A 2-D Space-Variant Chirp Scaling Algorithm Based on the RCM Equalization and Subband Synthesis to Process Geosynchronous SAR Data

A space-variant chirp scaling algorithm based on the range cell migration (RCM) equalization and azimuth subband synthesis has been studied to process simulated geosynchronous synthetic aperture radar (GEO-SAR) data. The acceptable order of terms in polynomials for the slant range models in the RCM...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 8; pp. 4868 - 4880
Main Authors Sun, Guang-Cai, Xing, Mengdao, Wang, Yong, Yang, Jun, Bao, Zheng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2013.2285721

Cover

More Information
Summary:A space-variant chirp scaling algorithm based on the range cell migration (RCM) equalization and azimuth subband synthesis has been studied to process simulated geosynchronous synthetic aperture radar (GEO-SAR) data. The acceptable order of terms in polynomials for the slant range models in the RCM correction and phase error compensation, division of subband, and suppression of grating lobes of the subbands was investigated. Qualitatively and quantitatively, the method was able to focus simulated GEO-SAR signals well. Finally, the constraint on the spatial extent of azimuth and range dimensions using the algorithm was assessed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2013.2285721