Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization

•A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate dis...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 55; pp. 103 - 115
Main Authors Pang, Shumao, Su, Zhihai, Leung, Stephanie, Nachum, Ilanit Ben, Chen, Bo, Feng, Qianjin, Li, Shuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2019.04.012

Cover

Abstract •A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate discriminative feature embedding, which largely improves the performance of multiple indices estimation.•The adaptive local shape-constrained manifold regularization (ALSCMR) is proposed to alleviate overfitting. This provides a novel approach for multi-output regression to improve the generalization of the multi-output regression network. [Display omitted] Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.
AbstractList Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.
Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.
•A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate discriminative feature embedding, which largely improves the performance of multiple indices estimation.•The adaptive local shape-constrained manifold regularization (ALSCMR) is proposed to alleviate overfitting. This provides a novel approach for multi-output regression to improve the generalization of the multi-output regression network. [Display omitted] Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.
Author Li, Shuo
Pang, Shumao
Nachum, Ilanit Ben
Feng, Qianjin
Su, Zhihai
Chen, Bo
Leung, Stephanie
Author_xml – sequence: 1
  givenname: Shumao
  surname: Pang
  fullname: Pang, Shumao
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
– sequence: 2
  givenname: Zhihai
  surname: Su
  fullname: Su, Zhihai
  organization: Department of Spinal Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
– sequence: 3
  givenname: Stephanie
  surname: Leung
  fullname: Leung, Stephanie
  organization: Department of Medical Imaging, Western University, ON, Canada
– sequence: 4
  givenname: Ilanit Ben
  surname: Nachum
  fullname: Nachum, Ilanit Ben
  organization: Department of Medical Imaging, Western University, ON, Canada
– sequence: 5
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: Department of Medical Imaging, Western University, ON, Canada
– sequence: 6
  givenname: Qianjin
  surname: Feng
  fullname: Feng, Qianjin
  email: 1271992826@qq.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
– sequence: 7
  givenname: Shuo
  orcidid: 0000-0002-5184-3230
  surname: Li
  fullname: Li, Shuo
  email: slishuo@gmail.com
  organization: Department of Medical Imaging, Western University, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31048199$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URD7gFyAhSzQ0t9hee29dUKCEBKRINFBbs_Ys-Ni1L7Y3p_Dr8eUSihSpPMXzjsbvc0qOQgxIyFvOGs5493HTzOg8NIJx3TDZMC5ekBPednzVS9Ee_Z-5OianOW8YY2sp2Sty3HIme671Cdld-IS2UFhKnKGgozcLhOILFH-LdEbIS8IZQ6FxpHnrA9LhjlrIFhxSmLeTHz0mmvBXwpx9DDRg2cX0h-58-U1nCH6Mk9sDywTJ_62bY3hNXo4wZXzz8J6Rn5dffpx_XV1_v_p2_vl6ZaXoympcy6GXuhtapcaRA4NO15kr14K1Tmk21O_3ttNKgRIdl51TjvdM234Azdoz8uGwd5vizYK5mNlni9MEAeOSjRBCCyl6LSv6_gm6iUsK9bpKqbbvmBbrSr17oJah9m-2yc-Q7sxjpRXQB8CmmHPC0dj7NmMoCfxkODN7fWZj7vWZvT7DpKn6arZ9kn1c_3zq0yGFtcjbKsNk6zHYCu7dGhf9s_l_DXi2Ag
CitedBy_id crossref_primary_10_1016_j_yjsbx_2024_100111
crossref_primary_10_1109_TASE_2022_3218132
crossref_primary_10_1186_s13018_024_05002_5
crossref_primary_10_1002_mp_15961
crossref_primary_10_1210_clinem_dgac702
crossref_primary_10_1016_j_compeleceng_2022_108524
crossref_primary_10_3389_fmed_2021_694800
crossref_primary_10_1109_TMI_2024_3367868
crossref_primary_10_1007_s00586_022_07155_5
crossref_primary_10_1016_j_compbiomed_2023_106977
crossref_primary_10_1016_j_media_2021_102170
crossref_primary_10_3390_ijerph19105971
crossref_primary_10_1007_s42058_024_00136_1
crossref_primary_10_5812_iranjradiol_147913
crossref_primary_10_1016_j_inffus_2021_01_009
crossref_primary_10_1016_j_media_2022_102456
crossref_primary_10_1016_j_media_2022_102554
crossref_primary_10_1016_j_media_2021_101982
crossref_primary_10_1007_s11914_021_00701_y
crossref_primary_10_1016_j_media_2020_101783
crossref_primary_10_1186_s12880_023_01174_4
crossref_primary_10_1016_j_media_2021_102154
crossref_primary_10_1109_TMI_2019_2955436
crossref_primary_10_1016_j_media_2020_101872
crossref_primary_10_31616_asj_2020_0147
crossref_primary_10_1109_JBHI_2020_2977224
crossref_primary_10_1038_s41467_022_28387_5
crossref_primary_10_3389_fbioe_2024_1404058
crossref_primary_10_1016_j_bspc_2021_103230
crossref_primary_10_1016_j_xnsj_2023_100236
crossref_primary_10_1109_TCYB_2021_3123173
crossref_primary_10_1093_jbmrpl_ziaf017
crossref_primary_10_1007_s00586_023_07641_4
crossref_primary_10_1016_j_ejrad_2022_110434
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1371_journal_pone_0319583
crossref_primary_10_1016_j_media_2021_102261
crossref_primary_10_1109_JBHI_2021_3070235
crossref_primary_10_1177_21925682211035363
Cites_doi 10.1016/j.media.2016.11.008
10.1007/978-3-319-66179-7_32
10.1016/j.spinee.2013.11.018
10.1007/s00586-014-3564-8
10.1007/s00223-014-9868-1
10.1109/TMI.2018.2790962
10.1162/neco.1997.9.8.1735
10.1126/science.290.5500.2319
10.1007/978-3-319-68542-7
10.1038/srep45501
10.1097/00007632-199106000-00008
10.1109/TBME.2014.2325410
10.1162/089976603321780317
10.1016/j.neuroimage.2006.01.015
10.1016/j.clinbiochem.2012.05.001
10.1016/j.media.2015.07.003
10.1007/978-3-319-41827-8_10
10.1186/2045-709X-21-26
10.1186/s40064-016-2542-5
10.2967/jnumed.115.163121
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2019.04.012
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 115
ExternalDocumentID 31048199
10_1016_j_media_2019_04_012
S136184151830447X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c426t-f74b8496b355ff1a0a69b3515d3accd590b2018c6955a526146d5d1809c8ba903
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 12:31:47 EDT 2025
Sat Jul 26 03:31:40 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Tue Jul 01 02:49:27 EDT 2025
Fri Feb 23 02:28:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Local linear representation
Manifold learning
Spine
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-f74b8496b355ff1a0a69b3515d3accd590b2018c6955a526146d5d1809c8ba903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5184-3230
PMID 31048199
PQID 2253860927
PQPubID 2045428
PageCount 13
ParticipantIDs proquest_miscellaneous_2229242894
proquest_journals_2253860927
pubmed_primary_31048199
crossref_citationtrail_10_1016_j_media_2019_04_012
crossref_primary_10_1016_j_media_2019_04_012
elsevier_sciencedirect_doi_10_1016_j_media_2019_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Huang, Liu, Maaten, Weinberger (bib0010) 2017
Xue, Lum, Mercado, Landis, Warrington, Li (bib0033) 2017
Liu, He, Chang (bib0014) 2010
Pang, Jiang, Lu, Li, Yang, Huang, Zhang, Feng, Huang, Feng (bib0017) 2017; 7
Barbieri, Pedrosa, Traina, Nogueira-Barbosa (bib0001) 2015
Salamat, Hutchings, Kwong, Magnussen, Hancock (bib0020) 2016; 5
Jarman, Arpinar, Baruah, Klein, Maiman, Muftuler (bib0012) 2014; 24
McCloskey, Johansson, Oden, Kanis (bib0016) 2012; 45
Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0037) 2016; 30
Hara, Chellappa (bib0007) 2014
Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0036) 2014
Pang, Lu, Yang, Wu, Lu, Zhong, Feng (bib0019) 2015
Sun, Zhen, Bailey, Rasoulinejad, Yin, Li (bib0022) 2017
Sutskever, Martens, Dahl, Hinton (bib0023) 2013
Castro, Humbert, Whitmarsh, Lazary, Barquero, Frangi (bib0004) 2012
He, Zhang, Ren, Sun (bib0008) 2016
Hochreiter, Schmidhuber (bib0009) 1997; 9
Wang, Cui, Zhu (bib0029) 2016
Yang, Zhong, Chen, Lin, Lu, Liu, Wu, Feng, Chen (bib0034) 2018; 37
Zhong, Lin, Lu, Wu, Lu, Huang, Yang, Feng (bib0040) 2016
Wang, Forsberg (bib0028) 2016
Zhen, Zhang, Islam, Bhaduri, Chan, Li (bib0039) 2017; 36
Videman, Battié, Gibbons, Gill (bib0027) 2014; 14
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib0005) 2014
Wu, Bailey, Rasoulinejad, Li (bib0031) 2017
Tenenbaum, De Silva, Langford (bib0025) 2000; 290
Korez, Ibragimov, Likar, Pernuš, Vrtovec (bib0013) 2017; 10133
Simonyan, Zisserman (bib0021) 2014; abs/1409.1556
Dalal, Triggs (bib0006) 2005; 1
Belkin, Niyogi (bib0002) 2003; 15
Pang, Leung, Ben Nachum, Feng, Li (bib0018) 2018
Tatoń, Rokita, Korkosz, Wróbel (bib0024) 2014; 95
Wu, Yang, Lu, Lu, Zhong, Huang, Feng, Feng, Chen (bib0032) 2016; 57
Yushkevich, Piven, Cody Hazlett, Gimpel Smith, Ho, Gee, Gerig (bib0035) 2006; 31
Huang, Yang, Wu, Jiang, Chen, Feng (bib0011) 2014; 61
Zhen, Wang, Yu, Li (bib0038) 2015
Brinckmann, Grootenboer (bib0003) 1991; 16
Maaten, Hinton (bib0015) 2008; 9
Wang, Yang, Yu, Lv, Huang, Gong (bib0030) 2010
Tunset, Kjaer, Chreiteh, Jensen (bib0026) 2013; 21
Maaten (10.1016/j.media.2019.04.012_bib0015) 2008; 9
Tatoń (10.1016/j.media.2019.04.012_bib0024) 2014; 95
Tenenbaum (10.1016/j.media.2019.04.012_bib0025) 2000; 290
Huang (10.1016/j.media.2019.04.012_bib0011) 2014; 61
Belkin (10.1016/j.media.2019.04.012_bib0002) 2003; 15
He (10.1016/j.media.2019.04.012_bib0008) 2016
Wang (10.1016/j.media.2019.04.012_bib0028) 2016
Hochreiter (10.1016/j.media.2019.04.012_bib0009) 1997; 9
Wu (10.1016/j.media.2019.04.012_bib0032) 2016; 57
Hara (10.1016/j.media.2019.04.012_bib0007) 2014
Korez (10.1016/j.media.2019.04.012_bib0013) 2017; 10133
Huang (10.1016/j.media.2019.04.012_bib0010) 2017
Pang (10.1016/j.media.2019.04.012_bib0018) 2018
Dalal (10.1016/j.media.2019.04.012_bib0006) 2005; 1
Yushkevich (10.1016/j.media.2019.04.012_bib0035) 2006; 31
Salamat (10.1016/j.media.2019.04.012_bib0020) 2016; 5
Simonyan (10.1016/j.media.2019.04.012_bib0021) 2014; abs/1409.1556
Wang (10.1016/j.media.2019.04.012_bib0029) 2016
Castro (10.1016/j.media.2019.04.012_bib0004) 2012
Xue (10.1016/j.media.2019.04.012_bib0033) 2017
Zhen (10.1016/j.media.2019.04.012_bib0038) 2015
Zhen (10.1016/j.media.2019.04.012_bib0037) 2016; 30
Liu (10.1016/j.media.2019.04.012_bib0014) 2010
Sutskever (10.1016/j.media.2019.04.012_bib0023) 2013
McCloskey (10.1016/j.media.2019.04.012_bib0016) 2012; 45
Tunset (10.1016/j.media.2019.04.012_bib0026) 2013; 21
Videman (10.1016/j.media.2019.04.012_bib0027) 2014; 14
Wu (10.1016/j.media.2019.04.012_bib0031) 2017
Barbieri (10.1016/j.media.2019.04.012_bib0001) 2015
Sun (10.1016/j.media.2019.04.012_bib0022) 2017
Wang (10.1016/j.media.2019.04.012_bib0030) 2010
Zhen (10.1016/j.media.2019.04.012_bib0036) 2014
Cho (10.1016/j.media.2019.04.012_bib0005) 2014
Yang (10.1016/j.media.2019.04.012_bib0034) 2018; 37
Pang (10.1016/j.media.2019.04.012_bib0019) 2015
Zhong (10.1016/j.media.2019.04.012_bib0040) 2016
Brinckmann (10.1016/j.media.2019.04.012_bib0003) 1991; 16
Jarman (10.1016/j.media.2019.04.012_bib0012) 2014; 24
Pang (10.1016/j.media.2019.04.012_bib0017) 2017; 7
Zhen (10.1016/j.media.2019.04.012_bib0039) 2017; 36
References_xml – start-page: 679
  year: 2010
  end-page: 686
  ident: bib0014
  article-title: Large graph construction for scalable semi-supervised learning
  publication-title: Proceedings of the 27th international conference on machine learning (ICML-10)
– start-page: 1139
  year: 2013
  end-page: 1147
  ident: bib0023
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: International conference on machine learning
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: bib0002
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
– year: 2014
  ident: bib0005
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
– start-page: 529
  year: 2017
  end-page: 540
  ident: bib0022
  article-title: Direct Estimation of Spinal Cobb Angles by Structured Multi-output Regression
  publication-title: Lecture Notes in Computer Science
– start-page: 940
  year: 2018
  end-page: 948
  ident: bib0018
  article-title: Direct automated quantitative measurement of spine via cascade amplifier regression network
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
– volume: 1
  start-page: 886
  year: 2005
  end-page: 893 vol. 1
  ident: bib0006
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
– start-page: 552
  year: 2014
  end-page: 567
  ident: bib0007
  article-title: Growing Regression Forests by Classification: Applications to Object Pose Estimation
  publication-title: Computer Vision – ECCV 2014
– volume: 5
  year: 2016
  ident: bib0020
  article-title: The relationship between quantitative measures of disc height and disc signal intensity with pfirrmann score of disc degeneration
  publication-title: SpringerPlus
– volume: 14
  start-page: 469
  year: 2014
  end-page: 478
  ident: bib0027
  article-title: Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study
  publication-title: Spine J.
– start-page: 743
  year: 2016
  end-page: 746
  ident: bib0040
  article-title: Predict ct image from MRI data using knn-regression with learned local descriptors
  publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
– volume: 36
  start-page: 184
  year: 2017
  end-page: 196
  ident: bib0039
  article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression
  publication-title: Med. Image Anal.
– volume: abs/1409.1556
  year: 2014
  ident: bib0021
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– volume: 7
  start-page: 45501
  year: 2017
  ident: bib0017
  article-title: Hippocampus segmentation based on local linear mapping
  publication-title: Sci. Rep.
– volume: 61
  start-page: 2633
  year: 2014
  end-page: 2645
  ident: bib0011
  article-title: Brain tumor segmentation based on local independent projection-based classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1211
  year: 2015
  end-page: 1218
  ident: bib0038
  article-title: Supervised descriptor learning for multi-output regression
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1225
  year: 2016
  end-page: 1234
  ident: bib0029
  article-title: Structural deep network embedding
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 24
  start-page: 1944
  year: 2014
  end-page: 1950
  ident: bib0012
  article-title: Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration
  publication-title: Eur. Spine J.
– start-page: 107
  year: 2016
  end-page: 116
  ident: bib0028
  article-title: Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration
  publication-title: Lecture Notes in Computer Science
– start-page: 1695
  year: 2012
  end-page: 1698
  ident: bib0004
  article-title: 3d reconstruction of intervertebral discs from t1-weighted magnetic resonance images
  publication-title: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on
– start-page: 127
  year: 2017
  end-page: 135
  ident: bib0031
  article-title: Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet
  publication-title: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib0025
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– start-page: 3360
  year: 2010
  end-page: 3367
  ident: bib0030
  article-title: Locality-constrained linear coding for image classification
  publication-title: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
– start-page: 44
  year: 2015
  end-page: 49
  ident: bib0001
  article-title: Vertebral body segmentation of spine MR images using superpixels
  publication-title: Computer-Based Medical Systems (CBMS), 2015 IEEE 28th International Symposium on
– volume: 37
  start-page: 977
  year: 2018
  end-page: 987
  ident: bib0034
  article-title: Predicting ct image from MRI data through feature matching with learned nonlinear local descriptors
  publication-title: IEEE Trans. Med. Imaging
– volume: 21
  start-page: 26
  year: 2013
  ident: bib0026
  article-title: A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study
  publication-title: Chiropr. Manual Ther.
– volume: 30
  start-page: 120
  year: 2016
  end-page: 129
  ident: bib0037
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
– year: 2016
  ident: bib0008
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 45
  start-page: 887
  year: 2012
  end-page: 893
  ident: bib0016
  article-title: Fracture risk assessment
  publication-title: Clin. Biochem.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0035
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0015
  article-title: Visualizing data using t-sne
  publication-title: J.Mach.Learn.Res.
– volume: 57
  start-page: 1635
  year: 2016
  end-page: 1641
  ident: bib0032
  article-title: Prediction of CT substitutes from MR images based on local diffeomorphic mapping for brain PET attenuation correction
  publication-title: J. Nucl. Med.
– volume: 95
  start-page: 112
  year: 2014
  end-page: 121
  ident: bib0024
  article-title: The ratio of anterior and posterior vertebral heights reinforces the utility of DXA in assessment of vertebrae strength
  publication-title: Calcif. Tissue Int.
– start-page: 276
  year: 2017
  end-page: 284
  ident: bib0033
  article-title: Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-task Relatedness
  publication-title: Lecture Notes in Computer Science
– start-page: 586
  year: 2014
  end-page: 593
  ident: bib0036
  article-title: Direct Estimation of Cardiac Bi-ventricular Volumes with Regression Forests
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
– volume: 16
  start-page: 641
  year: 1991
  end-page: 646
  ident: bib0003
  article-title: Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs
  publication-title: Spine
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0010
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0009
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 104
  year: 2015
  end-page: 111
  ident: bib0019
  article-title: Hippocampus segmentation through distance field fusion
  publication-title: International Workshop on Patch-based Techniques in Medical Imaging
– volume: 10133
  start-page: 1013306
  year: 2017
  ident: bib0013
  article-title: Intervertebral disc segmentation in mr images with 3d convolutional networks
  publication-title: Medical Imaging 2017: Image Processing
– start-page: 586
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0036
  article-title: Direct Estimation of Cardiac Bi-ventricular Volumes with Regression Forests
– volume: 36
  start-page: 184
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0039
  article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.008
– start-page: 1695
  year: 2012
  ident: 10.1016/j.media.2019.04.012_bib0004
  article-title: 3d reconstruction of intervertebral discs from t1-weighted magnetic resonance images
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.media.2019.04.012_bib0015
  article-title: Visualizing data using t-sne
  publication-title: J.Mach.Learn.Res.
– volume: 10133
  start-page: 1013306
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0013
  article-title: Intervertebral disc segmentation in mr images with 3d convolutional networks
– start-page: 276
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0033
  article-title: Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-task Relatedness
  doi: 10.1007/978-3-319-66179-7_32
– volume: 14
  start-page: 469
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0027
  article-title: Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2013.11.018
– volume: 24
  start-page: 1944
  issue: 9
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0012
  article-title: Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-014-3564-8
– start-page: 3360
  year: 2010
  ident: 10.1016/j.media.2019.04.012_bib0030
  article-title: Locality-constrained linear coding for image classification
– volume: 95
  start-page: 112
  issue: 2
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0024
  article-title: The ratio of anterior and posterior vertebral heights reinforces the utility of DXA in assessment of vertebrae strength
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-014-9868-1
– volume: 37
  start-page: 977
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2019.04.012_bib0034
  article-title: Predicting ct image from MRI data through feature matching with learned nonlinear local descriptors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2790962
– year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0008
  article-title: Deep residual learning for image recognition
– start-page: 104
  year: 2015
  ident: 10.1016/j.media.2019.04.012_bib0019
  article-title: Hippocampus segmentation through distance field fusion
– start-page: 743
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0040
  article-title: Predict ct image from MRI data using knn-regression with learned local descriptors
– start-page: 44
  year: 2015
  ident: 10.1016/j.media.2019.04.012_bib0001
  article-title: Vertebral body segmentation of spine MR images using superpixels
– start-page: 2261
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0010
  article-title: Densely connected convolutional networks
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.media.2019.04.012_bib0009
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.media.2019.04.012_bib0025
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– start-page: 529
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0022
  article-title: Direct Estimation of Spinal Cobb Angles by Structured Multi-output Regression
  doi: 10.1007/978-3-319-68542-7
– volume: 7
  start-page: 45501
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0017
  article-title: Hippocampus segmentation based on local linear mapping
  publication-title: Sci. Rep.
  doi: 10.1038/srep45501
– start-page: 1139
  year: 2013
  ident: 10.1016/j.media.2019.04.012_bib0023
  article-title: On the importance of initialization and momentum in deep learning
– volume: 16
  start-page: 641
  issue: 6
  year: 1991
  ident: 10.1016/j.media.2019.04.012_bib0003
  article-title: Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs
  publication-title: Spine
  doi: 10.1097/00007632-199106000-00008
– volume: 61
  start-page: 2633
  issue: 10
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0011
  article-title: Brain tumor segmentation based on local independent projection-based classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2325410
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.media.2019.04.012_bib0002
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2019.04.012_bib0035
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 45
  start-page: 887
  issue: 12
  year: 2012
  ident: 10.1016/j.media.2019.04.012_bib0016
  article-title: Fracture risk assessment
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2012.05.001
– start-page: 1211
  year: 2015
  ident: 10.1016/j.media.2019.04.012_bib0038
  article-title: Supervised descriptor learning for multi-output regression
– volume: 30
  start-page: 120
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0037
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.07.003
– start-page: 107
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0028
  article-title: Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration
  doi: 10.1007/978-3-319-41827-8_10
– year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0005
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
– start-page: 127
  year: 2017
  ident: 10.1016/j.media.2019.04.012_bib0031
  article-title: Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet
– volume: abs/1409.1556
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0021
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 552
  year: 2014
  ident: 10.1016/j.media.2019.04.012_bib0007
  article-title: Growing Regression Forests by Classification: Applications to Object Pose Estimation
– volume: 21
  start-page: 26
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2019.04.012_bib0026
  article-title: A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study
  publication-title: Chiropr. Manual Ther.
  doi: 10.1186/2045-709X-21-26
– volume: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0020
  article-title: The relationship between quantitative measures of disc height and disc signal intensity with pfirrmann score of disc degeneration
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2542-5
– start-page: 679
  year: 2010
  ident: 10.1016/j.media.2019.04.012_bib0014
  article-title: Large graph construction for scalable semi-supervised learning
– start-page: 940
  year: 2018
  ident: 10.1016/j.media.2019.04.012_bib0018
  article-title: Direct automated quantitative measurement of spine via cascade amplifier regression network
– volume: 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.media.2019.04.012_bib0006
  article-title: Histograms of oriented gradients for human detection
– volume: 57
  start-page: 1635
  issue: 10
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0032
  article-title: Prediction of CT substitutes from MR images based on local diffeomorphic mapping for brain PET attenuation correction
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.115.163121
– start-page: 1225
  year: 2016
  ident: 10.1016/j.media.2019.04.012_bib0029
  article-title: Structural deep network embedding
SSID ssj0007440
Score 2.4496353
Snippet •A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the...
Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Amplifiers
Assessments
Automation
Biocompatibility
Biomedical materials
Deep learning
Degeneration
Embedding
Feature maps
Intervertebral discs
Local linear representation
Manifold learning
Osteoporosis
Regression models
Regularization
Spine
Spine (lumbar)
Vertebrae
Title Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization
URI https://dx.doi.org/10.1016/j.media.2019.04.012
https://www.ncbi.nlm.nih.gov/pubmed/31048199
https://www.proquest.com/docview/2253860927
https://www.proquest.com/docview/2229242894
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeC6UyEkfCOontxMeqarW0ai9QaW-W48SoqCRLd1dVL_x2ZmxnSw_tgVseM5LlsWc-29-MAT4VrlNeep1xWzWZkHmT6cJxnPH4WcnK63Cie3qmZufieC7nW3Aw5sIQrTL5_ujTg7dOX6apN6eLi4vpt7yky0owYtW4JBfVnDLYhSJa35c_tzQPKoAXc6_yjKTHykOB4xWyM4jfpUO907y4Lzrdhz5DFDp6Ds8SfGT7sYUvYKvrd-DpP0UFd-DxaToufwnX0aExu14NiEy7lv1e2z6klaGTY79u9wfZ4NlygUqsuWHOLok1zyyxzT22jF11PyJftmd95I0z2sBlVDzDD5ctCRCfNSV1voLzo8PvB7Ms3bSQOYzQq8xXoqmFVg2iD-9zy63S-JzLtrTOtVLzBjupdkpLaSUuuoRqZUulv1zdWM3L17DdD333Flipa9SteCs7IayTlktEpB7F0Lci9plAMfawcakMOd2GcWlGvtlPE8xiyCyGC4NmmcDnjdIiVuF4WFyNpjN3BpPBOPGw4u5oaJPm8tKgxytrxXVRTeDj5jfOQjpasX03rEmmwIUsLl7FBN7EAbJpKAJogbhLv_vfVr2HJ_QWScK7sL26WncfEAqtmr0w1vfg0f7Xk9nZX0kECEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQTlgKB8LRQwEkeidRLbiY9VRbWl3b3QSnuzHCeuikqy7e4K8e-ZiZ0FDu2BW5R4JMtjv3mO34wBPmWuUV56nXBbVImQaZXozHFc8fhaycLr_kR3NlfTC_F1IRc7cDTkwpCsMmJ_wPQereObSRzNyfLqavItzemyEoxYJW7JRbF4ALtCIiaPYPfw5HQ63wIy1cAL6VdpQgZD8aFe5tUnaJDES_clT9PsrgB1FwHtA9HxU3gSGSQ7DJ18BjtNuw-P_6oruA8PZ_HE_Dn8DJjG7GbdITltanazsW2fWYY4x378-UXIOs9WSzRi1S_m7IqE88yS4Nxjz9htcxkksy1rg3Sc0T9cRvUzfHddUwOStMa8zhdwcfzl_GiaxMsWEodBep34QlSl0KpCAuJ9arlVGp9TWefWuVpqXuEglU5pKa3EfZdQtayp-pcrK6t5_hJGbdc2r4HlukTbgteyEcI6ablEUuqxGcIr0p8xZMMIGxcrkdOFGNdmkJx9N71bDLnFcGHQLWP4vDVahkIc9zdXg-vMP_PJYKi43_BgcLSJy3llEPTyUnGdFWP4uP2MC5FOV2zbdBtqk-FeFvevYgyvwgTZdhQ5tEDqpd_8b68-wKPp-ezMnJ3MT9_CHn0JmuEDGK1vN807ZEbr6n2c-b8BO4gK7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+automated+quantitative+measurement+of+spine+by+cascade+amplifier+regression+network+with+manifold+regularization&rft.jtitle=Medical+image+analysis&rft.au=Pang%2C+Shumao&rft.au=Su%2C+Zhihai&rft.au=Leung%2C+Stephanie&rft.au=Nachum%2C+Ilanit+Ben&rft.date=2019-07-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=55&rft.spage=103&rft_id=info:doi/10.1016%2Fj.media.2019.04.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon