Analysis of high density expression microarrays with signed-rank call algorithms
Motivation: We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target c...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 18; no. 12; pp. 1593 - 1599 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press
01.12.2002
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1367-4811 |
| DOI | 10.1093/bioinformatics/18.12.1593 |
Cover
| Abstract | Motivation: We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions.
Results: We present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation.
Availability: These algorithms are available commercially as part of the MAS 5.0 software package.
Contact: wei-min_liu@affymetrix.com
* To whom correspondence should be addressed.
† Current address: Mail Code CR145, Oregon Health Sciences University, Portland, OR 79201 |
|---|---|
| AbstractList | We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions.MOTIVATIONWe consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions.We present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation.RESULTSWe present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation. Motivation: We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions. Results: We present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation. Availability: These algorithms are available commercially as part of the MAS 5.0 software package. Contact: wei-min_liu@affymetrix.com * To whom correspondence should be addressed. † Current address: Mail Code CR145, Oregon Health Sciences University, Portland, OR 79201 We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions. We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions. We present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation. |
| Author | Ryder, T. B. Webster, T. A. Mei, R. Liu, W.-m Harrington, C. A. Ho, M.-h. Dee, S. Di, X. Hubbell, E. Smeekens, S. P. Baid, J. |
| Author_xml | – sequence: 1 givenname: W.-m surname: Liu fullname: Liu, W.-m – sequence: 2 givenname: R. surname: Mei fullname: Mei, R. – sequence: 3 givenname: X. surname: Di fullname: Di, X. – sequence: 4 givenname: T. B. surname: Ryder fullname: Ryder, T. B. – sequence: 5 givenname: E. surname: Hubbell fullname: Hubbell, E. – sequence: 6 givenname: S. surname: Dee fullname: Dee, S. – sequence: 7 givenname: T. A. surname: Webster fullname: Webster, T. A. – sequence: 8 givenname: C. A. surname: Harrington fullname: Harrington, C. A. – sequence: 9 givenname: M.-h. surname: Ho fullname: Ho, M.-h. – sequence: 10 givenname: J. surname: Baid fullname: Baid, J. – sequence: 11 givenname: S. P. surname: Smeekens fullname: Smeekens, S. P. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14492919$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12490443$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkMFu1DAQhi1URNuFV0DmALdsbcdJbC6oqoBWqgQHOFsTx941JPbiyarN2-NqV1RwAU5jab5_9Ps7JycxRUfIK87WnOn6og8pRJ_yBHOweMHVmos1b3T9hJzxuu0qqTg_-fVm9Sk5R_zGGGtY0z4jp1xIzaSsz8jnywjjggFp8nQbNls6uIhhXqi732WHGFKkU7A5Qc6wIL0L85Zi2EQ3VBnid2phHCmMm5TLZsLn5KmHEd2L41yRrx_ef7m6rm4_fby5urytrBTdXOm-H3TXWuX7phPeQesFNNBbAb1kvOXAGt15N4jBDZ1qwHvHlNPMyq4G4PWKvD3c3ccdLHelhNnlMEFeDGfmQZP5XZPhynBhHjSV8JtDeJfTj73D2UwBrRtHiC7t0XSiUy1TzV9BrlrFVam0Ii-P4L6f3PDY5Wi6AK-PAGBR5os7G_CRk1ILzXXh9IEryhGz8__1rXd_ZG2YC5XinCGM_3DhJyQHvvE |
| CitedBy_id | crossref_primary_10_1093_pcp_pcs164 crossref_primary_10_1165_rcmb_2007_0354OC crossref_primary_10_1016_j_ydbio_2005_09_008 crossref_primary_10_1104_pp_105_065896 crossref_primary_10_1186_s11689_022_09427_z crossref_primary_10_1101_gr_4237406 crossref_primary_10_1111_j_1474_9726_2009_00467_x crossref_primary_10_1073_pnas_0603386103 crossref_primary_10_4161_cc_26433 crossref_primary_10_1016_j_ygeno_2006_05_008 crossref_primary_10_1096_fj_05_4030fje crossref_primary_10_1111_j_1365_2443_2010_01409_x crossref_primary_10_1371_journal_pone_0107927 crossref_primary_10_1186_1471_2164_10_63 crossref_primary_10_4049_jimmunol_174_10_6045 crossref_primary_10_1186_1471_2105_5_60 crossref_primary_10_1371_journal_pcbi_0020004 crossref_primary_10_1371_journal_pone_0227279 crossref_primary_10_1093_molbev_mss253 crossref_primary_10_1074_jbc_M114_584425 crossref_primary_10_1373_clinchem_2008_108506 crossref_primary_10_1586_14737159_6_5_703 crossref_primary_10_1186_1471_2164_11_226 crossref_primary_10_1111_j_1469_8137_2010_03590_x crossref_primary_10_1038_sj_jid_5700488 crossref_primary_10_18632_aging_101056 crossref_primary_10_1074_jbc_M109_063057 crossref_primary_10_4137_CIN_S5756 crossref_primary_10_1371_journal_pone_0007651 crossref_primary_10_1016_j_vascn_2008_10_003 crossref_primary_10_1016_j_mcp_2007_11_002 crossref_primary_10_1152_ajpgi_90237_2008 crossref_primary_10_1186_1471_2202_9_93 crossref_primary_10_1016_j_mcn_2010_06_006 crossref_primary_10_1152_japplphysiol_01055_2004 crossref_primary_10_1093_hmg_ddi357 crossref_primary_10_1186_1471_2164_11_23 crossref_primary_10_1111_j_1365_313X_2010_04303_x crossref_primary_10_1289_txg_7273 crossref_primary_10_1186_s12859_016_0990_0 crossref_primary_10_1007_s11103_006_9045_7 crossref_primary_10_4049_jimmunol_1203424 crossref_primary_10_1093_nar_gkq1348 crossref_primary_10_1105_tpc_110_078634 crossref_primary_10_1186_1471_2105_7_154 crossref_primary_10_1016_j_ijdrr_2015_08_002 crossref_primary_10_1016_S0022_5223_03_00969_3 crossref_primary_10_1104_pp_103_036749 crossref_primary_10_1371_journal_pone_0077184 crossref_primary_10_1016_j_jmb_2007_11_003 crossref_primary_10_1093_nar_gkl606 crossref_primary_10_1186_1471_2105_5_42 crossref_primary_10_1016_j_jinsphys_2010_03_021 crossref_primary_10_1371_journal_pone_0004229 crossref_primary_10_1111_j_1474_9726_2009_00539_x crossref_primary_10_1186_1471_2229_7_39 crossref_primary_10_1093_bioinformatics_btm306 crossref_primary_10_1371_journal_pone_0002847 crossref_primary_10_1038_ni_2405 crossref_primary_10_1093_bib_bbp055 crossref_primary_10_1093_bib_bbw008 crossref_primary_10_1186_gb_2005_6_3_r27 crossref_primary_10_1093_jxb_ert464 crossref_primary_10_1186_s12859_017_1590_3 crossref_primary_10_1016_S0037_1963_03_00193_8 crossref_primary_10_1016_j_bone_2009_06_020 crossref_primary_10_1214_07_AOAS116 crossref_primary_10_1074_mcp_M400030_MCP200 crossref_primary_10_1158_1535_7163_MCT_05_0212 crossref_primary_10_1109_TCBB_2010_82 crossref_primary_10_1186_gb_2007_8_6_r126 crossref_primary_10_1186_gb_2007_8_6_r125 crossref_primary_10_2217_epi_2019_0230 crossref_primary_10_1111_j_1365_2958_2012_08092_x crossref_primary_10_1145_980972_980988 crossref_primary_10_1007_s11103_005_6506_3 crossref_primary_10_1111_j_1365_313X_2007_03227_x crossref_primary_10_1093_carcin_bgl091 crossref_primary_10_1007_s00109_005_0721_x crossref_primary_10_1016_j_cellimm_2007_04_006 crossref_primary_10_1016_j_jneuroim_2008_04_036 crossref_primary_10_1038_sj_cdd_4401789 crossref_primary_10_1093_bioinformatics_bti081 crossref_primary_10_1074_jbc_M709657200 crossref_primary_10_1128_AAC_00665_06 crossref_primary_10_18632_aging_101424 crossref_primary_10_1002_bit_24819 crossref_primary_10_1109_TCBB_2017_2687442 crossref_primary_10_1007_s10142_010_0183_2 crossref_primary_10_1093_bib_bbac414 crossref_primary_10_1016_j_cellimm_2009_02_004 crossref_primary_10_1093_bioinformatics_btm441 crossref_primary_10_1186_1471_2105_5_121 crossref_primary_10_1186_1471_2164_14_527 crossref_primary_10_1038_sj_leu_2404621 crossref_primary_10_1371_journal_pone_0003911 crossref_primary_10_1152_ajpregu_00632_2009 crossref_primary_10_1093_ajcn_86_3_759 crossref_primary_10_1104_pp_104_046367 crossref_primary_10_1371_journal_pone_0076694 crossref_primary_10_1096_fj_04_2397fje crossref_primary_10_3390_cancers14194878 crossref_primary_10_1155_2013_790567 crossref_primary_10_1371_journal_pcbi_1000925 crossref_primary_10_1007_s12011_009_8367_0 crossref_primary_10_1071_RD13037 crossref_primary_10_1186_1756_0500_4_160 crossref_primary_10_1071_FP06065 crossref_primary_10_1007_s00277_009_0751_5 crossref_primary_10_1186_s12870_014_0197_3 crossref_primary_10_1080_08958370802192874 crossref_primary_10_1093_molbev_msi206 crossref_primary_10_1186_gb_2005_6_2_r20 crossref_primary_10_1093_database_bat010 crossref_primary_10_2165_00129785_200404040_00002 crossref_primary_10_1042_BA20060044 crossref_primary_10_1161_CIRCRESAHA_112_269399 crossref_primary_10_1016_j_crvi_2003_09_012 crossref_primary_10_1097_MD_0000000000010781 crossref_primary_10_1158_1078_0432_CCR_04_2685 crossref_primary_10_1161_01_CIR_0000138974_18839_02 crossref_primary_10_1371_journal_pbio_1000181 crossref_primary_10_1371_journal_pone_0019144 crossref_primary_10_1371_journal_pone_0032660 crossref_primary_10_1104_pp_104_057935 crossref_primary_10_1016_j_ydbio_2010_11_031 crossref_primary_10_1093_carcin_bgn292 crossref_primary_10_1111_rda_12502 crossref_primary_10_1186_1471_2164_10_2 crossref_primary_10_1093_nar_gkl654 crossref_primary_10_18632_oncotarget_17081 crossref_primary_10_3390_cancers13194896 crossref_primary_10_1152_ajpendo_00444_2005 crossref_primary_10_1242_dev_01600 crossref_primary_10_1182_blood_2003_07_2597 crossref_primary_10_1186_1471_2105_5_103 crossref_primary_10_3390_ijms22073489 crossref_primary_10_1111_j_1365_3040_2011_02390_x crossref_primary_10_1186_1471_2105_9_46 crossref_primary_10_2135_cropsci2007_02_0085tpg crossref_primary_10_1093_nar_gkaa793 crossref_primary_10_3892_mmr_2016_5260 crossref_primary_10_1007_s12011_013_9786_5 crossref_primary_10_5187_JAST_2012_54_6_383 crossref_primary_10_1242_dev_087320 crossref_primary_10_1111_bjd_12937 crossref_primary_10_1007_s13258_011_0083_4 crossref_primary_10_1016_j_vetpar_2008_12_023 crossref_primary_10_1016_j_cytogfr_2004_02_002 crossref_primary_10_1038_sj_bjc_6604316 crossref_primary_10_1093_bib_bbaa253 crossref_primary_10_3892_mmr_2018_9362 crossref_primary_10_1186_gb_2007_8_5_r82 crossref_primary_10_1016_j_ygeno_2010_08_003 crossref_primary_10_2217_epi_2017_0097 crossref_primary_10_1016_j_ijpara_2009_09_009 crossref_primary_10_1074_jbc_M702490200 crossref_primary_10_1074_jbc_M405030200 crossref_primary_10_1093_hmg_ddm012 crossref_primary_10_1016_j_hrthm_2013_10_051 crossref_primary_10_1038_ncb1542 crossref_primary_10_1016_j_cmet_2006_04_015 crossref_primary_10_1093_mp_ssp093 crossref_primary_10_1007_s10048_011_0290_9 crossref_primary_10_1186_1471_2105_7_S4_S26 crossref_primary_10_1186_s12864_016_2695_1 crossref_primary_10_1155_2015_910515 crossref_primary_10_1179_1743132812Y_0000000029 crossref_primary_10_1016_j_xjidi_2021_100040 crossref_primary_10_1104_pp_104_043182 crossref_primary_10_1128_AEM_00767_09 crossref_primary_10_1186_1479_5876_10_146 crossref_primary_10_1016_j_ygeno_2012_01_002 crossref_primary_10_1164_rccm_200607_931OC crossref_primary_10_1186_1755_8794_7_27 crossref_primary_10_1109_ACCESS_2019_2960373 crossref_primary_10_1172_JCI17645 crossref_primary_10_1371_journal_pone_0002901 crossref_primary_10_1002_elps_200600831 crossref_primary_10_1021_pr800055r crossref_primary_10_1158_1078_0432_CCR_04_1280 crossref_primary_10_1371_journal_pone_0203346 crossref_primary_10_1128_JB_186_3_880_884_2004 crossref_primary_10_2144_000112315 crossref_primary_10_1242_jcs_03175 crossref_primary_10_1371_journal_pcbi_0030206 crossref_primary_10_1161_HYPERTENSIONAHA_107_089706 crossref_primary_10_1186_1471_2164_11_623 crossref_primary_10_1105_tpc_105_035493 crossref_primary_10_2119_2006_00032_Mas crossref_primary_10_3892_ijo_2017_4125 crossref_primary_10_22207_JPAM_11_2_32 crossref_primary_10_1142_S0219720003000319 crossref_primary_10_1186_gm385 crossref_primary_10_1093_bioinformatics_btm478 crossref_primary_10_1105_tpc_106_044149 crossref_primary_10_1371_journal_pcbi_0040006 crossref_primary_10_1038_sj_leu_2403167 crossref_primary_10_1038_sj_leu_2404376 crossref_primary_10_1089_104454903767650658 crossref_primary_10_1371_journal_pcbi_1000571 crossref_primary_10_1038_msb_2013_20 crossref_primary_10_1007_s11373_008_9275_6 crossref_primary_10_1093_nar_gkl694 crossref_primary_10_1371_journal_pone_0108089 crossref_primary_10_1038_srep01215 crossref_primary_10_1096_fj_07_9261com crossref_primary_10_1093_bioinformatics_btl053 crossref_primary_10_1016_j_virusres_2007_05_019 crossref_primary_10_1101_gr_084830_108 crossref_primary_10_1002_eji_200737827 crossref_primary_10_1186_1752_0509_7_52 crossref_primary_10_1186_s12885_017_3421_3 crossref_primary_10_1080_2162402X_2021_2000109 crossref_primary_10_1242_dev_01885 crossref_primary_10_1186_1471_2105_11_137 crossref_primary_10_1186_1471_2105_13_227 crossref_primary_10_1186_1752_0509_5_S3_S8 crossref_primary_10_1186_gb_2003_4_10_r67 crossref_primary_10_1186_gb_2004_5_11_r92 crossref_primary_10_1016_j_jneumeth_2003_11_016 crossref_primary_10_1021_acschemneuro_0c00011 crossref_primary_10_1111_j_1365_313X_2006_02668_x crossref_primary_10_1214_13_BJPS226 crossref_primary_10_1371_journal_pone_0033204 crossref_primary_10_18632_oncotarget_9550 crossref_primary_10_1182_blood_2006_08_043232 crossref_primary_10_1016_j_vetpar_2008_02_014 crossref_primary_10_1186_s13024_015_0023_x crossref_primary_10_1093_bioinformatics_btl045 crossref_primary_10_1371_journal_pone_0002339 crossref_primary_10_1038_sj_leu_2404358 crossref_primary_10_1186_1471_2105_9_16 crossref_primary_10_1371_journal_pone_0055345 crossref_primary_10_1016_j_exer_2008_11_037 crossref_primary_10_1038_nbt_3001 crossref_primary_10_1081_BIP_200025659 crossref_primary_10_1016_j_cell_2012_06_026 crossref_primary_10_1016_j_ydbio_2007_01_016 crossref_primary_10_1186_1471_2105_7_49 crossref_primary_10_1002_cfg_228 crossref_primary_10_1016_j_bone_2009_03_656 crossref_primary_10_1186_1745_6150_1_18 crossref_primary_10_1016_j_reprotox_2016_03_039 crossref_primary_10_4161_sysb_25774 crossref_primary_10_1007_s00438_005_1124_y crossref_primary_10_1038_srep11593 crossref_primary_10_1111_j_1365_313X_2004_02084_x crossref_primary_10_1099_mic_0_043018_0 crossref_primary_10_1038_s41598_017_13259_6 crossref_primary_10_1530_EC_18_0329 crossref_primary_10_1016_j_bcp_2003_10_033 crossref_primary_10_1016_j_ymeth_2009_05_008 crossref_primary_10_1002_bem_20425 crossref_primary_10_1099_jmm_0_011023_0 crossref_primary_10_1093_molbev_msu110 crossref_primary_10_1128_JVI_01887_06 crossref_primary_10_1189_jlb_0506353 crossref_primary_10_1016_j_stem_2012_03_008 crossref_primary_10_1016_j_neuroscience_2010_09_039 crossref_primary_10_1039_C6MB00386A crossref_primary_10_1186_1471_2164_14_259 crossref_primary_10_1371_journal_pone_0098419 crossref_primary_10_1101_gad_1781009 crossref_primary_10_1111_j_1365_2141_2007_06608_x crossref_primary_10_1186_1471_2105_6_80 crossref_primary_10_1111_j_1582_4934_2010_01187_x crossref_primary_10_2174_1574893617666220124123303 crossref_primary_10_1186_1471_2105_11_221 crossref_primary_10_1016_j_cell_2009_12_007 crossref_primary_10_1080_10495390903139950 crossref_primary_10_1186_1471_2105_7_369 crossref_primary_10_1371_journal_pone_0058992 crossref_primary_10_1093_molbev_msx199 crossref_primary_10_1186_1471_2105_12_136 crossref_primary_10_1073_pnas_0805616105 crossref_primary_10_1152_physiolgenomics_00251_2004 crossref_primary_10_3389_fgene_2024_1385114 crossref_primary_10_1002_cfg_369 crossref_primary_10_1104_pp_108_117366 crossref_primary_10_1038_ncomms2569 crossref_primary_10_1080_15412550801940457 crossref_primary_10_1371_journal_pone_0081874 crossref_primary_10_1128_CVI_00157_09 crossref_primary_10_1093_nar_gku980 crossref_primary_10_1155_2015_732914 crossref_primary_10_3892_mmr_2017_7913 crossref_primary_10_1371_journal_pone_0231394 crossref_primary_10_1111_j_1365_2133_2006_07564_x crossref_primary_10_1016_j_bone_2012_11_017 crossref_primary_10_1128_AEM_01835_07 crossref_primary_10_1186_1471_2105_8_276 crossref_primary_10_1186_1471_2105_8_273 crossref_primary_10_1007_s12155_009_9034_1 crossref_primary_10_1186_gb_2006_7_2_r13 crossref_primary_10_1152_japplphysiol_00444_2010 crossref_primary_10_1186_1471_2148_11_47 crossref_primary_10_1095_biolreprod_109_078139 crossref_primary_10_1111_j_1365_2141_2009_07692_x crossref_primary_10_1186_s40169_015_0054_5 crossref_primary_10_1007_s10048_014_0417_x crossref_primary_10_1152_physiolgenomics_90372_2008 crossref_primary_10_1189_jlb_0311177 crossref_primary_10_1016_j_jid_2019_07_715 crossref_primary_10_1101_gr_089060_108 crossref_primary_10_1002_hep_25655 crossref_primary_10_1096_fj_05_4780fje crossref_primary_10_1016_j_critrevonc_2007_04_001 crossref_primary_10_1016_j_tranon_2019_10_002 crossref_primary_10_1073_pnas_1533294100 crossref_primary_10_1371_journal_pone_0066826 crossref_primary_10_1242_jcs_03300 crossref_primary_10_1038_sj_onc_1209699 crossref_primary_10_1186_1471_2105_7_105 crossref_primary_10_1016_j_bone_2012_11_023 crossref_primary_10_1371_journal_pbio_1000440 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/18.12.1593 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| EndPage | 1599 |
| ExternalDocumentID | 10.1093/bioinformatics/18.12.1593 12490443 14492919 10_1093_bioinformatics_18_12_1593 |
| Genre | Validation Studies Comparative Study Evaluation Studies Journal Article |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNI RNS ROL RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAJQQ AQDSO ATTQO ELUNK H13 IQODW NU- O~Y RIG RPM ABQTQ ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM ROX XJT 7QO 8FD FR3 P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c427t-9bbd976c8fb572fea6f2a5abc2ab40161a0597fed2ded785affe08e90c473aa13 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Wed Oct 01 16:27:46 EDT 2025 Fri Sep 05 06:39:07 EDT 2025 Mon Oct 06 18:07:32 EDT 2025 Wed Feb 19 02:35:43 EST 2025 Mon Jul 21 09:14:57 EDT 2025 Thu Apr 24 23:07:14 EDT 2025 Wed Oct 01 00:51:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Data analysis Sensitivity Specificity Complementary DNA DNA chip Robustness Detection Gene expression Bioinformatics Algorithm |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-9bbd976c8fb572fea6f2a5abc2ab40161a0597fed2ded785affe08e90c473aa13 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/18/12/1593/48850166/bioinformatics_18_12_1593.pdf |
| PMID | 12490443 |
| PQID | 18681847 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_18_12_1593 proquest_miscellaneous_72786085 proquest_miscellaneous_18681847 pubmed_primary_12490443 pascalfrancis_primary_14492919 crossref_primary_10_1093_bioinformatics_18_12_1593 crossref_citationtrail_10_1093_bioinformatics_18_12_1593 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2002-12-01 |
| PublicationDateYYYYMMDD | 2002-12-01 |
| PublicationDate_xml | – month: 12 year: 2002 text: 2002-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2002 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| SSID | ssj0005056 |
| Score | 2.2803833 |
| Snippet | Motivation: We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays.... We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1593 |
| SubjectTerms | Algorithms Biological and medical sciences Fundamental and applied biological sciences. Psychology Gene Expression - genetics Gene Expression Profiling - methods Gene Expression Regulation - genetics General aspects Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Genetic Models, Statistical Oligonucleotide Array Sequence Analysis - methods Reproducibility of Results Sensitivity and Specificity Software Statistics, Nonparametric Transcription, Genetic - genetics Yeasts - genetics |
| Title | Analysis of high density expression microarrays with signed-rank call algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/12490443 https://www.proquest.com/docview/18681847 https://www.proquest.com/docview/72786085 https://academic.oup.com/bioinformatics/article-pdf/18/12/1593/48850166/bioinformatics_18_12_1593.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_aK1pF_Kx6fpwr-LqX2498PRaxFMHahx6cT2F3s1vENDnucuj5B_h3O9tsWntYKIJ5CmRnkkxmmV92Z34D8A6DuGGO5VToOKcSD6o419TKxHNBJ8yc18J8OkoOp_LjLJ5tge1rYVTICh_3JQ36axMoRD1tcRTsSeeli1gWMR5hPBYRumGM4CXZGF6wrGC88EPGKLENO0mMkH0AO9Oj4_0vXU1WSmV23kE5nDN2G94GoqXN27PMLx56fVfi2L25WqJJXdcL429g9S7sruq5Wn9XVfVHADt4AL_6V-_yVr6NV60em58brJD_3TYP4X6AwGS_0_MItmz9GG51TTHXT-C450khjSOeTZmUPsm-XRP7I2Tt1uTM5xGqxUKtl8QvJROfh2JL6lvQE7RRRVR12izwytlyD6YHH07eH9LQ94EaydOW5lqXiJJM5nSccmdV4riKlTZcaekhqkJMmDpb8tKWaRYr5-wks_nEyFQoxcRTGNRNbZ8DEcYwplwpSqsxXCeZRbzEheCpip3R8RCy_isWJpCi-94cVdFtzoviWqMNgV-IzjtmkJsIja64yqWklAhUWT6EN73vFDjR_e6Nqm2z8koSBFcyvX4EQtEsQQg9hGed011qx5_siZR4e3HhhTd_6Bf_JPUS7vSdcybsFQzaxcq-RgDX6hFsn3yejcIk_A03jEp2 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDX1R-kzb7SNVoVetVw_b8jGUhlBoyKEL6clIslRKHXvZ9ZJuf0B_d0exnDRLA6FQnwzWjO3xiPkszXwD8A6DuGWeFVSYtKASD6o5N9TJLHBBZ8ye1cJ8OswOZvLjcXq8BW6ohdExK3wylDSYb22kEA20xUm0J51XPmEqYTzBeCwSdMMUwUu2MbxkqmS8DEMmKHEDtrMUIfsItmeHR3tf-pqsnEp11kE5njN2C95GoqXN2zMVFg-Dvktx7N5cL9Gkvu-F8Tewehdur5q5Xp_quv4jgO0_gF_Dq_d5K98nq85M7M8NVsj_bpuHcD9CYLLX63kEW655DDf7ppjrJ3A08KSQ1pPApkyqkGTfrYn7EbN2G3IS8gj1YqHXSxKWkknIQ3EVDS3oCdqoJrr-2i7wyslyB2b7Hz6_P6Cx7wO1kucdLYypECVZ5U2ac-905rlOtbFcGxkgqkZMmHtX8cpVuUq1926qXDG1MhdaM_EURk3buOdAhLWMaV-JyhkM15lyiJe4EDzXqbcmHYMavmJpIyl66M1Rl_3mvCivNNoY-LnovGcGuY7Q7iVXuZCUEoEqK8bwZvCdEid62L3RjWtXQUmG4ErmV49AKKoyhNBjeNY73YV2_MmeSom3F-deeP2HfvFPUi_hztA5Z8pewahbrNxrBHCd2Y3T7zd94Ela |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+high+density+expression+microarrays+with+signed-rank+call+algorithms&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Liu%2C+W-M&rft.au=Mei%2C+R&rft.au=Di%2C+X&rft.au=Ryder%2C+T+B&rft.date=2002-12-01&rft.issn=1367-4803&rft.volume=18&rft.issue=12&rft.spage=1593&rft.epage=1599&rft_id=info:doi/10.1093%2Fbioinformatics%2F18.12.1593&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |