Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization
•A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate dis...
Saved in:
Published in | Medical image analysis Vol. 55; pp. 103 - 115 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2019.04.012 |
Cover
Abstract | •A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate discriminative feature embedding, which largely improves the performance of multiple indices estimation.•The adaptive local shape-constrained manifold regularization (ALSCMR) is proposed to alleviate overfitting. This provides a novel approach for multi-output regression to improve the generalization of the multi-output regression network.
[Display omitted]
Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments. |
---|---|
AbstractList | Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments. Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments. •A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the clinical diagnosis and assessment of spinal diseases.•The local structure-preserved manifold regularization (LSPMR) is proposed to generate discriminative feature embedding, which largely improves the performance of multiple indices estimation.•The adaptive local shape-constrained manifold regularization (ALSCMR) is proposed to alleviate overfitting. This provides a novel approach for multi-output regression to improve the generalization of the multi-output regression network. [Display omitted] Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments. |
Author | Li, Shuo Pang, Shumao Nachum, Ilanit Ben Feng, Qianjin Su, Zhihai Chen, Bo Leung, Stephanie |
Author_xml | – sequence: 1 givenname: Shumao surname: Pang fullname: Pang, Shumao organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China – sequence: 2 givenname: Zhihai surname: Su fullname: Su, Zhihai organization: Department of Spinal Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China – sequence: 3 givenname: Stephanie surname: Leung fullname: Leung, Stephanie organization: Department of Medical Imaging, Western University, ON, Canada – sequence: 4 givenname: Ilanit Ben surname: Nachum fullname: Nachum, Ilanit Ben organization: Department of Medical Imaging, Western University, ON, Canada – sequence: 5 givenname: Bo surname: Chen fullname: Chen, Bo organization: Department of Medical Imaging, Western University, ON, Canada – sequence: 6 givenname: Qianjin surname: Feng fullname: Feng, Qianjin email: 1271992826@qq.com organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China – sequence: 7 givenname: Shuo orcidid: 0000-0002-5184-3230 surname: Li fullname: Li, Shuo email: slishuo@gmail.com organization: Department of Medical Imaging, Western University, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31048199$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi0URD7gFyAhSzQ0t9hee29dUKCEBKRINFBbs_Ys-Ni1L7Y3p_Dr8eUSihSpPMXzjsbvc0qOQgxIyFvOGs5493HTzOg8NIJx3TDZMC5ekBPednzVS9Ee_Z-5OianOW8YY2sp2Sty3HIme671Cdld-IS2UFhKnKGgozcLhOILFH-LdEbIS8IZQ6FxpHnrA9LhjlrIFhxSmLeTHz0mmvBXwpx9DDRg2cX0h-58-U1nCH6Mk9sDywTJ_62bY3hNXo4wZXzz8J6Rn5dffpx_XV1_v_p2_vl6ZaXoympcy6GXuhtapcaRA4NO15kr14K1Tmk21O_3ttNKgRIdl51TjvdM234Azdoz8uGwd5vizYK5mNlni9MEAeOSjRBCCyl6LSv6_gm6iUsK9bpKqbbvmBbrSr17oJah9m-2yc-Q7sxjpRXQB8CmmHPC0dj7NmMoCfxkODN7fWZj7vWZvT7DpKn6arZ9kn1c_3zq0yGFtcjbKsNk6zHYCu7dGhf9s_l_DXi2Ag |
CitedBy_id | crossref_primary_10_1016_j_yjsbx_2024_100111 crossref_primary_10_1109_TASE_2022_3218132 crossref_primary_10_1186_s13018_024_05002_5 crossref_primary_10_1002_mp_15961 crossref_primary_10_1210_clinem_dgac702 crossref_primary_10_1016_j_compeleceng_2022_108524 crossref_primary_10_3389_fmed_2021_694800 crossref_primary_10_1109_TMI_2024_3367868 crossref_primary_10_1007_s00586_022_07155_5 crossref_primary_10_1016_j_compbiomed_2023_106977 crossref_primary_10_1016_j_media_2021_102170 crossref_primary_10_3390_ijerph19105971 crossref_primary_10_1007_s42058_024_00136_1 crossref_primary_10_5812_iranjradiol_147913 crossref_primary_10_1016_j_inffus_2021_01_009 crossref_primary_10_1016_j_media_2022_102456 crossref_primary_10_1016_j_media_2022_102554 crossref_primary_10_1016_j_media_2021_101982 crossref_primary_10_1007_s11914_021_00701_y crossref_primary_10_1016_j_media_2020_101783 crossref_primary_10_1186_s12880_023_01174_4 crossref_primary_10_1016_j_media_2021_102154 crossref_primary_10_1109_TMI_2019_2955436 crossref_primary_10_1016_j_media_2020_101872 crossref_primary_10_31616_asj_2020_0147 crossref_primary_10_1109_JBHI_2020_2977224 crossref_primary_10_1038_s41467_022_28387_5 crossref_primary_10_3389_fbioe_2024_1404058 crossref_primary_10_1016_j_bspc_2021_103230 crossref_primary_10_1016_j_xnsj_2023_100236 crossref_primary_10_1109_TCYB_2021_3123173 crossref_primary_10_1093_jbmrpl_ziaf017 crossref_primary_10_1007_s00586_023_07641_4 crossref_primary_10_1016_j_ejrad_2022_110434 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_1371_journal_pone_0319583 crossref_primary_10_1016_j_media_2021_102261 crossref_primary_10_1109_JBHI_2021_3070235 crossref_primary_10_1177_21925682211035363 |
Cites_doi | 10.1016/j.media.2016.11.008 10.1007/978-3-319-66179-7_32 10.1016/j.spinee.2013.11.018 10.1007/s00586-014-3564-8 10.1007/s00223-014-9868-1 10.1109/TMI.2018.2790962 10.1162/neco.1997.9.8.1735 10.1126/science.290.5500.2319 10.1007/978-3-319-68542-7 10.1038/srep45501 10.1097/00007632-199106000-00008 10.1109/TBME.2014.2325410 10.1162/089976603321780317 10.1016/j.neuroimage.2006.01.015 10.1016/j.clinbiochem.2012.05.001 10.1016/j.media.2015.07.003 10.1007/978-3-319-41827-8_10 10.1186/2045-709X-21-26 10.1186/s40064-016-2542-5 10.2967/jnumed.115.163121 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jul 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jul 2019 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2019.04.012 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 115 |
ExternalDocumentID | 31048199 10_1016_j_media_2019_04_012 S136184151830447X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c426t-f74b8496b355ff1a0a69b3515d3accd590b2018c6955a526146d5d1809c8ba903 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Sun Sep 28 12:31:47 EDT 2025 Sat Jul 26 03:31:40 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Tue Jul 01 02:49:27 EDT 2025 Fri Feb 23 02:28:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Local linear representation Manifold learning Spine |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-f74b8496b355ff1a0a69b3515d3accd590b2018c6955a526146d5d1809c8ba903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5184-3230 |
PMID | 31048199 |
PQID | 2253860927 |
PQPubID | 2045428 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2229242894 proquest_journals_2253860927 pubmed_primary_31048199 crossref_citationtrail_10_1016_j_media_2019_04_012 crossref_primary_10_1016_j_media_2019_04_012 elsevier_sciencedirect_doi_10_1016_j_media_2019_04_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Huang, Liu, Maaten, Weinberger (bib0010) 2017 Xue, Lum, Mercado, Landis, Warrington, Li (bib0033) 2017 Liu, He, Chang (bib0014) 2010 Pang, Jiang, Lu, Li, Yang, Huang, Zhang, Feng, Huang, Feng (bib0017) 2017; 7 Barbieri, Pedrosa, Traina, Nogueira-Barbosa (bib0001) 2015 Salamat, Hutchings, Kwong, Magnussen, Hancock (bib0020) 2016; 5 Jarman, Arpinar, Baruah, Klein, Maiman, Muftuler (bib0012) 2014; 24 McCloskey, Johansson, Oden, Kanis (bib0016) 2012; 45 Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0037) 2016; 30 Hara, Chellappa (bib0007) 2014 Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0036) 2014 Pang, Lu, Yang, Wu, Lu, Zhong, Feng (bib0019) 2015 Sun, Zhen, Bailey, Rasoulinejad, Yin, Li (bib0022) 2017 Sutskever, Martens, Dahl, Hinton (bib0023) 2013 Castro, Humbert, Whitmarsh, Lazary, Barquero, Frangi (bib0004) 2012 He, Zhang, Ren, Sun (bib0008) 2016 Hochreiter, Schmidhuber (bib0009) 1997; 9 Wang, Cui, Zhu (bib0029) 2016 Yang, Zhong, Chen, Lin, Lu, Liu, Wu, Feng, Chen (bib0034) 2018; 37 Zhong, Lin, Lu, Wu, Lu, Huang, Yang, Feng (bib0040) 2016 Wang, Forsberg (bib0028) 2016 Zhen, Zhang, Islam, Bhaduri, Chan, Li (bib0039) 2017; 36 Videman, Battié, Gibbons, Gill (bib0027) 2014; 14 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib0005) 2014 Wu, Bailey, Rasoulinejad, Li (bib0031) 2017 Tenenbaum, De Silva, Langford (bib0025) 2000; 290 Korez, Ibragimov, Likar, Pernuš, Vrtovec (bib0013) 2017; 10133 Simonyan, Zisserman (bib0021) 2014; abs/1409.1556 Dalal, Triggs (bib0006) 2005; 1 Belkin, Niyogi (bib0002) 2003; 15 Pang, Leung, Ben Nachum, Feng, Li (bib0018) 2018 Tatoń, Rokita, Korkosz, Wróbel (bib0024) 2014; 95 Wu, Yang, Lu, Lu, Zhong, Huang, Feng, Feng, Chen (bib0032) 2016; 57 Yushkevich, Piven, Cody Hazlett, Gimpel Smith, Ho, Gee, Gerig (bib0035) 2006; 31 Huang, Yang, Wu, Jiang, Chen, Feng (bib0011) 2014; 61 Zhen, Wang, Yu, Li (bib0038) 2015 Brinckmann, Grootenboer (bib0003) 1991; 16 Maaten, Hinton (bib0015) 2008; 9 Wang, Yang, Yu, Lv, Huang, Gong (bib0030) 2010 Tunset, Kjaer, Chreiteh, Jensen (bib0026) 2013; 21 Maaten (10.1016/j.media.2019.04.012_bib0015) 2008; 9 Tatoń (10.1016/j.media.2019.04.012_bib0024) 2014; 95 Tenenbaum (10.1016/j.media.2019.04.012_bib0025) 2000; 290 Huang (10.1016/j.media.2019.04.012_bib0011) 2014; 61 Belkin (10.1016/j.media.2019.04.012_bib0002) 2003; 15 He (10.1016/j.media.2019.04.012_bib0008) 2016 Wang (10.1016/j.media.2019.04.012_bib0028) 2016 Hochreiter (10.1016/j.media.2019.04.012_bib0009) 1997; 9 Wu (10.1016/j.media.2019.04.012_bib0032) 2016; 57 Hara (10.1016/j.media.2019.04.012_bib0007) 2014 Korez (10.1016/j.media.2019.04.012_bib0013) 2017; 10133 Huang (10.1016/j.media.2019.04.012_bib0010) 2017 Pang (10.1016/j.media.2019.04.012_bib0018) 2018 Dalal (10.1016/j.media.2019.04.012_bib0006) 2005; 1 Yushkevich (10.1016/j.media.2019.04.012_bib0035) 2006; 31 Salamat (10.1016/j.media.2019.04.012_bib0020) 2016; 5 Simonyan (10.1016/j.media.2019.04.012_bib0021) 2014; abs/1409.1556 Wang (10.1016/j.media.2019.04.012_bib0029) 2016 Castro (10.1016/j.media.2019.04.012_bib0004) 2012 Xue (10.1016/j.media.2019.04.012_bib0033) 2017 Zhen (10.1016/j.media.2019.04.012_bib0038) 2015 Zhen (10.1016/j.media.2019.04.012_bib0037) 2016; 30 Liu (10.1016/j.media.2019.04.012_bib0014) 2010 Sutskever (10.1016/j.media.2019.04.012_bib0023) 2013 McCloskey (10.1016/j.media.2019.04.012_bib0016) 2012; 45 Tunset (10.1016/j.media.2019.04.012_bib0026) 2013; 21 Videman (10.1016/j.media.2019.04.012_bib0027) 2014; 14 Wu (10.1016/j.media.2019.04.012_bib0031) 2017 Barbieri (10.1016/j.media.2019.04.012_bib0001) 2015 Sun (10.1016/j.media.2019.04.012_bib0022) 2017 Wang (10.1016/j.media.2019.04.012_bib0030) 2010 Zhen (10.1016/j.media.2019.04.012_bib0036) 2014 Cho (10.1016/j.media.2019.04.012_bib0005) 2014 Yang (10.1016/j.media.2019.04.012_bib0034) 2018; 37 Pang (10.1016/j.media.2019.04.012_bib0019) 2015 Zhong (10.1016/j.media.2019.04.012_bib0040) 2016 Brinckmann (10.1016/j.media.2019.04.012_bib0003) 1991; 16 Jarman (10.1016/j.media.2019.04.012_bib0012) 2014; 24 Pang (10.1016/j.media.2019.04.012_bib0017) 2017; 7 Zhen (10.1016/j.media.2019.04.012_bib0039) 2017; 36 |
References_xml | – start-page: 679 year: 2010 end-page: 686 ident: bib0014 article-title: Large graph construction for scalable semi-supervised learning publication-title: Proceedings of the 27th international conference on machine learning (ICML-10) – start-page: 1139 year: 2013 end-page: 1147 ident: bib0023 article-title: On the importance of initialization and momentum in deep learning publication-title: International conference on machine learning – volume: 15 start-page: 1373 year: 2003 end-page: 1396 ident: bib0002 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. – year: 2014 ident: bib0005 article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) – start-page: 529 year: 2017 end-page: 540 ident: bib0022 article-title: Direct Estimation of Spinal Cobb Angles by Structured Multi-output Regression publication-title: Lecture Notes in Computer Science – start-page: 940 year: 2018 end-page: 948 ident: bib0018 article-title: Direct automated quantitative measurement of spine via cascade amplifier regression network publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 – volume: 1 start-page: 886 year: 2005 end-page: 893 vol. 1 ident: bib0006 article-title: Histograms of oriented gradients for human detection publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) – start-page: 552 year: 2014 end-page: 567 ident: bib0007 article-title: Growing Regression Forests by Classification: Applications to Object Pose Estimation publication-title: Computer Vision – ECCV 2014 – volume: 5 year: 2016 ident: bib0020 article-title: The relationship between quantitative measures of disc height and disc signal intensity with pfirrmann score of disc degeneration publication-title: SpringerPlus – volume: 14 start-page: 469 year: 2014 end-page: 478 ident: bib0027 article-title: Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study publication-title: Spine J. – start-page: 743 year: 2016 end-page: 746 ident: bib0040 article-title: Predict ct image from MRI data using knn-regression with learned local descriptors publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) – volume: 36 start-page: 184 year: 2017 end-page: 196 ident: bib0039 article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression publication-title: Med. Image Anal. – volume: abs/1409.1556 year: 2014 ident: bib0021 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – volume: 7 start-page: 45501 year: 2017 ident: bib0017 article-title: Hippocampus segmentation based on local linear mapping publication-title: Sci. Rep. – volume: 61 start-page: 2633 year: 2014 end-page: 2645 ident: bib0011 article-title: Brain tumor segmentation based on local independent projection-based classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 1211 year: 2015 end-page: 1218 ident: bib0038 article-title: Supervised descriptor learning for multi-output regression publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1225 year: 2016 end-page: 1234 ident: bib0029 article-title: Structural deep network embedding publication-title: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 24 start-page: 1944 year: 2014 end-page: 1950 ident: bib0012 article-title: Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration publication-title: Eur. Spine J. – start-page: 107 year: 2016 end-page: 116 ident: bib0028 article-title: Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration publication-title: Lecture Notes in Computer Science – start-page: 1695 year: 2012 end-page: 1698 ident: bib0004 article-title: 3d reconstruction of intervertebral discs from t1-weighted magnetic resonance images publication-title: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on – start-page: 127 year: 2017 end-page: 135 ident: bib0031 article-title: Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet publication-title: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017 – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib0025 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – start-page: 3360 year: 2010 end-page: 3367 ident: bib0030 article-title: Locality-constrained linear coding for image classification publication-title: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on – start-page: 44 year: 2015 end-page: 49 ident: bib0001 article-title: Vertebral body segmentation of spine MR images using superpixels publication-title: Computer-Based Medical Systems (CBMS), 2015 IEEE 28th International Symposium on – volume: 37 start-page: 977 year: 2018 end-page: 987 ident: bib0034 article-title: Predicting ct image from MRI data through feature matching with learned nonlinear local descriptors publication-title: IEEE Trans. Med. Imaging – volume: 21 start-page: 26 year: 2013 ident: bib0026 article-title: A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study publication-title: Chiropr. Manual Ther. – volume: 30 start-page: 120 year: 2016 end-page: 129 ident: bib0037 article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation publication-title: Med. Image Anal. – year: 2016 ident: bib0008 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 45 start-page: 887 year: 2012 end-page: 893 ident: bib0016 article-title: Fracture risk assessment publication-title: Clin. Biochem. – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib0035 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0015 article-title: Visualizing data using t-sne publication-title: J.Mach.Learn.Res. – volume: 57 start-page: 1635 year: 2016 end-page: 1641 ident: bib0032 article-title: Prediction of CT substitutes from MR images based on local diffeomorphic mapping for brain PET attenuation correction publication-title: J. Nucl. Med. – volume: 95 start-page: 112 year: 2014 end-page: 121 ident: bib0024 article-title: The ratio of anterior and posterior vertebral heights reinforces the utility of DXA in assessment of vertebrae strength publication-title: Calcif. Tissue Int. – start-page: 276 year: 2017 end-page: 284 ident: bib0033 article-title: Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-task Relatedness publication-title: Lecture Notes in Computer Science – start-page: 586 year: 2014 end-page: 593 ident: bib0036 article-title: Direct Estimation of Cardiac Bi-ventricular Volumes with Regression Forests publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 – volume: 16 start-page: 641 year: 1991 end-page: 646 ident: bib0003 article-title: Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs publication-title: Spine – start-page: 2261 year: 2017 end-page: 2269 ident: bib0010 article-title: Densely connected convolutional networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0009 article-title: Long short-term memory publication-title: Neural Comput. – start-page: 104 year: 2015 end-page: 111 ident: bib0019 article-title: Hippocampus segmentation through distance field fusion publication-title: International Workshop on Patch-based Techniques in Medical Imaging – volume: 10133 start-page: 1013306 year: 2017 ident: bib0013 article-title: Intervertebral disc segmentation in mr images with 3d convolutional networks publication-title: Medical Imaging 2017: Image Processing – start-page: 586 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0036 article-title: Direct Estimation of Cardiac Bi-ventricular Volumes with Regression Forests – volume: 36 start-page: 184 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0039 article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.008 – start-page: 1695 year: 2012 ident: 10.1016/j.media.2019.04.012_bib0004 article-title: 3d reconstruction of intervertebral discs from t1-weighted magnetic resonance images – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.media.2019.04.012_bib0015 article-title: Visualizing data using t-sne publication-title: J.Mach.Learn.Res. – volume: 10133 start-page: 1013306 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0013 article-title: Intervertebral disc segmentation in mr images with 3d convolutional networks – start-page: 276 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0033 article-title: Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-task Relatedness doi: 10.1007/978-3-319-66179-7_32 – volume: 14 start-page: 469 issue: 3 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0027 article-title: Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study publication-title: Spine J. doi: 10.1016/j.spinee.2013.11.018 – volume: 24 start-page: 1944 issue: 9 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0012 article-title: Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration publication-title: Eur. Spine J. doi: 10.1007/s00586-014-3564-8 – start-page: 3360 year: 2010 ident: 10.1016/j.media.2019.04.012_bib0030 article-title: Locality-constrained linear coding for image classification – volume: 95 start-page: 112 issue: 2 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0024 article-title: The ratio of anterior and posterior vertebral heights reinforces the utility of DXA in assessment of vertebrae strength publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-014-9868-1 – volume: 37 start-page: 977 issue: 4 year: 2018 ident: 10.1016/j.media.2019.04.012_bib0034 article-title: Predicting ct image from MRI data through feature matching with learned nonlinear local descriptors publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2790962 – year: 2016 ident: 10.1016/j.media.2019.04.012_bib0008 article-title: Deep residual learning for image recognition – start-page: 104 year: 2015 ident: 10.1016/j.media.2019.04.012_bib0019 article-title: Hippocampus segmentation through distance field fusion – start-page: 743 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0040 article-title: Predict ct image from MRI data using knn-regression with learned local descriptors – start-page: 44 year: 2015 ident: 10.1016/j.media.2019.04.012_bib0001 article-title: Vertebral body segmentation of spine MR images using superpixels – start-page: 2261 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0010 article-title: Densely connected convolutional networks – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.media.2019.04.012_bib0009 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.media.2019.04.012_bib0025 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 529 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0022 article-title: Direct Estimation of Spinal Cobb Angles by Structured Multi-output Regression doi: 10.1007/978-3-319-68542-7 – volume: 7 start-page: 45501 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0017 article-title: Hippocampus segmentation based on local linear mapping publication-title: Sci. Rep. doi: 10.1038/srep45501 – start-page: 1139 year: 2013 ident: 10.1016/j.media.2019.04.012_bib0023 article-title: On the importance of initialization and momentum in deep learning – volume: 16 start-page: 641 issue: 6 year: 1991 ident: 10.1016/j.media.2019.04.012_bib0003 article-title: Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs publication-title: Spine doi: 10.1097/00007632-199106000-00008 – volume: 61 start-page: 2633 issue: 10 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0011 article-title: Brain tumor segmentation based on local independent projection-based classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2325410 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 10.1016/j.media.2019.04.012_bib0002 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 10.1016/j.media.2019.04.012_bib0035 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 45 start-page: 887 issue: 12 year: 2012 ident: 10.1016/j.media.2019.04.012_bib0016 article-title: Fracture risk assessment publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2012.05.001 – start-page: 1211 year: 2015 ident: 10.1016/j.media.2019.04.012_bib0038 article-title: Supervised descriptor learning for multi-output regression – volume: 30 start-page: 120 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0037 article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.07.003 – start-page: 107 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0028 article-title: Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration doi: 10.1007/978-3-319-41827-8_10 – year: 2014 ident: 10.1016/j.media.2019.04.012_bib0005 article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation – start-page: 127 year: 2017 ident: 10.1016/j.media.2019.04.012_bib0031 article-title: Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet – volume: abs/1409.1556 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0021 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – start-page: 552 year: 2014 ident: 10.1016/j.media.2019.04.012_bib0007 article-title: Growing Regression Forests by Classification: Applications to Object Pose Estimation – volume: 21 start-page: 26 issue: 1 year: 2013 ident: 10.1016/j.media.2019.04.012_bib0026 article-title: A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study publication-title: Chiropr. Manual Ther. doi: 10.1186/2045-709X-21-26 – volume: 5 issue: 1 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0020 article-title: The relationship between quantitative measures of disc height and disc signal intensity with pfirrmann score of disc degeneration publication-title: SpringerPlus doi: 10.1186/s40064-016-2542-5 – start-page: 679 year: 2010 ident: 10.1016/j.media.2019.04.012_bib0014 article-title: Large graph construction for scalable semi-supervised learning – start-page: 940 year: 2018 ident: 10.1016/j.media.2019.04.012_bib0018 article-title: Direct automated quantitative measurement of spine via cascade amplifier regression network – volume: 1 start-page: 886 year: 2005 ident: 10.1016/j.media.2019.04.012_bib0006 article-title: Histograms of oriented gradients for human detection – volume: 57 start-page: 1635 issue: 10 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0032 article-title: Prediction of CT substitutes from MR images based on local diffeomorphic mapping for brain PET attenuation correction publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.163121 – start-page: 1225 year: 2016 ident: 10.1016/j.media.2019.04.012_bib0029 article-title: Structural deep network embedding |
SSID | ssj0007440 |
Score | 2.4496353 |
Snippet | •A novel regression network named CARN is proposed to achieve automated quantitative measurement of the spine, which provides a reliable measurement for the... Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Amplifiers Assessments Automation Biocompatibility Biomedical materials Deep learning Degeneration Embedding Feature maps Intervertebral discs Local linear representation Manifold learning Osteoporosis Regression models Regularization Spine Spine (lumbar) Vertebrae |
Title | Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization |
URI | https://dx.doi.org/10.1016/j.media.2019.04.012 https://www.ncbi.nlm.nih.gov/pubmed/31048199 https://www.proquest.com/docview/2253860927 https://www.proquest.com/docview/2229242894 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeC6UyEkfCOontxMeqarW0ai9QaW-W48SoqCRLd1dVL_x2ZmxnSw_tgVseM5LlsWc-29-MAT4VrlNeep1xWzWZkHmT6cJxnPH4WcnK63Cie3qmZufieC7nW3Aw5sIQrTL5_ujTg7dOX6apN6eLi4vpt7yky0owYtW4JBfVnDLYhSJa35c_tzQPKoAXc6_yjKTHykOB4xWyM4jfpUO907y4Lzrdhz5DFDp6Ds8SfGT7sYUvYKvrd-DpP0UFd-DxaToufwnX0aExu14NiEy7lv1e2z6klaGTY79u9wfZ4NlygUqsuWHOLok1zyyxzT22jF11PyJftmd95I0z2sBlVDzDD5ctCRCfNSV1voLzo8PvB7Ms3bSQOYzQq8xXoqmFVg2iD-9zy63S-JzLtrTOtVLzBjupdkpLaSUuuoRqZUulv1zdWM3L17DdD333Flipa9SteCs7IayTlktEpB7F0Lci9plAMfawcakMOd2GcWlGvtlPE8xiyCyGC4NmmcDnjdIiVuF4WFyNpjN3BpPBOPGw4u5oaJPm8tKgxytrxXVRTeDj5jfOQjpasX03rEmmwIUsLl7FBN7EAbJpKAJogbhLv_vfVr2HJ_QWScK7sL26WncfEAqtmr0w1vfg0f7Xk9nZX0kECEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQTlgKB8LRQwEkeidRLbiY9VRbWl3b3QSnuzHCeuikqy7e4K8e-ZiZ0FDu2BW5R4JMtjv3mO34wBPmWuUV56nXBbVImQaZXozHFc8fhaycLr_kR3NlfTC_F1IRc7cDTkwpCsMmJ_wPQereObSRzNyfLqavItzemyEoxYJW7JRbF4ALtCIiaPYPfw5HQ63wIy1cAL6VdpQgZD8aFe5tUnaJDES_clT9PsrgB1FwHtA9HxU3gSGSQ7DJ18BjtNuw-P_6oruA8PZ_HE_Dn8DJjG7GbdITltanazsW2fWYY4x378-UXIOs9WSzRi1S_m7IqE88yS4Nxjz9htcxkksy1rg3Sc0T9cRvUzfHddUwOStMa8zhdwcfzl_GiaxMsWEodBep34QlSl0KpCAuJ9arlVGp9TWefWuVpqXuEglU5pKa3EfZdQtayp-pcrK6t5_hJGbdc2r4HlukTbgteyEcI6ablEUuqxGcIr0p8xZMMIGxcrkdOFGNdmkJx9N71bDLnFcGHQLWP4vDVahkIc9zdXg-vMP_PJYKi43_BgcLSJy3llEPTyUnGdFWP4uP2MC5FOV2zbdBtqk-FeFvevYgyvwgTZdhQ5tEDqpd_8b68-wKPp-ezMnJ3MT9_CHn0JmuEDGK1vN807ZEbr6n2c-b8BO4gK7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+automated+quantitative+measurement+of+spine+by+cascade+amplifier+regression+network+with+manifold+regularization&rft.jtitle=Medical+image+analysis&rft.au=Pang%2C+Shumao&rft.au=Su%2C+Zhihai&rft.au=Leung%2C+Stephanie&rft.au=Nachum%2C+Ilanit+Ben&rft.date=2019-07-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=55&rft.spage=103&rft_id=info:doi/10.1016%2Fj.media.2019.04.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |