Translation invariant tensor product states in a finite lattice system
We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach...
Saved in:
| Published in | Chinese physics B Vol. 20; no. 11; pp. 479 - 486 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
01.11.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/20/11/117501 |
Cover
| Abstract | We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors. |
|---|---|
| AbstractList | We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors. We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors. |
| Author | 蔡建伟 陈巧妮 赵汇海 谢志远 秦明普 魏忠超 向涛 |
| AuthorAffiliation | Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
| Author_xml | – sequence: 1 fullname: 蔡建伟 陈巧妮 赵汇海 谢志远 秦明普 魏忠超 向涛 |
| BookMark | eNqFkk9LwzAcQINMcJt-Bak3L3VJ0_wpeJHhVBh4meeQpcmMdGmXZMK-vZkdE2QwCA0k77U_Hh2BgWudBuAWwQcEOZ8gysocQUInBZwglBYjEF2AYQEJzzHH5QAMj9AVGIXwBSFFsMBDMFt46UIjo21dZt239Fa6mEXtQuuzzrf1VsUsRBl1SPeZzIx1NuosKdEqnYVdiHp9DS6NbIK-Oexj8DF7Xkxf8_n7y9v0aZ6rsmAxL7RChkhDCsJZxQ3lS4XUstZYEYMKaTSkEsFyyTSErExPCataUoVrzCmReAzu-_emyTZbHaJY26B000in220QiDEOKWElPY_CVK8iqU9CH3tU-TYEr41QNv4miV7aJqFiX1rsI4p9RFGkEyT60kmn__TO27X0u_Ni3ou27f6ck6zoapN4dII_9427w3CfrVttrFsdTVxVJU7_Af4BKbWqxg |
| CitedBy_id | crossref_primary_10_1103_PhysRevB_105_155155 crossref_primary_10_1103_PhysRevB_109_235133 |
| Cites_doi | 10.1143/PTPS.145.204 10.1007/BF01218021 10.1103/PhysRevLett.98.070201 10.1103/PhysRevB.78.155117 10.1103/PhysRevB.55.2164 10.1103/PhysRevLett.93.227205 10.1103/PhysRevB.81.174411 10.1103/PhysRevLett.75.3537 10.1103/PhysRevLett.103.160601 10.1103/PhysRevB.81.081103 10.1103/PhysRevB.83.125104 10.1103/PhysRevLett.99.220602 10.1103/PhysRevLett.101.090603 10.1103/PhysRevB.43.3703 10.26421/QIC7.5-6-1 10.1103/RevModPhys.82.277 10.1143/JPSJ.79.044001 10.1103/PhysRevLett.69.2863 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1088/1674-1056/20/11/117501 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Translation invariant tensor product states in a finite lattice system |
| EISSN | 2058-3834 |
| EndPage | 486 |
| ExternalDocumentID | 10_1088_1674_1056_20_11_117501 39943610 |
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA AAPBV ABPTK CDYEO UNR -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c427t-2ec1f5af5258798f68bc1cbde3c5f12afe06a104b7e00747e0a09da6c3d3865a3 |
| IEDL.DBID | IOP |
| ISSN | 1674-1056 |
| IngestDate | Thu Oct 02 06:41:03 EDT 2025 Fri Sep 05 08:54:20 EDT 2025 Wed Oct 01 04:39:36 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Tue Nov 10 14:15:18 EST 2020 Mon May 13 16:07:06 EDT 2019 Wed Feb 14 11:03:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-2ec1f5af5258798f68bc1cbde3c5f12afe06a104b7e00747e0a09da6c3d3865a3 |
| Notes | Cai Jian-Wei,Chen Qiao-Ni,Zhao Hui-Hai,Xie Zhi-Yuan,Qin Ming-Pu,Wei Zhong-Chao,Xiang Tao( a) Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ;b) Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China tensor product state; translation invariant We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors. 11-5639/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1010895383 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_20_11_117501 chongqing_primary_39943610 proquest_miscellaneous_1010895383 proquest_miscellaneous_1778065746 iop_primary_10_1088_1674_1056_20_11_117501 crossref_primary_10_1088_1674_1056_20_11_117501 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-01 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chinese Physics |
| PublicationYear | 2011 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 11 12 13 14 16 17 18 Pippan P (5) 2010; 81 19 McCulloch I (10) 2008 1 2 3 4 6 Perez-Garcia D (15) 2007; 7 7 8 9 |
| References_xml | – ident: 8 doi: 10.1143/PTPS.145.204 – year: 2008 ident: 10 – ident: 9 doi: 10.1007/BF01218021 – ident: 16 doi: 10.1103/PhysRevLett.98.070201 – ident: 18 doi: 10.1103/PhysRevB.78.155117 – ident: 12 doi: 10.1103/PhysRevB.55.2164 – ident: 4 doi: 10.1103/PhysRevLett.93.227205 – ident: 14 doi: 10.1103/PhysRevB.81.174411 – ident: 3 doi: 10.1103/PhysRevLett.75.3537 – ident: 17 doi: 10.1103/PhysRevLett.103.160601 – volume: 81 start-page: 081103(R) year: 2010 ident: 5 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.81.081103 – ident: 6 doi: 10.1103/PhysRevB.83.125104 – ident: 7 doi: 10.1103/PhysRevLett.99.220602 – ident: 13 doi: 10.1103/PhysRevLett.101.090603 – ident: 19 doi: 10.1103/PhysRevB.43.3703 – volume: 7 start-page: 401 issn: 1533-7146 year: 2007 ident: 15 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC7.5-6-1 – ident: 2 doi: 10.1103/RevModPhys.82.277 – ident: 11 doi: 10.1143/JPSJ.79.044001 – ident: 1 doi: 10.1103/PhysRevLett.69.2863 |
| SSID | ssj0061023 |
| Score | 1.8857142 |
| Snippet | We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of... We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of... |
| SourceID | proquest crossref iop chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 479 |
| SubjectTerms | Construction Invariants Lattices Mathematical analysis Matrices Matrix methods Tensors Translations 产品 变系统 平移不变 张量积 晶格 状态 矩阵 |
| Title | Translation invariant tensor product states in a finite lattice system |
| URI | http://lib.cqvip.com/qk/85823A/201111/39943610.html http://iopscience.iop.org/1674-1056/20/11/117501 https://www.proquest.com/docview/1010895383 https://www.proquest.com/docview/1778065746 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UELz4FuuLFcSDkDbJJtnkKGIpHnyAQm_LZrOrRUmqbT34653ZNAVRtN4Cmdkks4-Zycx8A3Bi0TE2Rag8nuvMizQvvKwouCestnmWETayy_K9TnoP0VU_7i9A0wRxUA2nJ38bL-tIfiIij_rDo5_eCYIOYUu6gi1S_lSxd3PbHL0J4RCQh9WwNCXB6OX9PAwhKjxV5eMr6okvmmkRH__teHY6p7sGd03lTp1q8tyejPO2_vgO5Dj356zD6tQAZef1itmABVNuwrJLBNWjLeg65VUnyLFB-Y6uNMqeUZ579caGNT4sc2VII7zPFLMDMlsZslAeHauhobfhoXt5f9Hzpr0WPB2FYuyFRgc2VjYO41RkqU3SXAc6LwzXsQ1CZY2fKHTdcmEc5r7xlZ8VKsHJpa6hiu_AUlmVZhcY54ajWWOS3KiIo4MmIi10ZrglsDMbtWBvJnM5rDE1JNpJROu3IG4mQeopSjk1y3iRLlqeppIEKEmAMiT_RdYCbEFnxteM-RfHGc7J3MSnX4h_JJLDwrbguFkzEjcqRV9UaarJiHLp_DRD_cJ_oRGCAt0iSvb-83b7sOJ-dbsSyQNYGr9NzCHaSuP8yO2PT_wfAfc |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAXaIGKbXkYCXFAyubhJI6PCLpqAZUeqNSb5Th2W4GSpbvLgV_fGTtZqZQWqt4iZcZyPLZnJv78DcAbh4mxbTId8drIKDe8iWTT8Eg442opiRvZo3wPyr2j_NNxcbwCu8u7MN203_rH-BiIgsMQ9oC4KibcfEQF4zFxj9M0JrLJJI2njVuF9YIXkgoZ7H89HDbkktgJKO8a9IaLwte2RTwLp1178hO9xyV_tYp9urJpe080eRQQIzNPYEgAlO_jxbwem99_0Dve-SM34GEfq7L3QWkTVmz7GO55zKiZPYGJ93MBS8fO2l-YdaOZGEHiu3M2DVSyzN9YmuF7ppk7owiXoQpB7lhgkX4KR5Pdbx_2or4sQ2TyTMyjzJrUFdoVWVEJWbmyqk1q6sZyU7g0084mpcYsrxbW0_PbRCey0SXOAyowqvkWrLVda58B49xyjIBsWVudc8zlRG6EkZY74kVz-Qi2l4ZQ00C_oTCkItlkBMVgGWV6QnOqq_FD-YP1qlI0iIoGUWWU6qgwiCOIl3pDm__SeId2-m_ht5eE_yqk0JAjeD1MJIVrmg5qdGu7xYxgd0kl0RXxG2SEoDNxkZfbt-ndK7h_-HGivuwffN6BB_4Hub9Y-RzW5ucL-wIjrHn90q-fC0KpEeU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translation+invariant+tensor+product+states+in+a+finite+lattice+system&rft.jtitle=Chinese+physics+B&rft.au=Cai%2C+Jian-Wei+%28%E5%BB%BA%E4%BC%9F+%E8%94%A1%29&rft.au=Chen%2C+Qiao-Ni+%28%E5%B7%A7%E5%A6%AE+%E9%99%88%29&rft.au=Zhao%2C+Hui-Hai+%28%E6%B1%87%E6%B5%B7+%E8%B5%B5%29&rft.au=Xie%2C+Zhi-Yuan+%28%E5%BF%97%E8%BF%9C+%E8%B0%A2%29&rft.date=2011-11-01&rft.pub=IOP+Publishing&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=20&rft.spage=117501&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F11%2F117501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_20_11_117501 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |