Translation invariant tensor product states in a finite lattice system

We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 11; pp. 479 - 486
Main Author 蔡建伟 陈巧妮 赵汇海 谢志远 秦明普 魏忠超 向涛
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/11/117501

Cover

Abstract We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.
AbstractList We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.
We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.
Author 蔡建伟 陈巧妮 赵汇海 谢志远 秦明普 魏忠超 向涛
AuthorAffiliation Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  fullname: 蔡建伟 陈巧妮 赵汇海 谢志远 秦明普 魏忠超 向涛
BookMark eNqFkk9LwzAcQINMcJt-Bak3L3VJ0_wpeJHhVBh4meeQpcmMdGmXZMK-vZkdE2QwCA0k77U_Hh2BgWudBuAWwQcEOZ8gysocQUInBZwglBYjEF2AYQEJzzHH5QAMj9AVGIXwBSFFsMBDMFt46UIjo21dZt239Fa6mEXtQuuzzrf1VsUsRBl1SPeZzIx1NuosKdEqnYVdiHp9DS6NbIK-Oexj8DF7Xkxf8_n7y9v0aZ6rsmAxL7RChkhDCsJZxQ3lS4XUstZYEYMKaTSkEsFyyTSErExPCataUoVrzCmReAzu-_emyTZbHaJY26B000in220QiDEOKWElPY_CVK8iqU9CH3tU-TYEr41QNv4miV7aJqFiX1rsI4p9RFGkEyT60kmn__TO27X0u_Ni3ou27f6ck6zoapN4dII_9427w3CfrVttrFsdTVxVJU7_Af4BKbWqxg
CitedBy_id crossref_primary_10_1103_PhysRevB_105_155155
crossref_primary_10_1103_PhysRevB_109_235133
Cites_doi 10.1143/PTPS.145.204
10.1007/BF01218021
10.1103/PhysRevLett.98.070201
10.1103/PhysRevB.78.155117
10.1103/PhysRevB.55.2164
10.1103/PhysRevLett.93.227205
10.1103/PhysRevB.81.174411
10.1103/PhysRevLett.75.3537
10.1103/PhysRevLett.103.160601
10.1103/PhysRevB.81.081103
10.1103/PhysRevB.83.125104
10.1103/PhysRevLett.99.220602
10.1103/PhysRevLett.101.090603
10.1103/PhysRevB.43.3703
10.26421/QIC7.5-6-1
10.1103/RevModPhys.82.277
10.1143/JPSJ.79.044001
10.1103/PhysRevLett.69.2863
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/1674-1056/20/11/117501
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Translation invariant tensor product states in a finite lattice system
EISSN 2058-3834
EndPage 486
ExternalDocumentID 10_1088_1674_1056_20_11_117501
39943610
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
AAPBV
ABPTK
CDYEO
UNR
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
L7M
ID FETCH-LOGICAL-c427t-2ec1f5af5258798f68bc1cbde3c5f12afe06a104b7e00747e0a09da6c3d3865a3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Oct 02 06:41:03 EDT 2025
Fri Sep 05 08:54:20 EDT 2025
Wed Oct 01 04:39:36 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Tue Nov 10 14:15:18 EST 2020
Mon May 13 16:07:06 EDT 2019
Wed Feb 14 11:03:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-2ec1f5af5258798f68bc1cbde3c5f12afe06a104b7e00747e0a09da6c3d3865a3
Notes Cai Jian-Wei,Chen Qiao-Ni,Zhao Hui-Hai,Xie Zhi-Yuan,Qin Ming-Pu,Wei Zhong-Chao,Xiang Tao( a) Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ;b) Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
tensor product state; translation invariant
We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1010895383
PQPubID 23500
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_1674_1056_20_11_117501
chongqing_primary_39943610
proquest_miscellaneous_1010895383
proquest_miscellaneous_1778065746
iop_primary_10_1088_1674_1056_20_11_117501
crossref_primary_10_1088_1674_1056_20_11_117501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
12
13
14
16
17
18
Pippan P (5) 2010; 81
19
McCulloch I (10) 2008
1
2
3
4
6
Perez-Garcia D (15) 2007; 7
7
8
9
References_xml – ident: 8
  doi: 10.1143/PTPS.145.204
– year: 2008
  ident: 10
– ident: 9
  doi: 10.1007/BF01218021
– ident: 16
  doi: 10.1103/PhysRevLett.98.070201
– ident: 18
  doi: 10.1103/PhysRevB.78.155117
– ident: 12
  doi: 10.1103/PhysRevB.55.2164
– ident: 4
  doi: 10.1103/PhysRevLett.93.227205
– ident: 14
  doi: 10.1103/PhysRevB.81.174411
– ident: 3
  doi: 10.1103/PhysRevLett.75.3537
– ident: 17
  doi: 10.1103/PhysRevLett.103.160601
– volume: 81
  start-page: 081103(R)
  year: 2010
  ident: 5
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.81.081103
– ident: 6
  doi: 10.1103/PhysRevB.83.125104
– ident: 7
  doi: 10.1103/PhysRevLett.99.220602
– ident: 13
  doi: 10.1103/PhysRevLett.101.090603
– ident: 19
  doi: 10.1103/PhysRevB.43.3703
– volume: 7
  start-page: 401
  issn: 1533-7146
  year: 2007
  ident: 15
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC7.5-6-1
– ident: 2
  doi: 10.1103/RevModPhys.82.277
– ident: 11
  doi: 10.1143/JPSJ.79.044001
– ident: 1
  doi: 10.1103/PhysRevLett.69.2863
SSID ssj0061023
Score 1.8857142
Snippet We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of...
We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms Construction
Invariants
Lattices
Mathematical analysis
Matrices
Matrix methods
Tensors
Translations
产品
变系统
平移不变
张量积
晶格
状态
矩阵
Title Translation invariant tensor product states in a finite lattice system
URI http://lib.cqvip.com/qk/85823A/201111/39943610.html
http://iopscience.iop.org/1674-1056/20/11/117501
https://www.proquest.com/docview/1010895383
https://www.proquest.com/docview/1778065746
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UELz4FuuLFcSDkDbJJtnkKGIpHnyAQm_LZrOrRUmqbT34653ZNAVRtN4Cmdkks4-Zycx8A3Bi0TE2Rag8nuvMizQvvKwouCestnmWETayy_K9TnoP0VU_7i9A0wRxUA2nJ38bL-tIfiIij_rDo5_eCYIOYUu6gi1S_lSxd3PbHL0J4RCQh9WwNCXB6OX9PAwhKjxV5eMr6okvmmkRH__teHY6p7sGd03lTp1q8tyejPO2_vgO5Dj356zD6tQAZef1itmABVNuwrJLBNWjLeg65VUnyLFB-Y6uNMqeUZ579caGNT4sc2VII7zPFLMDMlsZslAeHauhobfhoXt5f9Hzpr0WPB2FYuyFRgc2VjYO41RkqU3SXAc6LwzXsQ1CZY2fKHTdcmEc5r7xlZ8VKsHJpa6hiu_AUlmVZhcY54ajWWOS3KiIo4MmIi10ZrglsDMbtWBvJnM5rDE1JNpJROu3IG4mQeopSjk1y3iRLlqeppIEKEmAMiT_RdYCbEFnxteM-RfHGc7J3MSnX4h_JJLDwrbguFkzEjcqRV9UaarJiHLp_DRD_cJ_oRGCAt0iSvb-83b7sOJ-dbsSyQNYGr9NzCHaSuP8yO2PT_wfAfc
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAXaIGKbXkYCXFAyubhJI6PCLpqAZUeqNSb5Th2W4GSpbvLgV_fGTtZqZQWqt4iZcZyPLZnJv78DcAbh4mxbTId8drIKDe8iWTT8Eg442opiRvZo3wPyr2j_NNxcbwCu8u7MN203_rH-BiIgsMQ9oC4KibcfEQF4zFxj9M0JrLJJI2njVuF9YIXkgoZ7H89HDbkktgJKO8a9IaLwte2RTwLp1178hO9xyV_tYp9urJpe080eRQQIzNPYEgAlO_jxbwem99_0Dve-SM34GEfq7L3QWkTVmz7GO55zKiZPYGJ93MBS8fO2l-YdaOZGEHiu3M2DVSyzN9YmuF7ppk7owiXoQpB7lhgkX4KR5Pdbx_2or4sQ2TyTMyjzJrUFdoVWVEJWbmyqk1q6sZyU7g0084mpcYsrxbW0_PbRCey0SXOAyowqvkWrLVda58B49xyjIBsWVudc8zlRG6EkZY74kVz-Qi2l4ZQ00C_oTCkItlkBMVgGWV6QnOqq_FD-YP1qlI0iIoGUWWU6qgwiCOIl3pDm__SeId2-m_ht5eE_yqk0JAjeD1MJIVrmg5qdGu7xYxgd0kl0RXxG2SEoDNxkZfbt-ndK7h_-HGivuwffN6BB_4Hub9Y-RzW5ucL-wIjrHn90q-fC0KpEeU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translation+invariant+tensor+product+states+in+a+finite+lattice+system&rft.jtitle=Chinese+physics+B&rft.au=Cai%2C+Jian-Wei+%28%E5%BB%BA%E4%BC%9F+%E8%94%A1%29&rft.au=Chen%2C+Qiao-Ni+%28%E5%B7%A7%E5%A6%AE+%E9%99%88%29&rft.au=Zhao%2C+Hui-Hai+%28%E6%B1%87%E6%B5%B7+%E8%B5%B5%29&rft.au=Xie%2C+Zhi-Yuan+%28%E5%BF%97%E8%BF%9C+%E8%B0%A2%29&rft.date=2011-11-01&rft.pub=IOP+Publishing&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=20&rft.spage=117501&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F11%2F117501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_20_11_117501
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg