Impaired Subendocardial Wall Thickening and Post-Systolic Shortening Are Signs of Critical Myocardial Ischemia in Patients With Flow-Limiting Coronary Stenosis

Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-li...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 75; no. 8; pp. 1934 - 1941
Main Authors Shiotsuka, Junji, Aonuma, Kazutaka, Machino, Tomoko, Baba, Masako, Ishizu, Tomoko, Seo, Yoshihiro, Higuchi, Haruhiko, Noguchi, Yuichi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2011
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
1347-4820
DOI10.1253/circj.CJ-10-1085

Cover

Abstract Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis. Conclusions: Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality. (Circ J 2011; 75: 1934-1941)
AbstractList The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis. Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality.
Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis. Conclusions: Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality. (Circ J 2011; 75: 1934-1941)
The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia.BACKGROUNDThe early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia.Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis.METHODS AND RESULTSThirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis.Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality.CONCLUSIONSCombined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality.
Author Ishizu, Tomoko
Higuchi, Haruhiko
Noguchi, Yuichi
Baba, Masako
Shiotsuka, Junji
Seo, Yoshihiro
Machino, Tomoko
Aonuma, Kazutaka
Author_xml – sequence: 1
  fullname: Shiotsuka, Junji
  organization: Department of Cardiology, Tsukuba Medical Center Hospital
– sequence: 1
  fullname: Aonuma, Kazutaka
  organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba
– sequence: 1
  fullname: Machino, Tomoko
  organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba
– sequence: 1
  fullname: Baba, Masako
  organization: Department of Cardiology, Ibaraki Prefectural Central Hospital
– sequence: 1
  fullname: Ishizu, Tomoko
  organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba
– sequence: 1
  fullname: Seo, Yoshihiro
  organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba
– sequence: 1
  fullname: Higuchi, Haruhiko
  organization: Department of Cardiology, Hitachi General Hospital
– sequence: 1
  fullname: Noguchi, Yuichi
  organization: Department of Cardiology, Tsukuba Medical Center Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21628833$$D View this record in MEDLINE/PubMed
BookMark eNptkc1u3CAUhVGVqvlp911V7LpyYhvbmGVkddKJpmokp8rSusZ4zBTDFLCieZq-aph4OmmjSleA4HyHw-UcnWijBUIfk_gySXNyxaXlm8vqNkriUGX-Bp0lJKNRVqbxyfO6iFiZkVN07twmjlMW5-wdOk2TIi1LQs7Q7-W4BWlFh-upFbozHGwnQeEHUArfD5L_FFrqNQbd4TvjfFTvnDdKclwPxvr58NoKXMu1dtj0uLLSSx4svu2ObkvHBzFKwFLjO_BSaO_wg_QDXijzGK3kGJhgVBlrNNgdroOzcdK9R297UE58OMwX6Mfiy331NVp9v1lW16uIZyn1Ec3aNu4z3nKWg8hIDpR1ou9Y0bO2z4uM9lCmnILICc8oFWXLGIE2LVgCBWHkAiWz76S3sHsMj2-2Vo4hSpPEzb7ZzXOzm1D7jdDswHyema01vybhfDNKx4VSoIWZXFNSlsQFKWlQfjoop3YU3dH6zz8EQTELuDXOWdGH23zok9HeglSvMlS3f2WIX4H_j_0PspiRjfOwFkcAbPg2JQ4AzZtyP7yAL4IBbCM0eQL2l8te
CitedBy_id crossref_primary_10_3389_fcvm_2025_1460094
crossref_primary_10_7863_jum_2013_32_4_675
crossref_primary_10_1007_s12350_018_1200_4
crossref_primary_10_2169_internalmedicine_53_2019
crossref_primary_10_1016_j_jss_2013_06_038
crossref_primary_10_1007_s10554_014_0388_x
crossref_primary_10_1016_j_ijcard_2016_07_106
crossref_primary_10_1016_j_ultrasmedbio_2020_10_024
crossref_primary_10_1186_s12947_015_0001_z
crossref_primary_10_1007_s10554_015_0614_1
crossref_primary_10_1161_JAHA_117_008367
crossref_primary_10_1016_j_ijcard_2016_05_016
crossref_primary_10_1111_echo_14803
crossref_primary_10_1136_openhrt_2018_000896
crossref_primary_10_1186_s12872_022_02597_7
crossref_primary_10_1253_circj_CJ_11_0778
crossref_primary_10_1253_circj_CJ_11_0637
crossref_primary_10_1016_j_ijcard_2016_04_153
crossref_primary_10_1253_circj_CJ_14_0360
crossref_primary_10_1016_j_ijcard_2016_06_007
crossref_primary_10_1253_circj_CJ_15_0012
crossref_primary_10_1002_jcu_22357
crossref_primary_10_1097_MD_0000000000004549
Cites_doi 10.1111/j.1540-8175.2008.00790.x
10.1016/j.jacc.2006.07.074
10.1046/j.1440-1681.2002.03657.x
10.1016/0002-8703(91)90568-3
10.1161/01.RES.47.2.201
10.1016/j.echo.2005.10.016
10.1161/01.CIR.86.4.1265
10.1152/ajpheart.1984.247.5.H727
10.1136/bmj.b1807
10.1093/ejechocard/jep221
10.1016/0735-1097(90)90240-P
10.1016/j.echo.2010.06.031
10.1161/01.CIR.56.5.786
10.1016/j.jacc.2006.01.051
10.1161/01.CIR.0000065249.69988.AA
10.1111/j.1540-8175.2005.40014.x
10.1161/01.RES.67.3.660
10.1152/ajpheart.1983.245.6.H1066
10.1161/CIRCULATIONAHA.107.753525
10.1016/j.amjcard.2006.06.060
10.1253/circj.CJ-08-0935
10.1016/S0008-6363(97)00290-3
10.1161/CIRCULATIONAHA.104.482984
10.1016/S0735-1097(02)02934-0
10.1161/01.RES.77.1.182
10.1016/j.ehj.2004.06.024
10.1253/circj.CJ-08-0728
10.1161/01.CIR.84.4.1615
10.1016/S0041-624X(99)00182-1
10.1016/S0894-7317(03)00111-1
10.1016/j.jacc.2006.07.050
10.1016/S0735-1097(85)80036-X
10.1161/CIRCIMAGING.109.858480
10.1007/s003800070042
10.1016/S0006-3495(69)86379-4
10.1152/ajpheart.1981.240.6.H920
10.1161/01.CIR.102.10.1158
10.1152/ajpheart.00019.2006
ContentType Journal Article
Copyright 2011 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2011 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1253/circj.CJ-10-1085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1941
ExternalDocumentID 10.1253/circj.cj-10-1085
21628833
10_1253_circj_CJ_10_1085
article_circj_75_8_75_CJ_10_1085_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TKC
TR2
W2D
X7M
XSB
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RYR
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c427t-74bb0f4cbc95ae435a79defd96f9bf5647fa82c7ae53c477e8b993ab2691a6393
IEDL.DBID UNPAY
ISSN 1346-9843
1347-4820
IngestDate Tue Aug 19 23:21:27 EDT 2025
Thu Jul 10 23:03:59 EDT 2025
Thu May 23 23:48:26 EDT 2024
Tue Jul 01 02:01:05 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Wed Sep 03 06:30:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-74bb0f4cbc95ae435a79defd96f9bf5647fa82c7ae53c477e8b993ab2691a6393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_pdf
PMID 21628833
PQID 879106387
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1253_circj_cj_10_1085
proquest_miscellaneous_879106387
pubmed_primary_21628833
crossref_citationtrail_10_1253_circj_CJ_10_1085
crossref_primary_10_1253_circj_CJ_10_1085
jstage_primary_article_circj_75_8_75_CJ_10_1085_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2011
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 5. McCulloch AD, Sung D, Wilson JM, Pavelec RS, Omens JH. Flow-function relations during graded coronary occlusions in the dog: Effects of transmural location and segment orientation. Cardiovasc Res 1998; 37: 636-645.
39. Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: Echocardiographic observations during coronary angioplasty. J Am Coll Cardiol 1985; 5: 193-197.
7. Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol 1983; 245: H1066-H1072.
27. Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, et al. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990; 67: 660-673.
36. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 2000; 38: 369-375.
21. Bolli R, Hartley CJ, Chelly JE, Patel BS, Rabinovitz RS, Jeroudi MO, et al. An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990; 15: 1055-1065.
22. Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 1981; 240: H920-H926.
4. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003; 107: 2120-2126.
14. Maruo T, Nakatani S, Jin Y, Uemura K, Sugimachi M, UedaIshibashi H, et al. Evaluation of transmural distribution of viable muscle by myocardial strain profile and dobutamine stress echocardiography. Am J Physiol Heart Circ Physiol 2007; 292: H921-H927.
29. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Osman NF, Rochitte CE, et al. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused acute myocardial infarction demonstrated by tagged magnetic resonance imaging. Eur Heart J 2004; 25: 1419-1427.
31. Onishi T, Uematsu M, Nanto S, Morozumi T, Watanabe T, Awata M, et al. Detection of diastolic abnormality by dyssynchrony imaging: Correlation with coronary artery disease in patients presenting with visibly normal wall motion. Circ J 2009; 73: 125-131.
12. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009; 2: 451-459.
19. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F, et al. Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr 2006; 19: 781-787.
32. Takeuchi M, Otsuji Y. Non-stress echocardiographic diagnosis of coronary artery stenosis: Changing viewpoints from systole to diastole. Circ J 2009; 73: 37-38.
8. Oh BH, Volpini M, Kambayashi M, Murata K, Rockman HA, Kassab GS, et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 1992; 86: 1265-1279.
26. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 2006; 48: 2026-2033.
18. Citro R, Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: The clinical value of tissue Doppler. Echocardiography 2005; 22: 525-532.
11. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 2010; 11: 377-385.
34. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 2003; 16: 415-423.
16. Wang J, Abraham TP, Korinek J, Urheim S, McMahon EM, Belohlavek M. Delayed onset of subendocardial diastolic thinning at rest identifies hypoperfused myocardium. Circulation 2005; 111: 2943-2950.
28. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 2002; 29: 351-359.
3. Skulstad H, Urheim S, Edvardsen T, Andersen K, Lyseggen E, Vartdal T, et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: A comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 2006; 47: 1672-1682.
6. LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77: 182-193.
20. Ogawa K, Hozumi T, Sugioka K, Matsumura Y, Nishiura M, Kanda R, et al. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. Am J Cardiol 2006; 98: 1531-1537.
37. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984; 247: H727-H738.
25. Kuwada Y, Takenaka K. Transmural heterogeneity of the left ventricular wall: Subendocardial layer and subepicardial layer. J Cardiol 2000; 35: 205-218.
10. Torry RJ, Myers JH, Adler AL, Liut CL, Gallagher KP. Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. Am Heart J 1991; 122: 1292-1299.
1. Rathore SS, Curtis JP, Chen J, Wang Y, Nallamothu BK, Epstein AJ, et al; National Cardiovascular Data Registry. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ 2009; 338: b1807.
15. Tsutsui H, Uematsu M, Yamagishi M, Haruta S, Shimakura T, Miyatake K. Usefulness of the subendocardial myocardial velocity gradient in low-dose dobutamine stress echocardiography. Heart Vessels 2000; 15: 11-17.
2. Kukulski T, Jamal F, Herbots L, D'hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 2003; 41: 810-819.
38. Sabia P, Afrookteh A, Touchstone DA, Keller MW, Esquivel L, Kaul S. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction: A prospective study using two-dimensional echocardiography. Circulation 1991; 84: I85-I92.
23. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 1969; 9: 189-208.
9. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1: Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794.
24. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201-207.
35. Kawagishi T. Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 2008; 25: 1167-1171.
13. Carlhäll CJ, Nguyen TC, Itoh A, Ennis DB, Bothe W, Liang D, et al. Alterations in transmural myocardial strain: An early marker of left ventricular dysfunction in mitral regurgitation? Circulation 2008; 118: S256-S262.
17. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography: Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164.
33. Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH. Transmural dispersion of myofiber mechanics: Implications for electrical heterogeneity in vivo. J Am Coll Cardiol 2007; 49: 909-916.
30. Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, Iida O, et al. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: A practical approach. J Am Soc Echocardiogr 2010; 23: 1103-1108.
22
23
24
26
27
28
29
KUWADA YUKIHIRO (25) 2000; 35
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
21727751 - Circ J. 2011;75(8):1825-6
References_xml – reference: 37. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984; 247: H727-H738.
– reference: 7. Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol 1983; 245: H1066-H1072.
– reference: 22. Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 1981; 240: H920-H926.
– reference: 4. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003; 107: 2120-2126.
– reference: 3. Skulstad H, Urheim S, Edvardsen T, Andersen K, Lyseggen E, Vartdal T, et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: A comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 2006; 47: 1672-1682.
– reference: 14. Maruo T, Nakatani S, Jin Y, Uemura K, Sugimachi M, UedaIshibashi H, et al. Evaluation of transmural distribution of viable muscle by myocardial strain profile and dobutamine stress echocardiography. Am J Physiol Heart Circ Physiol 2007; 292: H921-H927.
– reference: 25. Kuwada Y, Takenaka K. Transmural heterogeneity of the left ventricular wall: Subendocardial layer and subepicardial layer. J Cardiol 2000; 35: 205-218.
– reference: 15. Tsutsui H, Uematsu M, Yamagishi M, Haruta S, Shimakura T, Miyatake K. Usefulness of the subendocardial myocardial velocity gradient in low-dose dobutamine stress echocardiography. Heart Vessels 2000; 15: 11-17.
– reference: 33. Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH. Transmural dispersion of myofiber mechanics: Implications for electrical heterogeneity in vivo. J Am Coll Cardiol 2007; 49: 909-916.
– reference: 18. Citro R, Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: The clinical value of tissue Doppler. Echocardiography 2005; 22: 525-532.
– reference: 1. Rathore SS, Curtis JP, Chen J, Wang Y, Nallamothu BK, Epstein AJ, et al; National Cardiovascular Data Registry. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ 2009; 338: b1807.
– reference: 10. Torry RJ, Myers JH, Adler AL, Liut CL, Gallagher KP. Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. Am Heart J 1991; 122: 1292-1299.
– reference: 2. Kukulski T, Jamal F, Herbots L, D'hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 2003; 41: 810-819.
– reference: 28. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 2002; 29: 351-359.
– reference: 5. McCulloch AD, Sung D, Wilson JM, Pavelec RS, Omens JH. Flow-function relations during graded coronary occlusions in the dog: Effects of transmural location and segment orientation. Cardiovasc Res 1998; 37: 636-645.
– reference: 11. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 2010; 11: 377-385.
– reference: 34. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 2003; 16: 415-423.
– reference: 36. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 2000; 38: 369-375.
– reference: 29. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Osman NF, Rochitte CE, et al. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused acute myocardial infarction demonstrated by tagged magnetic resonance imaging. Eur Heart J 2004; 25: 1419-1427.
– reference: 31. Onishi T, Uematsu M, Nanto S, Morozumi T, Watanabe T, Awata M, et al. Detection of diastolic abnormality by dyssynchrony imaging: Correlation with coronary artery disease in patients presenting with visibly normal wall motion. Circ J 2009; 73: 125-131.
– reference: 20. Ogawa K, Hozumi T, Sugioka K, Matsumura Y, Nishiura M, Kanda R, et al. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. Am J Cardiol 2006; 98: 1531-1537.
– reference: 26. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 2006; 48: 2026-2033.
– reference: 19. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F, et al. Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr 2006; 19: 781-787.
– reference: 30. Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, Iida O, et al. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: A practical approach. J Am Soc Echocardiogr 2010; 23: 1103-1108.
– reference: 32. Takeuchi M, Otsuji Y. Non-stress echocardiographic diagnosis of coronary artery stenosis: Changing viewpoints from systole to diastole. Circ J 2009; 73: 37-38.
– reference: 35. Kawagishi T. Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 2008; 25: 1167-1171.
– reference: 9. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1: Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794.
– reference: 8. Oh BH, Volpini M, Kambayashi M, Murata K, Rockman HA, Kassab GS, et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 1992; 86: 1265-1279.
– reference: 17. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography: Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164.
– reference: 38. Sabia P, Afrookteh A, Touchstone DA, Keller MW, Esquivel L, Kaul S. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction: A prospective study using two-dimensional echocardiography. Circulation 1991; 84: I85-I92.
– reference: 13. Carlhäll CJ, Nguyen TC, Itoh A, Ennis DB, Bothe W, Liang D, et al. Alterations in transmural myocardial strain: An early marker of left ventricular dysfunction in mitral regurgitation? Circulation 2008; 118: S256-S262.
– reference: 23. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 1969; 9: 189-208.
– reference: 39. Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: Echocardiographic observations during coronary angioplasty. J Am Coll Cardiol 1985; 5: 193-197.
– reference: 12. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009; 2: 451-459.
– reference: 21. Bolli R, Hartley CJ, Chelly JE, Patel BS, Rabinovitz RS, Jeroudi MO, et al. An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990; 15: 1055-1065.
– reference: 16. Wang J, Abraham TP, Korinek J, Urheim S, McMahon EM, Belohlavek M. Delayed onset of subendocardial diastolic thinning at rest identifies hypoperfused myocardium. Circulation 2005; 111: 2943-2950.
– reference: 27. Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, et al. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990; 67: 660-673.
– reference: 6. LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77: 182-193.
– reference: 24. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201-207.
– ident: 35
  doi: 10.1111/j.1540-8175.2008.00790.x
– ident: 33
  doi: 10.1016/j.jacc.2006.07.074
– ident: 28
  doi: 10.1046/j.1440-1681.2002.03657.x
– volume: 35
  start-page: 205
  issn: 0914-5087
  issue: 3
  year: 2000
  ident: 25
– ident: 10
  doi: 10.1016/0002-8703(91)90568-3
– ident: 24
  doi: 10.1161/01.RES.47.2.201
– ident: 19
  doi: 10.1016/j.echo.2005.10.016
– ident: 8
  doi: 10.1161/01.CIR.86.4.1265
– ident: 37
  doi: 10.1152/ajpheart.1984.247.5.H727
– ident: 1
  doi: 10.1136/bmj.b1807
– ident: 11
  doi: 10.1093/ejechocard/jep221
– ident: 21
  doi: 10.1016/0735-1097(90)90240-P
– ident: 30
  doi: 10.1016/j.echo.2010.06.031
– ident: 9
  doi: 10.1161/01.CIR.56.5.786
– ident: 3
  doi: 10.1016/j.jacc.2006.01.051
– ident: 4
  doi: 10.1161/01.CIR.0000065249.69988.AA
– ident: 18
  doi: 10.1111/j.1540-8175.2005.40014.x
– ident: 27
  doi: 10.1161/01.RES.67.3.660
– ident: 7
  doi: 10.1152/ajpheart.1983.245.6.H1066
– ident: 13
  doi: 10.1161/CIRCULATIONAHA.107.753525
– ident: 20
  doi: 10.1016/j.amjcard.2006.06.060
– ident: 32
  doi: 10.1253/circj.CJ-08-0935
– ident: 5
  doi: 10.1016/S0008-6363(97)00290-3
– ident: 16
  doi: 10.1161/CIRCULATIONAHA.104.482984
– ident: 2
  doi: 10.1016/S0735-1097(02)02934-0
– ident: 6
  doi: 10.1161/01.RES.77.1.182
– ident: 29
  doi: 10.1016/j.ehj.2004.06.024
– ident: 31
  doi: 10.1253/circj.CJ-08-0728
– ident: 38
  doi: 10.1161/01.CIR.84.4.1615
– ident: 36
  doi: 10.1016/S0041-624X(99)00182-1
– ident: 34
  doi: 10.1016/S0894-7317(03)00111-1
– ident: 26
  doi: 10.1016/j.jacc.2006.07.050
– ident: 39
  doi: 10.1016/S0735-1097(85)80036-X
– ident: 12
  doi: 10.1161/CIRCIMAGING.109.858480
– ident: 15
  doi: 10.1007/s003800070042
– ident: 23
  doi: 10.1016/S0006-3495(69)86379-4
– ident: 22
  doi: 10.1152/ajpheart.1981.240.6.H920
– ident: 17
  doi: 10.1161/01.CIR.102.10.1158
– ident: 14
  doi: 10.1152/ajpheart.00019.2006
– reference: 21727751 - Circ J. 2011;75(8):1825-6
SSID ssj0029059
Score 2.0956235
Snippet Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis...
The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and...
SourceID unpaywall
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1934
SubjectTerms Aged
Coronary Stenosis - diagnostic imaging
Coronary Stenosis - pathology
Coronary Stenosis - physiopathology
Echocardiography
Female
Heart Ventricles - diagnostic imaging
Heart Ventricles - pathology
Heart Ventricles - physiopathology
Humans
Ischemic heart disease
Male
Middle Aged
Myocardial Contraction
Myocardium - pathology
Post-systolic shortening
Transmural strain heterogeneity
Title Impaired Subendocardial Wall Thickening and Post-Systolic Shortening Are Signs of Critical Myocardial Ischemia in Patients With Flow-Limiting Coronary Stenosis
URI https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21628833
https://www.proquest.com/docview/879106387
https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_pdf
UnpaywallVersion publishedVersion
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2011, Vol.75(8), pp.1934-1941
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1347-4820
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029059
  issn: 1347-4820
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1347-4820
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029059
  issn: 1347-4820
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1347-4820
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029059
  issn: 1347-4820
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXcTjwGt5hMfKBy4gpWlTO05OqKoouyt1tVK3opwix7HblJJUbapV-TP8VcZxUhYESAgpaqV2PEk845nP9ngG4HWqIq4TbUYaZS5lmrmi42tXipRKdHlMVqfSRufByYSeTdn02lkYE1a5QFw0U-arPSvai5VXd6Ins7VceJx5IX7EgzNjQ0z0vBevUn0AhwFDPN6Cw8n5Rf9TNdOigRuFNsq-R7lL0d_Ve5U-61l-bblo-Pzkm27ax_gd8rwLt7f5SuyuxHJ5zRsN74Ns3sMGoXxub8ukLb_-kuLx_170AdyrwSrpW_qHcEPlj-DWqN6OP4Jvp2hM0GamBO2PylP0i0bflsQsz5PLeYYmwqy7EJGnxJQFdk2CdJOJmIznJsq3-rO_VmSczfINKTRpSi-Q0W7P7RRn4OpLJkiWkwubB3ZDPmblnAyXxZVbndEyjAYmG4NY78i4NCnQs81jmAzfXw5O3Lrigyupz0uX0yTpaCoTGTGhEMkJHqVKp1Ggo0SzgHItQl9yoVhPUs5VmCC-EokfRF2BWKv3BFp5katnQDpcBrrHI666Ehlhc9TGhKEvZn6HqcgBr5F1LOt06KYqxzI20yLUjrgSAnZ-9QN2vgNv9i1WNhXIX2jfWeHuKWvR1pQo1TCuRNu0-EEwF2s0WQ6QRu9iHPFmG0fkqthu4pAjxEOzyR14avVxfxO_a6tHO_B2r6B_eFa86js__xfiF3DHrqqb6yW0yvVWvUJYVibHcPBh2j2uR993W-U6JQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdbOvbxsO9u3hd62MsGthNbsuynEcJCW0gppGHdk5FlKXHm2sFxKNk_s391J8v2urENxsAkkJzOtu5095N0ukPobSojphKlRxqhNqGK2nzoKVvwlAhweVQ0p9Jmp8HRgpxc0ItrZ2F0WOUacNFS6i9nWTrrjdt2oiuySqxdRt0QPuLJibYhOnrejTepuokOAgp4fIAOFqdn48_NTIsEdhSaKHufMJuAv2v3Kj3qG36OWHd8fvJNt8xj_A553kN3dsWG7694nl_zRtMHSHTvYYJQvji7OnHE119SPP7fiz5E91uwiseG_hG6IYvH6Pas3Y5_gr4dgzEBm5lisD-ySMEvan3LsV6ex-erDEyEXnfBvEixLgts6wTpOhMxnq90lG_z57iSeJ4tiy0uFe5KL-DZvud2DDNweZlxnBX4zOSB3eJPWb3C07y8spszWprRRGdj4NUez2udAj3bPkWL6cfzyZHdVnywBfFYbTOSJENFRCIiyiUgOc6iVKo0ClSUKBoQpnjoCcYl9QVhTIYJ4CueeEE04oC1_EM0KMpCPkd4yESgfBYxORLACJqDNiYUfDH1hlRGFnI7WceiTYeuq3LksZ4WgXbEjRCg85sfoPMt9K5vsTGpQP5C-8EIt6dsRdtSglTDuBFt1-IHwYpXYLIshDu9i2HE620cXshyt41DBhAPzCaz0DOjj_1NvJGpHm2h972C_uFZ4Wrv_OJfiF-iu2ZVXV-v0KCudvI1wLI6edOOu-8EwDk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+subendocardial+wall+thickening+and+post-systolic+shortening+are+signs+of+critical+myocardial+ischemia+in+patients+with+flow-limiting+coronary+stenosis&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Ishizu%2C+Tomoko&rft.au=Seo%2C+Yoshihiro&rft.au=Baba%2C+Masako&rft.au=Machino%2C+Tomoko&rft.date=2011&rft.issn=1347-4820&rft.eissn=1347-4820&rft.volume=75&rft.issue=8&rft.spage=1934&rft_id=info:doi/10.1253%2Fcircj.cj-10-1085&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon