Proportional-Integral-Derivative Controller Based-Artificial Rabbits Algorithm for Load Frequency Control in Multi-Area Power Systems

A major problem in power systems is achieving a match between the load demand and generation demand, where security, dependability, and quality are critical factors that need to be provided to power producers. This paper proposes a proportional–integral–derivative (PID) controller that is optimally...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 7; no. 1; p. 97
Main Authors El-Sehiemy, Ragab, Shaheen, Abdullah, Ginidi, Ahmed, Al-Gahtani, Saad F.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text
ISSN2504-3110
2504-3110
DOI10.3390/fractalfract7010097

Cover

Abstract A major problem in power systems is achieving a match between the load demand and generation demand, where security, dependability, and quality are critical factors that need to be provided to power producers. This paper proposes a proportional–integral–derivative (PID) controller that is optimally designed using a novel artificial rabbits algorithm (ARA) for load frequency control (LFC) in multi-area power systems (MAPSs) of two-area non-reheat thermal systems. The PID controller incorporates a filter with such a derivative coefficient to reduce the effects of the accompanied noise. In this regard, single objective function is assessed based on time-domain simulation to minimize the integral time-multiplied absolute error (ITAE). The proposed ARA adjusts the PID settings to their best potential considering three dissimilar test cases with different sets of disturbances, and the results from the designed PID controller based on the ARA are compared with various published techniques, including particle swarm optimization (PSO), differential evolution (DE), JAYA optimizer, and self-adaptive multi-population elitist (SAMPE) JAYA. The comparisons show that the PID controller’s design, which is based on the ARA, handles the load frequency regulation in MAPSs for the ITAE minimizations with significant effectiveness and success where the statistical analysis confirms its superiority. Considering the load change in area 1, the proposed ARA can acquire significant percentage improvements in the ITAE values of 1.949%, 3.455%, 2.077% and 1.949%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering the load change in area 2, the proposed ARA can acquire significant percentage improvements in the ITAE values of 7.587%, 8.038%, 3.322% and 2.066%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering simultaneous load changes in areas 1 and 2, the proposed ARA can acquire significant improvements in the ITAE values of 60.89%, 38.13%, 55.29% and 17.97%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA.
AbstractList A major problem in power systems is achieving a match between the load demand and generation demand, where security, dependability, and quality are critical factors that need to be provided to power producers. This paper proposes a proportional–integral–derivative (PID) controller that is optimally designed using a novel artificial rabbits algorithm (ARA) for load frequency control (LFC) in multi-area power systems (MAPSs) of two-area non-reheat thermal systems. The PID controller incorporates a filter with such a derivative coefficient to reduce the effects of the accompanied noise. In this regard, single objective function is assessed based on time-domain simulation to minimize the integral time-multiplied absolute error (ITAE). The proposed ARA adjusts the PID settings to their best potential considering three dissimilar test cases with different sets of disturbances, and the results from the designed PID controller based on the ARA are compared with various published techniques, including particle swarm optimization (PSO), differential evolution (DE), JAYA optimizer, and self-adaptive multi-population elitist (SAMPE) JAYA. The comparisons show that the PID controller’s design, which is based on the ARA, handles the load frequency regulation in MAPSs for the ITAE minimizations with significant effectiveness and success where the statistical analysis confirms its superiority. Considering the load change in area 1, the proposed ARA can acquire significant percentage improvements in the ITAE values of 1.949%, 3.455%, 2.077% and 1.949%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering the load change in area 2, the proposed ARA can acquire significant percentage improvements in the ITAE values of 7.587%, 8.038%, 3.322% and 2.066%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA. Considering simultaneous load changes in areas 1 and 2, the proposed ARA can acquire significant improvements in the ITAE values of 60.89%, 38.13%, 55.29% and 17.97%, respectively, with regard to PSO, DE, JAYA and SAMPE-JAYA.
Audience Academic
Author Al-Gahtani, Saad F.
Shaheen, Abdullah
El-Sehiemy, Ragab
Ginidi, Ahmed
Author_xml – sequence: 1
  givenname: Ragab
  orcidid: 0000-0002-3340-4031
  surname: El-Sehiemy
  fullname: El-Sehiemy, Ragab
– sequence: 2
  givenname: Abdullah
  orcidid: 0000-0002-1106-2800
  surname: Shaheen
  fullname: Shaheen, Abdullah
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0001-7379-6060
  surname: Ginidi
  fullname: Ginidi, Ahmed
– sequence: 4
  givenname: Saad F.
  orcidid: 0000-0001-7686-871X
  surname: Al-Gahtani
  fullname: Al-Gahtani, Saad F.
BookMark eNqNkdtuFDEMhkeoSJTSJ-BmJK6n5DSTmctloWWlRa04XEdOxlmyyk6WJNtqH4D3Ju0AQhUSyBe2LP-fbP_Pq5MpTFhVLym54Hwgr20Ek8E_JEkoIYN8Up2yloiGU0pO_qifVecpbQkhTA68JfK0-n4Twz7E7MIEvllNGTexFG8xulvI7hbrZZhyDN5jrN9AwrFZlGnrjANffwStXU71wm9CdPnrrrYh1usAY30Z8dsBJ3P8BajdVH84-OwKAKG-CXeF-OmYMu7Si-qpBZ_w_Gc-q75cvvu8fN-sr69Wy8W6MYLJ3ABtBwMIxgB0nHOwTHM6dqOm2nAi-pEzAIvlQCstYIdWi7an40BJNzDkZ9Vq5o4Btmof3Q7iUQVw6qER4kZBuc54VFZ0bARkhqERWupC65kxTI996fS6sMTMOkx7ON6B97-BlKh7Z9RfnCmyV7NsH0N5UMpqGw6xPD8pJjvJSC9FW6Yu5qkNlF3cZEMukBIj7pwp_ltX-gvZMkpbIUgRDLPAxJBSRKuMy3BvaxE6_4-V-CPt_xzyA3RGzGU
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122460
crossref_primary_10_1109_ACCESS_2024_3417709
crossref_primary_10_1038_s41598_024_70886_6
crossref_primary_10_3390_machines12090640
crossref_primary_10_3390_fractalfract8030132
crossref_primary_10_1007_s11831_024_10202_7
crossref_primary_10_1038_s41598_024_74051_x
crossref_primary_10_1155_2024_8913560
crossref_primary_10_3390_en17020517
crossref_primary_10_3390_en17092000
crossref_primary_10_3390_eng4030103
crossref_primary_10_1109_JIOT_2024_3373563
crossref_primary_10_3390_su15118966
crossref_primary_10_3390_en16083417
crossref_primary_10_1016_j_est_2024_110606
crossref_primary_10_1155_er_6874402
crossref_primary_10_37391_ijeer_110310
crossref_primary_10_3390_math11081796
crossref_primary_10_1016_j_rineng_2024_102936
crossref_primary_10_3390_en17163962
crossref_primary_10_2516_stet_2024034
crossref_primary_10_1016_j_asoc_2023_110881
crossref_primary_10_3390_app14198631
crossref_primary_10_1109_ACCESS_2024_3445165
crossref_primary_10_3390_fractalfract8060323
crossref_primary_10_1002_eng2_70028
crossref_primary_10_3390_su16093808
crossref_primary_10_1016_j_ref_2024_100676
crossref_primary_10_1038_s41598_025_86597_5
crossref_primary_10_1007_s00202_024_02653_9
crossref_primary_10_1007_s11045_024_00889_z
Cites_doi 10.3390/fractalfract6090485
10.1016/j.ijepes.2009.09.004
10.4028/www.scientific.net/JERA.50.79
10.1016/j.ijepes.2013.10.022
10.3390/designs5030050
10.1109/TFUZZ.2020.2965884
10.1016/j.conengprac.2021.105058
10.3390/en14175387
10.1109/ACCESS.2018.2826015
10.3390/math9070712
10.1080/15325008.2014.933372
10.3390/en15186788
10.3390/math10132278
10.1109/SPICES.2015.7091560
10.1016/j.ijepes.2015.06.005
10.1016/j.ijepes.2015.05.050
10.3390/su132112095
10.1080/15325008.2019.1576242
10.1007/s00521-020-05599-8
10.3390/fractalfract6040220
10.1007/s00521-016-2361-1
10.1016/j.ijepes.2013.04.007
10.1016/j.asoc.2013.07.021
10.1016/j.asej.2012.10.010
10.1109/TSMC.2020.3004659
10.3390/inventions7040086
10.1016/j.ijepes.2013.02.030
10.1016/j.engappai.2022.105082
10.1016/j.ijepes.2010.08.036
10.1155/2022/9448199
10.3390/fractalfract6100548
10.1016/j.engappai.2017.01.008
10.1016/j.ijepes.2013.09.034
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/fractalfract7010097
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_f462dae2c2ec4b7bae682cc2bd82ec8b
10.3390/fractalfract7010097
A752115440
10_3390_fractalfract7010097
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c427t-a159caeaccaa6333af2b31d6db1bc3048d32aafe000f7fae6efb4581d910692e3
IEDL.DBID UNPAY
ISSN 2504-3110
IngestDate Fri Oct 03 12:51:13 EDT 2025
Sun Oct 26 03:58:16 EDT 2025
Fri Jul 25 12:05:19 EDT 2025
Mon Oct 20 16:28:40 EDT 2025
Thu Oct 16 04:38:05 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-a159caeaccaa6333af2b31d6db1bc3048d32aafe000f7fae6efb4581d910692e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1106-2800
0000-0002-3340-4031
0000-0001-7379-6060
0000-0001-7686-871X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2504-3110/7/1/97/pdf?version=1673863673
PQID 2767208745
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_f462dae2c2ec4b7bae682cc2bd82ec8b
unpaywall_primary_10_3390_fractalfract7010097
proquest_journals_2767208745
gale_infotracacademiconefile_A752115440
crossref_citationtrail_10_3390_fractalfract7010097
crossref_primary_10_3390_fractalfract7010097
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ali (ref_10) 2013; 51
Sharma (ref_17) 2015; 73
Ginidi (ref_22) 2022; 2022
Dash (ref_19) 2014; 55
Yang (ref_20) 2020; 29
Saikia (ref_13) 2013; 53
Abdelaziz (ref_18) 2015; 73
Jagatheesan (ref_5) 2016; 28
Shaheen (ref_9) 2020; 50
ref_32
ref_31
ref_30
Bhatt (ref_6) 2010; 32
Shaheen (ref_23) 2021; 33
Xu (ref_29) 2018; 6
ref_16
Rout (ref_7) 2013; 4
Hasan (ref_4) 2019; 47
Naidu (ref_14) 2014; 55
Yang (ref_21) 2020; 51
Padhan (ref_12) 2014; 42
Saikia (ref_11) 2011; 33
Shaheen (ref_33) 2022; 121
Panda (ref_8) 2013; 13
ref_25
ref_24
Wang (ref_28) 2022; 114
ref_1
ref_3
ref_2
ref_27
ref_26
Singh (ref_15) 2017; 60
References_xml – ident: ref_30
  doi: 10.3390/fractalfract6090485
– volume: 32
  start-page: 299
  year: 2010
  ident: ref_6
  article-title: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2009.09.004
– volume: 50
  start-page: 79
  year: 2020
  ident: ref_9
  article-title: Optimal Design of PID Controller Based Sampe-Jaya Algorithm for Load Frequency Control of Linear and Nonlinear Multi-Area Thermal Power Systems
  publication-title: Int. J. Eng. Res. Afr.
  doi: 10.4028/www.scientific.net/JERA.50.79
– volume: 55
  start-page: 657
  year: 2014
  ident: ref_14
  article-title: Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.10.022
– ident: ref_27
  doi: 10.3390/designs5030050
– volume: 29
  start-page: 772
  year: 2020
  ident: ref_20
  article-title: Adaptive Fuzzy Fault-Tolerant Control for Markov Jump Systems With Additive and Multiplicative Actuator Faults
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2965884
– volume: 121
  start-page: 105058
  year: 2022
  ident: ref_33
  article-title: Design of cascaded controller based on coyote optimizer for load frequency control in multi-area power systems with renewable sources
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2021.105058
– ident: ref_24
  doi: 10.3390/en14175387
– volume: 6
  start-page: 29067
  year: 2018
  ident: ref_29
  article-title: Load Frequency Control of a Novel Renewable Energy Integrated Micro-Grid Containing Pumped Hydropower Energy Storage
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2826015
– ident: ref_26
  doi: 10.3390/math9070712
– volume: 42
  start-page: 1419
  year: 2014
  ident: ref_12
  article-title: Application of Firefly Algorithm for Load Frequency Control of Multi-area Interconnected Power System
  publication-title: Electr. Power Components Syst.
  doi: 10.1080/15325008.2014.933372
– ident: ref_31
  doi: 10.3390/en15186788
– ident: ref_3
  doi: 10.3390/math10132278
– ident: ref_16
  doi: 10.1109/SPICES.2015.7091560
– volume: 73
  start-page: 853
  year: 2015
  ident: ref_17
  article-title: Automatic generation control of a multi-area ST—Thermal power system using Grey Wolf Optimizer algorithm based classical controllers
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.06.005
– volume: 73
  start-page: 632
  year: 2015
  ident: ref_18
  article-title: Cuckoo Search algorithm based load frequency controller design for nonlinear interconnected power system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.050
– ident: ref_25
  doi: 10.3390/su132112095
– volume: 47
  start-page: 101
  year: 2019
  ident: ref_4
  article-title: Hybrid Taguchi Genetic Algorithm-Based AGC Controller for Multisource Interconnected Power System
  publication-title: Electr. Power Components Syst.
  doi: 10.1080/15325008.2019.1576242
– volume: 33
  start-page: 8459
  year: 2021
  ident: ref_23
  article-title: Enhanced coyote optimizer-based cascaded load frequency controllers in multi-area power systems with renewable
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05599-8
– ident: ref_2
  doi: 10.3390/fractalfract6040220
– volume: 28
  start-page: 475
  year: 2016
  ident: ref_5
  article-title: Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2361-1
– volume: 53
  start-page: 27
  year: 2013
  ident: ref_13
  article-title: Automatic generation control of a combined cycle gas turbine plant with classical controllers using Firefly Algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.04.007
– volume: 13
  start-page: 4718
  year: 2013
  ident: ref_8
  article-title: Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.021
– volume: 4
  start-page: 409
  year: 2013
  ident: ref_7
  article-title: Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2012.10.010
– volume: 51
  start-page: 3687
  year: 2020
  ident: ref_21
  article-title: Neural Network-Based Adaptive Fault-Tolerant Control for Markovian Jump Systems with Nonlinearity and Actuator Faults
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3004659
– ident: ref_32
  doi: 10.3390/inventions7040086
– volume: 51
  start-page: 224
  year: 2013
  ident: ref_10
  article-title: BFOA based design of PID controller for two area Load Frequency Control with nonlinearities
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.02.030
– volume: 114
  start-page: 105082
  year: 2022
  ident: ref_28
  article-title: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105082
– volume: 33
  start-page: 394
  year: 2011
  ident: ref_11
  article-title: Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2010.08.036
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_22
  article-title: Optimal Power Flow Incorporating Thyristor-Controlled Series Capacitors Using the Gorilla Troops Algorithm
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2022/9448199
– ident: ref_1
  doi: 10.3390/fractalfract6100548
– volume: 60
  start-page: 35
  year: 2017
  ident: ref_15
  article-title: Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.008
– volume: 55
  start-page: 429
  year: 2014
  ident: ref_19
  article-title: Comparison of performances of several Cuckoo search algorithm based 2DOF controllers in AGC of multi-area thermal system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.09.034
SSID ssj0002793507
Score 2.4604573
Snippet A major problem in power systems is achieving a match between the load demand and generation demand, where security, dependability, and quality are critical...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 97
SubjectTerms Algorithms
Analysis
artificial rabbits algorithm
Control systems design
Controllers
Design
Electric power systems
Electric utilities
Electrical loads
Elitism
Evolutionary computation
Frequency control
load frequency control
Mathematical optimization
Optimization algorithms
Optimization techniques
Particle swarm optimization
Plant reproduction
Power plants
Proportional integral derivative
proportional–integral–derivative controller
Rabbits
Statistical analysis
Time domain analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL7QHBC0VKQX5gMQFqxs7sZPjtrAqCFCFqNSbNXZs2CrNVtkU1B_A_2ZsZ1crtQIOnKJEjuXMh_3GGb8h5NWkhrypS8u8BMkK7wSr1cTjrUN0ANxWNmZbfJan58WHi_Jio9RXyAlL9MBJcEe-kLwBxy13tjDKgJMVt5abpsInlQmz76SqN4Kpy_g7rRaIdBLNkMC4_siHQ0fQxovCICTSPG0sRZGx_-68vEMe3nTXcPsT2nZj4Zk9Jo9GxEinaaRPyAPX7ZKdT2u61eUe-XUWah30aVuPvU8MEC17i9b1IxJ705OUkd66nh7jutWw0F0ij6BfwJj5sKTT9tuinw_frygCWfpxAQ2d9SnT-nbVAZ13NJ7ZxQ4c0LNQY42OrOdPyfns3deTUzbWV2C24GpggFDGAs68FkAKIcBzI_JQYSo3VqBrN4IDeIfy9Mqj4J03RYkAFyGGrLkT-2SrW3TuGaEAQpVNYwrwAiPS3LiwvYoK4jwHK21G-ErU2o7k46EGRqsxCAn60ffoJyNv1i9dJ-6NPzc_DjpcNw3E2fEBmpMezUn_zZwy8jpYgA7ujQO0MJ5SwM8MRFl6qhDvBAajSUYOV0aiR79faq6kQnNURZkRtjacfxn9wf8Y_XOyzRGEpS2iQ7I19DfuBYKmwbyM_vEbThweEw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6QDxFoCAfkLhgddfOJrsHhHZLVwXBalVRqbdo_GorheySTUH9AfxvZvKiEqjiFMVyLNszHn-eeL4BeD2c4shNx1aGBBMZB6_lNB0GevWEDlDZia1vWyyT49P409n4bAeWXSwMX6vsbGJtqN3aso_8QKVJqoZMzv5-811y1ij-u9ql0MA2tYJ7V1OM3YFdxcxYA9idHy1XJ73XRZE6EgJq6Ic0nfcPAgcjYV4_Ujqc1PRPN7aomsn_b3u9B3evig1e_8Q8v7EhLR7A_RZJilkj-oew44tHsPelp2HdPoZfK86BUDbuPvmxYYbI5QfSuh814bc4bG6q574Uc9rPnOTmGlIJcYLGXFZbMcvPaSKqi2-CAK74vEYnFmVzA_u6a0BcFqKO5aUGPIoV514TLRv6EzhdHH09PJZt3gVpY5VWEgniWCSLbBETrTUGZfSIM0-NjNW05J1WiMHTfIY0oE98MPGYgC9Bj2SqvH4Kg2Jd-GcgEHU6ds7EGDSdVEfGs9tVeavUCG1iI1DdVGe2JSXn3Bh5RocTlk_2D_lE8Lb_aNNwctxefc4y7KsyoXZdsC7Ps3Z9ZiFOlEOvLPUtNqmhUU2Utcq4CZVMTARvWAMyXvbUQYtt9AINkwm0sllKOIiZjYYR7HdKkrX2YJv90d4IZK84_9P757c39wLuKYJdjVNoHwZVeeVfEkyqzKtW938Dq-QZ2A
  priority: 102
  providerName: ProQuest
Title Proportional-Integral-Derivative Controller Based-Artificial Rabbits Algorithm for Load Frequency Control in Multi-Area Power Systems
URI https://www.proquest.com/docview/2767208745
https://www.mdpi.com/2504-3110/7/1/97/pdf?version=1673863673
https://doaj.org/article/f462dae2c2ec4b7bae682cc2bd82ec8b
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: 8FG
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9t7QPsgW9Ex6j8gMQLWRs7iVsJCbVjZSCoqolK4wFFZ8ceFVlapenQeOf_5pyPagKEgJdEsRzrLJ_PvzudfwfwtD9EPxmG2rMRRl5gjfCGsm_p0xA6QK4Husy2mEYn8-DtWXi2Ay-auzAurZJc8UVppB29FhkJv9-TPb83lL1VYl9e1nEkv6xXKei5C-0oJCTegvZ8Oht9dPXkmj8roiFBnn3PumtHmJYvSW5ISfR07TAqOft_tcx7cGOTrfDqK6bptaNnchs-NUJXGSdfDjeFOtTffuJz_N9Z3YFbNSZlo0qJ7sKOye7B3vstoev6PnyfuWoKeRU49N5UHBOp94r097KkDmdHVc57anI2ppMx8dxwFT0FO0WlFsWajdLzZb4oPl8wgsrs3RITNsmrXO6rZgC2yFh5K5gGMMhmroobq3nVH8B8cvzh6MSrKzh4OuCy8JDAkkay7RoxEkKg5Ur4roaVr7Qg45EIjmgN2WUrLZrIWBWEBKEJxERDbsRDaGXLzDwChihkmCQqQCvI5_WVcQFcbjTnPupId4A3Sxnrmt7cVdlIY3Jz3PrHv1n_Djzf_rSq2D3-3H3sdGTb1VFzlw3L_Dyud3psg4gnaLgm2QIlFc1qwLXmKhlQy0B14JnTsNgZEBJQY30PgqbpqLjikSRE5TiS-h04aJQwri3LOuYykrzvihR0wNsq5t9Iv_-P_R_DTU6Iroo3HUCryDfmCSGwQnVhdzB53YX2-Hg6O-2WcYxuvfl-AHOgNu8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOVZ_ClLZ7aNVLV9i7jh0fUJUAUVJCFCGQuLmz612K5CYhMUX5Af1b_W2d9SNFaoV64RTFckZrz-y8svN9AO_9BIMsaWluI4x4aI3kSexb-mooO0Ch27o8bTGK-ufhl4vWxRr8amZh3LHKxieWjjqbatcj3xNxFAvfgbN_nl1zxxrl_l1tKDSwplbI9kuIsXqw49gsb6mEW-wPDknfH4ToHZ0d9HnNMsB1KOKCIwV0jeR_NGIkpUQrlAwcz1KgNBX77UwKRGvId9jYoomMVWGL0jwKtFEijCS5j2AjlGFCxd9G92g0Pl11eQSZP2VcFdyRlIm_Z93wE-blR0zFUAk3dScklswBf8eHLdi8mcxweYt5ficA9p7CkzpzZZ3K1J7Bmpk8h62TFezr4gX8HDvOhXnVXuSDCoki54dk5T9KgHF2UJ2Mz82cdSl-ZtyJq0As2CkqdVUsWCe_pBdffPvOKKFmwylmrDevTnwvGwHsasLK2WESYJCNHdcbq9HXX8L5g2jgFaxPphOzDQxRxq0sUyFaSZVxoIxr8wqjhQhQR9oD0bzqVNcg6I6LI0-pGHL6Sf-hHw8-rX40qzBA7r-963S4utUBeJcXpvPLtPYHqQ0jkaERmtYWqljRU7WF1kJlbbrSVh58dBaQOjdDC9RYT0vQYzrArrQTU97lkJR8D3YbI0lr_7NI_-wWD_jKcP5n9Tv3i3sHm_2zk2E6HIyOX8NjQSlf1ZDahfVifmPeUIpWqLf1PmDw9aG33m9Vl1jo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ4iUGAPIC6sYu86dnJAKG0IDS1VhKjUm5ld75ZKJgmJS5UfwJ_i1zHjF5VAFZeeLFv2aB-z8_LMNwAvggGG2aBnpY8xlpF3Wg6SwNOtI-sAle3bMtviMN47ij4c94434FdTC8NplY1MLAV1NrccI--qJE5UwODsXV-nRUxH47eL75I7SPGf1qadRsUi-259Tu7b6s1kRHv9Uqnxu8-7e7LuMCBtpJJCIilziyR7LGKstUavjA65x1JoLDn6_UwrRO9IbvjEo4udN1GPTDxSsvFAOU10r8H1hFHcuUp9_L6N7yhifLK1KqAjrQdB13PZE-blJSE3qASauqAMy54Bf2uGLbh5Nlvg-hzz_ILqG9-B27XNKoYVk92FDTe7B1sfW8DX1X34OeVuC8sqsCgnFQZFLkfE3z9KaHGxW-XE524pdkhzZpLJVfAV4hMac1qsxDA_oWUuvn4TZEqLgzlmYryscr3XDQFxOhNl1TARcCim3OVN1LjrD-DoStb_IWzO5jP3CASiTnpZZiL0mnzi0DgO8CpnlQrRxrYDqlnq1Nbw59yFI0_JDeL9Sf-xPx143X60qNA_Ln99h_ewfZWhu8sH8-VJWkuC1EexytApS2OLTGJoVn1lrTJZn570TQdeMQekLGBogBbrOgmaJkN1pcOELC7GUAo6sN0wSVpLnlX655x0QLaM8z-jf3w5uedwgw5cejA53H8CtxTZelUkahs2i-WZe0q2WWGelYdAwJerPnW_ARE-VoI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OvQe9B78Pq6fkQfDFXrdJ22xBkL3T5RQ9FnHhfJAySZNzuV536XZPznf_byf9WA4VUV9aGtIwIZPJb8LMbwCeDlMM8zTWvk0w8SNrhJ_KoaVPQ-gAuR7pJtriODmaRW9P4pMteNHnwriwSnLF542RdvRaZCTCYSCDMEhlsMzty4vuHils6lUKel6D7SQmJD6A7dnxdPzJ1ZPr_2yJhgR59oF1aUdYNC9JbkhD9HTlMGo4-3-1zDtwfV0u8fIrFsWVo2dyCz73QrcRJ2f761rt628_8Tn-76xuw80Ok7Jxq0R3YMuUd2Hn_YbQdXUPvk9dNYWqvTj037QcE4X_ivT3oqEOZ4dtzHthKnZAJ2Puu-Faegr2AZWa1ys2Lk4X1bz-cs4IKrN3C8zZpGpjuS_7Adi8ZE1WMA1gkE1dFTfW8arfh9nk9cfDI7-r4ODriMvaRwJLGsm2a8RECIGWKxG6Glah0oKMRy44ojVkl620aBJjVRQThCYQk6TciF0YlIvSPACGKGSc5ypCK8jnDZVxF7jcaM5D1In2gPdLmemO3txV2SgycnPc-me_WX8Pnm9-WrbsHn_ufuB0ZNPVUXM3DYvqNOt2emajhOdouCbZIiUVzWrEteYqH1HLSHnwzGlY5gwICaixy4OgaToqrmwsCVE5jqShB3u9EmadZVllXCaSD12RAg_8jWL-jfQP_7H_I7jBCdG19017MKirtXlMCKxWT7qN9gNT1jN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proportional-Integral-Derivative+Controller+Based-Artificial+Rabbits+Algorithm+for+Load+Frequency+Control+in+Multi-Area+Power+Systems&rft.jtitle=Fractal+and+fractional&rft.au=El-Sehiemy%2C+Ragab&rft.au=Shaheen%2C+Abdullah&rft.au=Ginidi%2C+Ahmed&rft.au=Al-Gahtani%2C+Saad+F&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=7&rft.issue=1&rft_id=info:doi/10.3390%2Ffractalfract7010097&rft.externalDocID=A752115440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon