Biomass Biosynthesis Biotechnology carbon Carbon sources Chlorella Chlorella thermophila Chlorophyll experimental design Fresh water freshwater genetic algorithm Genetic algorithms Inoculum Light intensity Luminous intensity microalgae Neural networks nitrogen Nutrients Optimization Orthogonal arrays Parameters photophase Photosynthesis Physicochemical properties process engineering Process intensification Productivity salt concentration Sucrose Taguchi orthogonal array Urea  | 
    
| Title | Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/10826068.2022.2119578 https://www.ncbi.nlm.nih.gov/pubmed/36093762 https://www.proquest.com/docview/2832173732 https://www.proquest.com/docview/2713305515 https://www.proquest.com/docview/2849890332  | 
    
| Volume | 53 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-2297 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019718 issn: 1082-6068 databaseCode: AHDZW dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-2297 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019718 issn: 1082-6068 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbKIiQuiH8KCzISt1VKEjtOwm1ZgVYgVkjblfYW2a5DK9oEddNDeSDejbdgJnbclC0sP5eqchzb7XwZzzjfzBDyYpKoKDJCBmzCRQD2LQ9gE47AS9HC5JlQUYbByR9OxPEZf3eenA8G33uspVWjRvrrzriSf5EqtIFcMUr2LyTrB4UG-A7yhU-QMHz-kYwdy7_N-VBdIOlnmzpoqikKtXvf_wlc7i6SbQp-eg1_8Xx-sLAVcl32WVixRCv0CHsgNQpHWi6g72wubRx7L_vzVoEAHLgGFbRwsZ0-YXnfAv64ND7duJphvS5bcK7FIDQ0l876T-Xys6WBnwLu5I5muVAzT995Pa3xBNUywJezyUwdtDxyzzSSa6tq38v52j0b7tgjZi1Flnmgji9VIOkpcTBrAnDMrF43nWKPgzi2XOBO89s0xQ7hfTUu3AGrtQiEzbF7abOx7EycDScbwSrjESbMS9Jss7t6zqO7co1cj2EDwiojLDzxL7zyNLJRm27pXbBZFr7cOcGWGbWVZPfXrlJrMo1vk1vO16GHFrh3yMBUd8kNW_10fY98c_ClP8GXwiwUQEd78KV1SS18KaCM9uBLPXyxTwdf6uFLe_B9RQ_pBry0D9522D54aQfe--Ts7Zvx0XHgyoYEmsdpE5ShkkppcM1ToVhclolMIp2AKTbhKlMpKCDYarQOpVaSa56zMhXgWKuUTyLY0tgDslfVlXlEKJoROIBRWclT8ESMBIcCDDhdljop5ZDwTgqFdjn1sbTLvIhc6t1OeAUKr3DCG5KRv-2LTSpz1Q15X8RF06K_tMAv2BX37nd4KJzuuijaAmUpS1k8JM_9ZXje8XWhrEy9gj54fhWCR5X8pk_G8ywPGY7z0GLN_yImQvB9RPz4Pxb_hNzcPPz7ZK9ZrsxT8AIa9ax9fn4A7M0KDg | 
    
| linkProvider | Taylor & Francis | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGF92OhgJG4ZpXEjp1wqyqqBdo9tVJvlu3Y7IpsgrbZA_wgficzsbNskUoPPeWQ8SjWjGe-ceZByIe6MFnmhE5YzUUC-JYn4IQziFKscFUpTFZicfLJXMzO-Jfz4nynFgbTKjGG9qFRxGCr8XDjZfSYEgdPAMWpwMysPJ9ijzLQu9vkTgFgH6cYsHS-_ZNQySyUwwGSxDVjFc9VbC75p0vdS6_GoIMvOnpI7LiLkILyfbrpzdT--qfB4822-Yg8iFCVHgTdekxuufYJuRuGV_58Sn7HGgO6DFnwPt7-UdgLBVhJXbtAlcLrR9p5-g0C_n5B4XOoXTTdugMBNw1dhfm87gJplnASAPzW9BApMDELOa1XQLts9Ed6QP92nqa7wwkGth2Yv1WsK6Vjs_Rn5Ozo0-nhLIlTHxLLc9knPjXaGAuRlRSG5d4XushsAZ605qY0EvQHLIW1qbZGc8sr5qWAuMhIXkO0mLLnZK_tWveSUPQCyMCZ0nMJQNJpwIPgf633tvB6Qvgoa2VjS3SczNGoLHZOHUWgUAQqimBCpttlP0JPkOsWVLuKpPrhMsaHySmKXbN2f9Q6Fc3LhRrmS0kmWT4h77evwTDg3x7dum4DNHj9kAIgLv5DU_KqrFKGfF4Ejd7uiIkUoKvIX93g49-Re7PTk2N1_Hn-9TW5D6_YkOrM9slev964NwDoevN2OLF_AFu3Ppw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJG4ZpXEjp1wqwqr8lpxoBI3y3bs7opsUu1mD_CD-J3MxM7SIpUeesrB9ijWjGe-sedByJu6MFnmhE5YzUUC-JYnYIQz8FKscFUpTFZicvKXuTg65h-_F2M04SaGVaIP7UOhiEFX4-E-rf0YEQdfwMSpwMCsPJ9iiTIQu-vkhsBXMcziSOe7h4RKZiEbDoAkrhmTeC4ic848nSteejEEHUzR7C4x4yZCBMqP6bY3U_vrn_qOV9rlPXInAlV6ECTrPrnm2gfkZmhd-fMh-R0zDOgyxMD7ePdHYSsUQCV17QIFCi8faefpCbj7_YLC31C7aLp1B-xtGroK3XndBucs4RwA9K3pIc7AsCyktF7B3GWj39ID-rfuND3bmmAg24HyW8WsUjqWSn9Ejmfvvx0eJbHnQ2J5LvvEp0YbY8GvksKw3PtCF5ktwI7W3JRGgvSAnrA21dZobnnFvBTgFRnJa_AVU_aY7LVd654SijYACThTei4BRjoNaBCsr_XeFl5PCB9ZrWwsiI59ORqVxbqpIwsUskBFFkzIdLfsNFQEuWxBdVaOVD9cxfjQN0WxS9buj0KnonLZqKG7lGSS5RPyejcMagHfenTrui3MwcuHFOBw8Z85Ja_KKmVI50kQ6N2OmEgBuIr82RV-_hW59fXdTH3-MP_0nNyGETbEObN9stevt-4FoLnevBzO6x86Dj1A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+intensification+for+the+enhancement+of+growth+and+chlorophyll+molecules+of+isolated+Chlorella+thermophila%3A+A+systematic+experimental+and+optimization+approach&rft.jtitle=Preparative+biochemistry+%26+biotechnology&rft.au=Sarkar%2C+Sreya&rft.au=Sarkar%2C+Sambit&rft.au=Bhowmick%2C+Tridib+Kumar&rft.au=Gayen%2C+Kalyan&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1082-6068&rft.eissn=1532-2297&rft.volume=53&rft.issue=6&rft.spage=634&rft.epage=652&rft_id=info:doi/10.1080%2F10826068.2022.2119578&rft.externalDocID=2119578 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-6068&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-6068&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-6068&client=summon |