Impaired Subendocardial Wall Thickening and Post-Systolic Shortening Are Signs of Critical Myocardial Ischemia in Patients With Flow-Limiting Coronary Stenosis
Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-li...
        Saved in:
      
    
          | Published in | Circulation Journal Vol. 75; no. 8; pp. 1934 - 1941 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Japan
          The Japanese Circulation Society
    
        2011
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1346-9843 1347-4820 1347-4820  | 
| DOI | 10.1253/circj.CJ-10-1085 | 
Cover
| Abstract | Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis. Conclusions: Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality. (Circ J 2011; 75: 1934-1941) | 
    
|---|---|
| AbstractList | The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia.
Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis.
Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality. Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia. Methods and Results: Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis. Conclusions: Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality. (Circ J 2011; 75: 1934-1941) The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia.BACKGROUNDThe early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and post-systolic contraction could be early markers of myocardial ischemia.Thirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis.METHODS AND RESULTSThirty-one consecutive patients with flow-limiting severe coronary stenosis but without visually abnormal left ventricular wall motion underwent quantitative echocardiography. Myocardial strain was measured using layer-by-layer analysis in severely hypoperfused segments. Radial strain (RS) was measured in the subendocardial, subepicardial, and total wall (innerRS, outerRS, and totalRS, respectively). Circumferential strain (CS) was also measured as 3 separate layers: subendocardial, mid-layer, and subepicardial layers (innerCS, midCS, and outerCS, respectively). Post-systolic shortening (PSS) was defined as the peak strain after end systole, and post-systolic strain index (PSI) was calculated as PSS divided by end-systolic strain. TotalRS was similar between ischemic and normally perfused segments, but innerRS and inner/outer RS ratio were significantly smaller in the ischemic segments than in corresponding segments in healthy subjects. Receiver operating characteristic analysis identified an optimum cut-off for PSI of 0.6. The combined criteria of inner/outer RS ratio <1.0 and PSI >0.6 achieved 95% specificity for the presence of flow-limiting stenosis.Combined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality.CONCLUSIONSCombined assessment of both subendocardial contractile impairment and PSS is very useful in identifying a severely hypoperfused left ventricular wall even without visual wall motion abnormality.  | 
    
| Author | Ishizu, Tomoko Higuchi, Haruhiko Noguchi, Yuichi Baba, Masako Shiotsuka, Junji Seo, Yoshihiro Machino, Tomoko Aonuma, Kazutaka  | 
    
| Author_xml | – sequence: 1 fullname: Shiotsuka, Junji organization: Department of Cardiology, Tsukuba Medical Center Hospital – sequence: 1 fullname: Aonuma, Kazutaka organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba – sequence: 1 fullname: Machino, Tomoko organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba – sequence: 1 fullname: Baba, Masako organization: Department of Cardiology, Ibaraki Prefectural Central Hospital – sequence: 1 fullname: Ishizu, Tomoko organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba – sequence: 1 fullname: Seo, Yoshihiro organization: Cardiovascular Division, Institute of Clinical Medicine, University of Tsukuba – sequence: 1 fullname: Higuchi, Haruhiko organization: Department of Cardiology, Hitachi General Hospital – sequence: 1 fullname: Noguchi, Yuichi organization: Department of Cardiology, Tsukuba Medical Center Hospital  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21628833$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkc1u3CAUhVGVqvlp911V7LpyYhvbmGVkddKJpmokp8rSusZ4zBTDFLCieZq-aph4OmmjSleA4HyHw-UcnWijBUIfk_gySXNyxaXlm8vqNkriUGX-Bp0lJKNRVqbxyfO6iFiZkVN07twmjlMW5-wdOk2TIi1LQs7Q7-W4BWlFh-upFbozHGwnQeEHUArfD5L_FFrqNQbd4TvjfFTvnDdKclwPxvr58NoKXMu1dtj0uLLSSx4svu2ObkvHBzFKwFLjO_BSaO_wg_QDXijzGK3kGJhgVBlrNNgdroOzcdK9R297UE58OMwX6Mfiy331NVp9v1lW16uIZyn1Ec3aNu4z3nKWg8hIDpR1ou9Y0bO2z4uM9lCmnILICc8oFWXLGIE2LVgCBWHkAiWz76S3sHsMj2-2Vo4hSpPEzb7ZzXOzm1D7jdDswHyema01vybhfDNKx4VSoIWZXFNSlsQFKWlQfjoop3YU3dH6zz8EQTELuDXOWdGH23zok9HeglSvMlS3f2WIX4H_j_0PspiRjfOwFkcAbPg2JQ4AzZtyP7yAL4IBbCM0eQL2l8te | 
    
| CitedBy_id | crossref_primary_10_3389_fcvm_2025_1460094 crossref_primary_10_7863_jum_2013_32_4_675 crossref_primary_10_1007_s12350_018_1200_4 crossref_primary_10_2169_internalmedicine_53_2019 crossref_primary_10_1016_j_jss_2013_06_038 crossref_primary_10_1007_s10554_014_0388_x crossref_primary_10_1016_j_ijcard_2016_07_106 crossref_primary_10_1016_j_ultrasmedbio_2020_10_024 crossref_primary_10_1186_s12947_015_0001_z crossref_primary_10_1007_s10554_015_0614_1 crossref_primary_10_1161_JAHA_117_008367 crossref_primary_10_1016_j_ijcard_2016_05_016 crossref_primary_10_1111_echo_14803 crossref_primary_10_1136_openhrt_2018_000896 crossref_primary_10_1186_s12872_022_02597_7 crossref_primary_10_1253_circj_CJ_11_0778 crossref_primary_10_1253_circj_CJ_11_0637 crossref_primary_10_1016_j_ijcard_2016_04_153 crossref_primary_10_1253_circj_CJ_14_0360 crossref_primary_10_1016_j_ijcard_2016_06_007 crossref_primary_10_1253_circj_CJ_15_0012 crossref_primary_10_1002_jcu_22357 crossref_primary_10_1097_MD_0000000000004549  | 
    
| Cites_doi | 10.1111/j.1540-8175.2008.00790.x 10.1016/j.jacc.2006.07.074 10.1046/j.1440-1681.2002.03657.x 10.1016/0002-8703(91)90568-3 10.1161/01.RES.47.2.201 10.1016/j.echo.2005.10.016 10.1161/01.CIR.86.4.1265 10.1152/ajpheart.1984.247.5.H727 10.1136/bmj.b1807 10.1093/ejechocard/jep221 10.1016/0735-1097(90)90240-P 10.1016/j.echo.2010.06.031 10.1161/01.CIR.56.5.786 10.1016/j.jacc.2006.01.051 10.1161/01.CIR.0000065249.69988.AA 10.1111/j.1540-8175.2005.40014.x 10.1161/01.RES.67.3.660 10.1152/ajpheart.1983.245.6.H1066 10.1161/CIRCULATIONAHA.107.753525 10.1016/j.amjcard.2006.06.060 10.1253/circj.CJ-08-0935 10.1016/S0008-6363(97)00290-3 10.1161/CIRCULATIONAHA.104.482984 10.1016/S0735-1097(02)02934-0 10.1161/01.RES.77.1.182 10.1016/j.ehj.2004.06.024 10.1253/circj.CJ-08-0728 10.1161/01.CIR.84.4.1615 10.1016/S0041-624X(99)00182-1 10.1016/S0894-7317(03)00111-1 10.1016/j.jacc.2006.07.050 10.1016/S0735-1097(85)80036-X 10.1161/CIRCIMAGING.109.858480 10.1007/s003800070042 10.1016/S0006-3495(69)86379-4 10.1152/ajpheart.1981.240.6.H920 10.1161/01.CIR.102.10.1158 10.1152/ajpheart.00019.2006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2011 THE JAPANESE CIRCULATION SOCIETY | 
    
| Copyright_xml | – notice: 2011 THE JAPANESE CIRCULATION SOCIETY | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1253/circj.CJ-10-1085 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1347-4820 | 
    
| EndPage | 1941 | 
    
| ExternalDocumentID | 10.1253/circj.cj-10-1085 21628833 10_1253_circj_CJ_10_1085 article_circj_75_8_75_CJ_10_1085_article_char_en  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- .55 .GJ 29B 2WC 3O- 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TKC TR2 W2D X7M XSB ZXP AAYXX CITATION CGR CUY CVF ECM EIF M~E NPM RYR 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c427t-74bb0f4cbc95ae435a79defd96f9bf5647fa82c7ae53c477e8b993ab2691a6393 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1346-9843 1347-4820  | 
    
| IngestDate | Tue Aug 19 23:21:27 EDT 2025 Thu Jul 10 23:03:59 EDT 2025 Thu May 23 23:48:26 EDT 2024 Tue Jul 01 02:01:05 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Wed Sep 03 06:30:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c427t-74bb0f4cbc95ae435a79defd96f9bf5647fa82c7ae53c477e8b993ab2691a6393 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_pdf | 
    
| PMID | 21628833 | 
    
| PQID | 879106387 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1253_circj_cj_10_1085 proquest_miscellaneous_879106387 pubmed_primary_21628833 crossref_citationtrail_10_1253_circj_CJ_10_1085 crossref_primary_10_1253_circj_CJ_10_1085 jstage_primary_article_circj_75_8_75_CJ_10_1085_article_char_en  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-00-00 | 
    
| PublicationDateYYYYMMDD | 2011-01-01 | 
    
| PublicationDate_xml | – year: 2011 text: 2011-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Japan | 
    
| PublicationPlace_xml | – name: Japan | 
    
| PublicationTitle | Circulation Journal | 
    
| PublicationTitleAlternate | Circ J | 
    
| PublicationYear | 2011 | 
    
| Publisher | The Japanese Circulation Society | 
    
| Publisher_xml | – name: The Japanese Circulation Society | 
    
| References | 5. McCulloch AD, Sung D, Wilson JM, Pavelec RS, Omens JH. Flow-function relations during graded coronary occlusions in the dog: Effects of transmural location and segment orientation. Cardiovasc Res 1998; 37: 636-645. 39. Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: Echocardiographic observations during coronary angioplasty. J Am Coll Cardiol 1985; 5: 193-197. 7. Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol 1983; 245: H1066-H1072. 27. Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, et al. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990; 67: 660-673. 36. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 2000; 38: 369-375. 21. Bolli R, Hartley CJ, Chelly JE, Patel BS, Rabinovitz RS, Jeroudi MO, et al. An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990; 15: 1055-1065. 22. Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 1981; 240: H920-H926. 4. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003; 107: 2120-2126. 14. Maruo T, Nakatani S, Jin Y, Uemura K, Sugimachi M, UedaIshibashi H, et al. Evaluation of transmural distribution of viable muscle by myocardial strain profile and dobutamine stress echocardiography. Am J Physiol Heart Circ Physiol 2007; 292: H921-H927. 29. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Osman NF, Rochitte CE, et al. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused acute myocardial infarction demonstrated by tagged magnetic resonance imaging. Eur Heart J 2004; 25: 1419-1427. 31. Onishi T, Uematsu M, Nanto S, Morozumi T, Watanabe T, Awata M, et al. Detection of diastolic abnormality by dyssynchrony imaging: Correlation with coronary artery disease in patients presenting with visibly normal wall motion. Circ J 2009; 73: 125-131. 12. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009; 2: 451-459. 19. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F, et al. Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr 2006; 19: 781-787. 32. Takeuchi M, Otsuji Y. Non-stress echocardiographic diagnosis of coronary artery stenosis: Changing viewpoints from systole to diastole. Circ J 2009; 73: 37-38. 8. Oh BH, Volpini M, Kambayashi M, Murata K, Rockman HA, Kassab GS, et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 1992; 86: 1265-1279. 26. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 2006; 48: 2026-2033. 18. Citro R, Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: The clinical value of tissue Doppler. Echocardiography 2005; 22: 525-532. 11. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 2010; 11: 377-385. 34. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 2003; 16: 415-423. 16. Wang J, Abraham TP, Korinek J, Urheim S, McMahon EM, Belohlavek M. Delayed onset of subendocardial diastolic thinning at rest identifies hypoperfused myocardium. Circulation 2005; 111: 2943-2950. 28. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 2002; 29: 351-359. 3. Skulstad H, Urheim S, Edvardsen T, Andersen K, Lyseggen E, Vartdal T, et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: A comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 2006; 47: 1672-1682. 6. LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77: 182-193. 20. Ogawa K, Hozumi T, Sugioka K, Matsumura Y, Nishiura M, Kanda R, et al. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. Am J Cardiol 2006; 98: 1531-1537. 37. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984; 247: H727-H738. 25. Kuwada Y, Takenaka K. Transmural heterogeneity of the left ventricular wall: Subendocardial layer and subepicardial layer. J Cardiol 2000; 35: 205-218. 10. Torry RJ, Myers JH, Adler AL, Liut CL, Gallagher KP. Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. Am Heart J 1991; 122: 1292-1299. 1. Rathore SS, Curtis JP, Chen J, Wang Y, Nallamothu BK, Epstein AJ, et al; National Cardiovascular Data Registry. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ 2009; 338: b1807. 15. Tsutsui H, Uematsu M, Yamagishi M, Haruta S, Shimakura T, Miyatake K. Usefulness of the subendocardial myocardial velocity gradient in low-dose dobutamine stress echocardiography. Heart Vessels 2000; 15: 11-17. 2. Kukulski T, Jamal F, Herbots L, D'hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 2003; 41: 810-819. 38. Sabia P, Afrookteh A, Touchstone DA, Keller MW, Esquivel L, Kaul S. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction: A prospective study using two-dimensional echocardiography. Circulation 1991; 84: I85-I92. 23. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 1969; 9: 189-208. 9. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1: Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794. 24. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201-207. 35. Kawagishi T. Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 2008; 25: 1167-1171. 13. Carlhäll CJ, Nguyen TC, Itoh A, Ennis DB, Bothe W, Liang D, et al. Alterations in transmural myocardial strain: An early marker of left ventricular dysfunction in mitral regurgitation? Circulation 2008; 118: S256-S262. 17. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography: Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164. 33. Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH. Transmural dispersion of myofiber mechanics: Implications for electrical heterogeneity in vivo. J Am Coll Cardiol 2007; 49: 909-916. 30. Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, Iida O, et al. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: A practical approach. J Am Soc Echocardiogr 2010; 23: 1103-1108. 22 23 24 26 27 28 29 KUWADA YUKIHIRO (25) 2000; 35 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 21727751 - Circ J. 2011;75(8):1825-6  | 
    
| References_xml | – reference: 37. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984; 247: H727-H738. – reference: 7. Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol 1983; 245: H1066-H1072. – reference: 22. Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 1981; 240: H920-H926. – reference: 4. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003; 107: 2120-2126. – reference: 3. Skulstad H, Urheim S, Edvardsen T, Andersen K, Lyseggen E, Vartdal T, et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: A comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 2006; 47: 1672-1682. – reference: 14. Maruo T, Nakatani S, Jin Y, Uemura K, Sugimachi M, UedaIshibashi H, et al. Evaluation of transmural distribution of viable muscle by myocardial strain profile and dobutamine stress echocardiography. Am J Physiol Heart Circ Physiol 2007; 292: H921-H927. – reference: 25. Kuwada Y, Takenaka K. Transmural heterogeneity of the left ventricular wall: Subendocardial layer and subepicardial layer. J Cardiol 2000; 35: 205-218. – reference: 15. Tsutsui H, Uematsu M, Yamagishi M, Haruta S, Shimakura T, Miyatake K. Usefulness of the subendocardial myocardial velocity gradient in low-dose dobutamine stress echocardiography. Heart Vessels 2000; 15: 11-17. – reference: 33. Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH. Transmural dispersion of myofiber mechanics: Implications for electrical heterogeneity in vivo. J Am Coll Cardiol 2007; 49: 909-916. – reference: 18. Citro R, Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: The clinical value of tissue Doppler. Echocardiography 2005; 22: 525-532. – reference: 1. Rathore SS, Curtis JP, Chen J, Wang Y, Nallamothu BK, Epstein AJ, et al; National Cardiovascular Data Registry. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ 2009; 338: b1807. – reference: 10. Torry RJ, Myers JH, Adler AL, Liut CL, Gallagher KP. Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. Am Heart J 1991; 122: 1292-1299. – reference: 2. Kukulski T, Jamal F, Herbots L, D'hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 2003; 41: 810-819. – reference: 28. Zhang J. Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 2002; 29: 351-359. – reference: 5. McCulloch AD, Sung D, Wilson JM, Pavelec RS, Omens JH. Flow-function relations during graded coronary occlusions in the dog: Effects of transmural location and segment orientation. Cardiovasc Res 1998; 37: 636-645. – reference: 11. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 2010; 11: 377-385. – reference: 34. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 2003; 16: 415-423. – reference: 36. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 2000; 38: 369-375. – reference: 29. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Osman NF, Rochitte CE, et al. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused acute myocardial infarction demonstrated by tagged magnetic resonance imaging. Eur Heart J 2004; 25: 1419-1427. – reference: 31. Onishi T, Uematsu M, Nanto S, Morozumi T, Watanabe T, Awata M, et al. Detection of diastolic abnormality by dyssynchrony imaging: Correlation with coronary artery disease in patients presenting with visibly normal wall motion. Circ J 2009; 73: 125-131. – reference: 20. Ogawa K, Hozumi T, Sugioka K, Matsumura Y, Nishiura M, Kanda R, et al. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. Am J Cardiol 2006; 98: 1531-1537. – reference: 26. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 2006; 48: 2026-2033. – reference: 19. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F, et al. Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr 2006; 19: 781-787. – reference: 30. Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, Iida O, et al. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: A practical approach. J Am Soc Echocardiogr 2010; 23: 1103-1108. – reference: 32. Takeuchi M, Otsuji Y. Non-stress echocardiographic diagnosis of coronary artery stenosis: Changing viewpoints from systole to diastole. Circ J 2009; 73: 37-38. – reference: 35. Kawagishi T. Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 2008; 25: 1167-1171. – reference: 9. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1: Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794. – reference: 8. Oh BH, Volpini M, Kambayashi M, Murata K, Rockman HA, Kassab GS, et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 1992; 86: 1265-1279. – reference: 17. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography: Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164. – reference: 38. Sabia P, Afrookteh A, Touchstone DA, Keller MW, Esquivel L, Kaul S. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction: A prospective study using two-dimensional echocardiography. Circulation 1991; 84: I85-I92. – reference: 13. Carlhäll CJ, Nguyen TC, Itoh A, Ennis DB, Bothe W, Liang D, et al. Alterations in transmural myocardial strain: An early marker of left ventricular dysfunction in mitral regurgitation? Circulation 2008; 118: S256-S262. – reference: 23. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 1969; 9: 189-208. – reference: 39. Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: Echocardiographic observations during coronary angioplasty. J Am Coll Cardiol 1985; 5: 193-197. – reference: 12. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009; 2: 451-459. – reference: 21. Bolli R, Hartley CJ, Chelly JE, Patel BS, Rabinovitz RS, Jeroudi MO, et al. An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990; 15: 1055-1065. – reference: 16. Wang J, Abraham TP, Korinek J, Urheim S, McMahon EM, Belohlavek M. Delayed onset of subendocardial diastolic thinning at rest identifies hypoperfused myocardium. Circulation 2005; 111: 2943-2950. – reference: 27. Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, et al. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990; 67: 660-673. – reference: 6. LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77: 182-193. – reference: 24. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201-207. – ident: 35 doi: 10.1111/j.1540-8175.2008.00790.x – ident: 33 doi: 10.1016/j.jacc.2006.07.074 – ident: 28 doi: 10.1046/j.1440-1681.2002.03657.x – volume: 35 start-page: 205 issn: 0914-5087 issue: 3 year: 2000 ident: 25 – ident: 10 doi: 10.1016/0002-8703(91)90568-3 – ident: 24 doi: 10.1161/01.RES.47.2.201 – ident: 19 doi: 10.1016/j.echo.2005.10.016 – ident: 8 doi: 10.1161/01.CIR.86.4.1265 – ident: 37 doi: 10.1152/ajpheart.1984.247.5.H727 – ident: 1 doi: 10.1136/bmj.b1807 – ident: 11 doi: 10.1093/ejechocard/jep221 – ident: 21 doi: 10.1016/0735-1097(90)90240-P – ident: 30 doi: 10.1016/j.echo.2010.06.031 – ident: 9 doi: 10.1161/01.CIR.56.5.786 – ident: 3 doi: 10.1016/j.jacc.2006.01.051 – ident: 4 doi: 10.1161/01.CIR.0000065249.69988.AA – ident: 18 doi: 10.1111/j.1540-8175.2005.40014.x – ident: 27 doi: 10.1161/01.RES.67.3.660 – ident: 7 doi: 10.1152/ajpheart.1983.245.6.H1066 – ident: 13 doi: 10.1161/CIRCULATIONAHA.107.753525 – ident: 20 doi: 10.1016/j.amjcard.2006.06.060 – ident: 32 doi: 10.1253/circj.CJ-08-0935 – ident: 5 doi: 10.1016/S0008-6363(97)00290-3 – ident: 16 doi: 10.1161/CIRCULATIONAHA.104.482984 – ident: 2 doi: 10.1016/S0735-1097(02)02934-0 – ident: 6 doi: 10.1161/01.RES.77.1.182 – ident: 29 doi: 10.1016/j.ehj.2004.06.024 – ident: 31 doi: 10.1253/circj.CJ-08-0728 – ident: 38 doi: 10.1161/01.CIR.84.4.1615 – ident: 36 doi: 10.1016/S0041-624X(99)00182-1 – ident: 34 doi: 10.1016/S0894-7317(03)00111-1 – ident: 26 doi: 10.1016/j.jacc.2006.07.050 – ident: 39 doi: 10.1016/S0735-1097(85)80036-X – ident: 12 doi: 10.1161/CIRCIMAGING.109.858480 – ident: 15 doi: 10.1007/s003800070042 – ident: 23 doi: 10.1016/S0006-3495(69)86379-4 – ident: 22 doi: 10.1152/ajpheart.1981.240.6.H920 – ident: 17 doi: 10.1161/01.CIR.102.10.1158 – ident: 14 doi: 10.1152/ajpheart.00019.2006 – reference: 21727751 - Circ J. 2011;75(8):1825-6  | 
    
| SSID | ssj0029059 | 
    
| Score | 2.0956235 | 
    
| Snippet | Background: The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis... The early diagnosis of myocardial ischemia is still challenging. The aim of the present study was to determine whether subendocardial hypokinesis and...  | 
    
| SourceID | unpaywall proquest pubmed crossref jstage  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1934 | 
    
| SubjectTerms | Aged Coronary Stenosis - diagnostic imaging Coronary Stenosis - pathology Coronary Stenosis - physiopathology Echocardiography Female Heart Ventricles - diagnostic imaging Heart Ventricles - pathology Heart Ventricles - physiopathology Humans Ischemic heart disease Male Middle Aged Myocardial Contraction Myocardium - pathology Post-systolic shortening Transmural strain heterogeneity  | 
    
| Title | Impaired Subendocardial Wall Thickening and Post-Systolic Shortening Are Signs of Critical Myocardial Ischemia in Patients With Flow-Limiting Coronary Stenosis | 
    
| URI | https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21628833 https://www.proquest.com/docview/879106387 https://www.jstage.jst.go.jp/article/circj/75/8/75_CJ-10-1085/_pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 75 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Circulation Journal, 2011, Vol.75(8), pp.1934-1941 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1347-4820 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029059 issn: 1347-4820 databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1347-4820 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029059 issn: 1347-4820 databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1347-4820 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029059 issn: 1347-4820 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXcTjwGt5hMfKBy4gpWlTO05OqKoouyt1tVK3opwix7HblJJUbapV-TP8VcZxUhYESAgpaqV2PEk845nP9ngG4HWqIq4TbUYaZS5lmrmi42tXipRKdHlMVqfSRufByYSeTdn02lkYE1a5QFw0U-arPSvai5VXd6Ins7VceJx5IX7EgzNjQ0z0vBevUn0AhwFDPN6Cw8n5Rf9TNdOigRuFNsq-R7lL0d_Ve5U-61l-bblo-Pzkm27ax_gd8rwLt7f5SuyuxHJ5zRsN74Ns3sMGoXxub8ukLb_-kuLx_170AdyrwSrpW_qHcEPlj-DWqN6OP4Jvp2hM0GamBO2PylP0i0bflsQsz5PLeYYmwqy7EJGnxJQFdk2CdJOJmIznJsq3-rO_VmSczfINKTRpSi-Q0W7P7RRn4OpLJkiWkwubB3ZDPmblnAyXxZVbndEyjAYmG4NY78i4NCnQs81jmAzfXw5O3Lrigyupz0uX0yTpaCoTGTGhEMkJHqVKp1Ggo0SzgHItQl9yoVhPUs5VmCC-EokfRF2BWKv3BFp5katnQDpcBrrHI666Ehlhc9TGhKEvZn6HqcgBr5F1LOt06KYqxzI20yLUjrgSAnZ-9QN2vgNv9i1WNhXIX2jfWeHuKWvR1pQo1TCuRNu0-EEwF2s0WQ6QRu9iHPFmG0fkqthu4pAjxEOzyR14avVxfxO_a6tHO_B2r6B_eFa86js__xfiF3DHrqqb6yW0yvVWvUJYVibHcPBh2j2uR993W-U6JQ | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdbOvbxsO9u3hd62MsGthNbsuynEcJCW0gppGHdk5FlKXHm2sFxKNk_s391J8v2urENxsAkkJzOtu5095N0ukPobSojphKlRxqhNqGK2nzoKVvwlAhweVQ0p9Jmp8HRgpxc0ItrZ2F0WOUacNFS6i9nWTrrjdt2oiuySqxdRt0QPuLJibYhOnrejTepuokOAgp4fIAOFqdn48_NTIsEdhSaKHufMJuAv2v3Kj3qG36OWHd8fvJNt8xj_A553kN3dsWG7694nl_zRtMHSHTvYYJQvji7OnHE119SPP7fiz5E91uwiseG_hG6IYvH6Pas3Y5_gr4dgzEBm5lisD-ySMEvan3LsV6ex-erDEyEXnfBvEixLgts6wTpOhMxnq90lG_z57iSeJ4tiy0uFe5KL-DZvud2DDNweZlxnBX4zOSB3eJPWb3C07y8spszWprRRGdj4NUez2udAj3bPkWL6cfzyZHdVnywBfFYbTOSJENFRCIiyiUgOc6iVKo0ClSUKBoQpnjoCcYl9QVhTIYJ4CueeEE04oC1_EM0KMpCPkd4yESgfBYxORLACJqDNiYUfDH1hlRGFnI7WceiTYeuq3LksZ4WgXbEjRCg85sfoPMt9K5vsTGpQP5C-8EIt6dsRdtSglTDuBFt1-IHwYpXYLIshDu9i2HE620cXshyt41DBhAPzCaz0DOjj_1NvJGpHm2h972C_uFZ4Wrv_OJfiF-iu2ZVXV-v0KCudvI1wLI6edOOu-8EwDk0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+subendocardial+wall+thickening+and+post-systolic+shortening+are+signs+of+critical+myocardial+ischemia+in+patients+with+flow-limiting+coronary+stenosis&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Ishizu%2C+Tomoko&rft.au=Seo%2C+Yoshihiro&rft.au=Baba%2C+Masako&rft.au=Machino%2C+Tomoko&rft.date=2011&rft.issn=1347-4820&rft.eissn=1347-4820&rft.volume=75&rft.issue=8&rft.spage=1934&rft_id=info:doi/10.1253%2Fcircj.cj-10-1085&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |