Machine learning for target discovery in drug development

The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in chemical biology Vol. 56; pp. 16 - 22
Main Authors Rodrigues, Tiago, Bernardes, Gonçalo J.L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2020
Elsevier
Subjects
Online AccessGet full text
ISSN1367-5931
1879-0402
1879-0402
DOI10.1016/j.cbpa.2019.10.003

Cover

Abstract The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug–target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.
AbstractList © 2019 Elsevier Ltd. All rights reserved. The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery. T.R. is an Investigador Auxiliar supported by FCT Portugal (CEECIND/00887/2017). T.R. acknowledges the H2020 (TWINN-2017 ACORN, Grant 807281) and FCT / FEDER (02/SAICT/2017, Grant 28333) for funding. G.J.L.B. is a Royal Society University Research Fellow (URF∖R∖180019) and a FCT Investigator (IF/00624/2015).
The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.
The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.
Author Rodrigues, Tiago
Bernardes, Gonçalo J.L.
Author_xml – sequence: 1
  givenname: Tiago
  surname: Rodrigues
  fullname: Rodrigues, Tiago
  email: gb453@cam.ac.uk
  organization: Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
– sequence: 2
  givenname: Gonçalo J.L.
  surname: Bernardes
  fullname: Bernardes, Gonçalo J.L.
  email: tiago.rodrigues@medicina.ulisboa.pt
  organization: Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31734566$$D View this record in MEDLINE/PubMed
BookMark eNqNkD2P1DAQhi10iPuAP0CBQkeTxZ9xLNGgE1_SIRqorYk9WbzKOsF29rT_nkQ5KChOVLZmnnfsea7JRRwjEvKS0R2jrHl72Llugh2nzCyFHaXiCblirTY1lZRfLHfR6FoZwS7Jdc4HSmnDW_WMXAqmhVRNc0XMV3A_Q8RqQEgxxH3Vj6kqkPZYKh-yG0-YzlWIlU_zvvJ4wmGcjhjLc_K0hyHji4fzhvz4-OH77ef67tunL7fv72oneVNqZBSM4o5LFJR1mjIpBZiei043KEC1Ssq2M7T1RkvNOXBFERyYDn3vtbghYps7xwnO9zAMdkrhCOlsGbWrCHuwqwi7ilhri4gl9WZLTWn8NWMu9rgsg8MAEcc5Wy6YUoJxvaKvHtC5O6L_O_2PpAXgG-DSmHPC_v8-0P4TcqFACWMsCcLwePT1Fk0OYLIJTyEXyEtbKmYVNcwszLuNwUX9KWCy2QWMDn1I6Ir1Y3jsid_VA6uB
CitedBy_id crossref_primary_10_1080_17460441_2022_1985108
crossref_primary_10_1080_23311916_2024_2330266
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_3389_fddsv_2022_1013285
crossref_primary_10_1016_j_ymeth_2020_06_016
crossref_primary_10_3390_molecules26133800
crossref_primary_10_1093_bib_bbac465
crossref_primary_10_3390_molecules26226761
crossref_primary_10_1016_j_biopha_2023_114835
crossref_primary_10_3390_biomedicines9060628
crossref_primary_10_1124_pharmrev_123_001028
crossref_primary_10_3390_ijms21103585
crossref_primary_10_1007_s11030_021_10266_8
crossref_primary_10_1016_j_biopha_2020_110360
crossref_primary_10_1177_1934578X211003029
crossref_primary_10_3390_pharmaceutics16101328
crossref_primary_10_1016_j_ejmech_2025_117269
crossref_primary_10_3390_ph16030332
crossref_primary_10_1142_S1469026822500195
crossref_primary_10_1371_journal_pone_0302281
crossref_primary_10_1007_s11063_022_10879_6
crossref_primary_10_1021_acs_jmedchem_0c00445
crossref_primary_10_3390_molecules25225277
crossref_primary_10_1002_med_22098
crossref_primary_10_1111_all_15849
crossref_primary_10_1021_acs_jcim_0c00161
crossref_primary_10_1021_acs_jcim_3c00914
crossref_primary_10_1038_s41540_021_00180_y
crossref_primary_10_3390_biom11030477
crossref_primary_10_1016_j_trecan_2021_10_002
crossref_primary_10_3390_genes13050801
crossref_primary_10_7769_gesec_v13i3_1447
crossref_primary_10_1039_D1MD00022E
crossref_primary_10_71423_aimed_20250101
crossref_primary_10_3390_pharmaceutics14020467
crossref_primary_10_1371_journal_pcbi_1010029
Cites_doi 10.1021/acs.jmedchem.7b00696
10.1016/j.inffus.2018.09.012
10.1002/anie.201604336
10.1038/nrd3845
10.1038/s41591-018-0107-6
10.1002/anie.201311162
10.1039/C9CC03116B
10.1038/s41587-019-0224-x
10.1002/anie.201508055
10.1002/anie.201605707
10.1002/anie.201411511
10.1039/C5SC04272K
10.1039/C8SC02634C
10.1038/s41586-018-0337-2
10.1016/j.chembiol.2012.01.001
10.1021/acscentsci.7b00420
10.1016/j.trechm.2019.02.007
10.1002/anie.201307786
10.1073/pnas.1320001111
10.1002/anie.201705721
10.1038/s42256-019-0067-7
10.1021/acschembio.8b00881
10.1038/nbt1007-1110
10.1038/s41570-018-0066-y
10.1016/j.cell.2016.12.029
10.1002/minf.201200141
10.1038/s41573-019-0024-5
10.1038/nchembio.118
10.1038/s41570-019-0124-0
10.1038/nrc2787
10.1016/j.cell.2017.08.051
10.18632/oncotarget.13537
10.1038/s41598-019-43125-6
10.1038/nbt.4233
10.1021/acs.molpharmaceut.8b00284
10.1021/acs.jcim.9b00297
10.1038/nrd.2018.183
10.1016/j.chembiol.2013.07.011
10.1126/science.aaf7497
10.1039/C5CC01376C
10.1038/nature11159
10.1002/minf.201800050
10.1038/nature08506
10.4155/fmc.13.203
10.1038/d41573-019-00014-x
10.1038/nchembio.1199
10.1038/nchem.2645
10.1038/nrd.2018.26
10.1002/anie.201310864
10.1002/anie.201706376
10.1021/acscentsci.9b00193
10.1002/anie.201410201
10.1073/pnas.1818763116
10.1016/j.tibtech.2018.06.008
10.1039/C6CC09693J
10.1126/science.aax1566
10.1371/journal.pone.0127498
10.1021/acscentsci.7b00572
10.1016/j.drudis.2014.12.004
10.1038/nchem.2095
10.1038/nrd3368
10.1016/j.nantod.2018.02.011
10.1038/nature25978
10.1038/nmat4717
10.1038/s41591-019-0447-x
10.1093/nar/gkr777
10.1038/s41557-019-0234-9
10.1016/j.chempr.2018.01.012
10.1002/anie.201504241
10.1016/j.ddtec.2017.03.003
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.cbpa.2019.10.003
DatabaseName RCAAP open access repository
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DissertationSchool Repositório da Universidade de Lisboa
EISSN 1879-0402
EndPage 22
ExternalDocumentID oai:www.repository.cam.ac.uk:1810/297727
31734566
10_1016_j_cbpa_2019_10_003
10451_50919
S1367593119301140
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATCM
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSP
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
EFKBS
RCLKO
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-e10a952c24e301b701443a9f23b76e3a585448b908d974722a250eaca9bedfd73
IEDL.DBID .~1
ISSN 1367-5931
1879-0402
IngestDate Sun Oct 26 03:07:28 EDT 2025
Thu Oct 02 07:12:22 EDT 2025
Thu Apr 03 06:57:56 EDT 2025
Wed Oct 29 21:27:06 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Fri Aug 01 16:48:48 EDT 2025
Fri Feb 23 02:50:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Drug discovery
Chemical probes
Target identification
Chemical proteomics
Machine learning
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-e10a952c24e301b701443a9f23b76e3a585448b908d974722a250eaca9bedfd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6594-8917
0000-0002-1581-5654
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.repository.cam.ac.uk/handle/1810/297727
PMID 31734566
PQID 2315531273
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_cbpa_2019_10_003
proquest_miscellaneous_2315531273
pubmed_primary_31734566
crossref_primary_10_1016_j_cbpa_2019_10_003
crossref_citationtrail_10_1016_j_cbpa_2019_10_003
rcaap_revistas_10451_50919
elsevier_sciencedirect_doi_10_1016_j_cbpa_2019_10_003
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in chemical biology
PublicationTitleAlternate Curr Opin Chem Biol
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Schneider, Schneider (bib62) 2017; 56
Cortes-Ciriano, Bender (bib71) 2019; 11
Bar-Peled, Kemper, Suciu, Vinogradova, Backus, Horning, Paul, Ichu, Svensson, Olucha (bib19) 2017; 171
Jensen, Kim, Kwon, Gani, Roman-Leshkov, Moliner, Corma, Olivetti (bib43) 2019; 5
Zhavoronkov, Ivanenkov, Aliper, Veselov, Aladinskiy, Aladinskaya, Terentiev, Polykovskiy, Kuznetsov, Asadulaev (bib48) 2019; 37
Schneider, Reker, Chen, Hauenstein, Schneider, Altmann (bib55) 2016; 55
Schneider, Schneider (bib60) 2018; 37
Macarron, Banks, Bojanic, Burns, Cirovic, Garyantes, Green, Hertzberg, Janzen, Paslay (bib28) 2011; 10
Reker, Schneider (bib52) 2015; 20
Bruns, Gawehn, Kumar, Schneider, Baumgartner, Schneider (bib58) 2019
Bowes, Brown, Hamon, Jarolimek, Sridhar, Waldron, Whitebread (bib12) 2012; 11
Carson, Raman, Tullai, Xu, Henault, Thomas, Yeola, Lao, McPate, Verkuyl (bib27) 2015; 10
de Almeida, Moreira, Rodrigues (bib40) 2019; 3
Reker, Seet, Pillong, Koch, Schneider, Witschel, Rottmann, Freymond, Brun, Schweizer (bib38) 2014; 53
Hiss, Reutlinger, Koch, Perna, Schneider, Rodrigues, Haller, Folkers, Weber, Baleeiro (bib65) 2014; 6
Rodrigues, Lin, Hartenfeller, Renner, Lim, Schneider (bib68) 2015; 51
Ardila, Kiraly, Bharadwaj, Choi, Reicher, Peng, Tse, Etemadi, Ye, Corrado (bib34) 2019; 25
Akbulut, Gaunt, Muraki, Ludlow, Amer, Bruns, Vasudev, Radtke, Willot, Hahn (bib26) 2015; 54
Wainberg, Merico, Delong, Frey (bib33) 2018; 36
Mathai, Chen, Kirchmair (bib63) 2019
Axen, Huang, Caceres, Gendelev, Roth, Keiser (bib59) 2017; 60
Reutlinger, Rodrigues, Schneider, Schneider (bib67) 2014; 53
Vamathevan, Clark, Czodrowski, Dunham, Ferran, Lee, Li, Madabhushi, Shah, Spitzer (bib16) 2019; 18
Cortes-Ciriano, Bender (bib72) 2019; 59
Parker, Kuttruff, Galmozzi, Jorgensen, Yeh, Hermanson, Wang, Artola, McKerrall, Josyln (bib23) 2017; 3
Donner, Kazmierczak, Fortney (bib70) 2018; 15
Rodrigues, de Almeida, Barbosa-Morais, Bernardes (bib74) 2019; 55
Reker, Rodrigues, Schneider, Schneider (bib6) 2014; 111
Moellering, Cravatt (bib20) 2012; 19
Gromski, Henson, Granda, Cronin (bib39) 2019; 3
Rodrigues, Werner, Roth, da Cruz, Marques, Akkapeddi, Lobo, Koeberle, Corzana, da Silva Junior (bib73) 2018; 9
Häse, Roch, Aspuru-Guzik (bib29) 2019; 1
Lounkine, Keiser, Whitebread, Mikhailov, Hamon, Jenkins, Lavan, Weber, Doak, Cote (bib11) 2012; 486
Reutlinger, Koch, Reker, Todoroff, Schneider, Rodrigues, Schneider (bib53) 2013; 32
Ganesh, Donders, Shoichet, Shoichet (bib4) 2018; 19
Coley, Thomas, Lummiss, Jaworski, Breen, Schultz, Hart, Fishman, Rogers, Gao (bib41) 2019; 365
Rodrigues, Reker, Kunze, Schneider, Schneider (bib57) 2015; 54
Reker, Bernardes, Rodrigues (bib31) 2018
Drewes, Knapp (bib22) 2018; 36
Reutlinger, Rodrigues, Schneider, Schneider (bib66) 2014; 53
van Esbroeck, Janssen, Cognetta, Ogasawara, Shpak, van der Kroeg, Kantae, Baggelaar, de Vrij, Deng (bib25) 2017; 356
Button, Merck, Hiss, Schneider (bib46) 2019; 1
Gaulton, Bellis, Bento, Chambers, Davies, Hersey, Light, McGlinchey, Michalovich, Al-Lazikani (bib75) 2012; 40
Keiser, Setola, Irwin, Laggner, Abbas, Hufeisen, Jensen, Kuijer, Matos, Tran (bib7) 2009; 462
Knight, Lin, Shokat (bib10) 2010; 10
Laraia, Robke, Waldmann (bib14) 2018; 4
Holly, Chang, Li, Niessen, Phillips, Piatt, Black, Smith, Boulaftali, Weyrich (bib24) 2013; 20
Baker, Rodrigues, Pumroy, Conde, Picard, Marques, de Almeida, Samanta, Sieglitz, Langini (bib49) 2019
Butler, Davies, Cartwright, Isayev, Walsh (bib17) 2018; 559
Gomez-Bombarelli, Aguilera-Iparraguirre, Hirzel, Duvenaud, Maclaurin, Blood-Forsythe, Chae, Einzinger, Ha, Wu (bib42) 2016; 15
Reker, Bernardes, Rodrigues (bib3) 2019; 11
Rodrigues, Reker, Welin, Caldera, Brunner, Gabernet, Schneider, Walse, Schneider (bib50) 2015; 54
Rodrigues, Sieglitz, Somovilla, Cal, Galione, Corzana, Bernardes (bib56) 2016; 55
Duros, Grizou, Xuan, Hosni, Long, Miras, Cronin (bib30) 2017; 56
Daeyaert, Ye, Deem (bib44) 2019; 116
De Fauw, Ledsam, Romera-Paredes, Nikolov, Tomasev, Blackwell, Askham, Glorot, O'Donoghue, Visentin (bib35) 2018; 24
Schneider, Schneider (bib61) 2017; 53
Reker, Perna, Rodrigues, Schneider, Reutlinger, Monch, Koeberle, Lamers, Gabler, Steinmetz (bib54) 2014; 6
Hopkins (bib9) 2007; 25
Segler, Preuss, Waller (bib45) 2018; 555
Rodrigues, Hauser, Reker, Reutlinger, Wunderlin, Hamon, Koch, Schneider (bib69) 2015; 54
Zitnik, Nguyen, Wang, Leskovec, Goldenberg, Hoffman (bib32) 2019; 50
Reker, Schneider, Schneider (bib51) 2016; 7
Laraia, Waldmann (bib15) 2017; 23
Cui, Hollmen, Li, Chen, Proulx, Reker, Schneider, Detmar (bib37) 2017; 8
Schenone, Dancik, Wagner, Clemons (bib13) 2013; 9
Li, Koh, Reker, Brown, Wang, Lee, Liow, Dai, Fan, Chen (bib36) 2019; 9
Chuang, Keiser (bib64) 2018; 13
van Waterschoot, Parrott, Olivares-Morales, Lave, Rowland, Smith (bib1) 2018; 17
Anselmo, Gokarn, Mitragotri (bib5) 2019; 18
Parker, Galmozzi, Wang, Correia, Sasaki, Joslyn, Kim, Cavallaro, Lawrence, Johnson (bib18) 2017; 168
Mullard (bib2) 2019; 18
Gomez-Bombarelli, Wei, Duvenaud, Hernandez-Lobato, Sanchez-Lengeling, Sheberla, Aguilera-Iparraguirre, Hirzel, Adams, Aspuru-Guzik (bib47) 2018; 4
Matthews, He, Horning, Olson, Correia, Yates, Dawson, Cravatt (bib21) 2017; 9
Hopkins (bib8) 2008; 4
Knight (10.1016/j.cbpa.2019.10.003_bib10) 2010; 10
Hiss (10.1016/j.cbpa.2019.10.003_bib65) 2014; 6
Reker (10.1016/j.cbpa.2019.10.003_bib31) 2018
Jensen (10.1016/j.cbpa.2019.10.003_bib43) 2019; 5
Reker (10.1016/j.cbpa.2019.10.003_sref51) 2016; 7
Butler (10.1016/j.cbpa.2019.10.003_bib17) 2018; 559
Carson (10.1016/j.cbpa.2019.10.003_bib27) 2015; 10
Gomez-Bombarelli (10.1016/j.cbpa.2019.10.003_bib42) 2016; 15
Matthews (10.1016/j.cbpa.2019.10.003_bib21) 2017; 9
Gaulton (10.1016/j.cbpa.2019.10.003_sref75) 2012; 40
Laraia (10.1016/j.cbpa.2019.10.003_bib15) 2017; 23
Ganesh (10.1016/j.cbpa.2019.10.003_bib4) 2018; 19
Anselmo (10.1016/j.cbpa.2019.10.003_bib5) 2019; 18
Macarron (10.1016/j.cbpa.2019.10.003_bib28) 2011; 10
Moellering (10.1016/j.cbpa.2019.10.003_bib20) 2012; 19
Mathai (10.1016/j.cbpa.2019.10.003_sref63) 2019
Reker (10.1016/j.cbpa.2019.10.003_sref6) 2014; 111
Schneider (10.1016/j.cbpa.2019.10.003_bib61) 2017; 53
Li (10.1016/j.cbpa.2019.10.003_bib36) 2019; 9
Cui (10.1016/j.cbpa.2019.10.003_bib37) 2017; 8
Wainberg (10.1016/j.cbpa.2019.10.003_bib33) 2018; 36
Axen (10.1016/j.cbpa.2019.10.003_bib59) 2017; 60
van Esbroeck (10.1016/j.cbpa.2019.10.003_bib25) 2017; 356
Gomez-Bombarelli (10.1016/j.cbpa.2019.10.003_bib47) 2018; 4
Hopkins (10.1016/j.cbpa.2019.10.003_bib8) 2008; 4
Vamathevan (10.1016/j.cbpa.2019.10.003_bib16) 2019; 18
Button (10.1016/j.cbpa.2019.10.003_sref46) 2019; 1
Parker (10.1016/j.cbpa.2019.10.003_bib18) 2017; 168
Baker (10.1016/j.cbpa.2019.10.003_sref49) 2019
Keiser (10.1016/j.cbpa.2019.10.003_sref7) 2009; 462
Bowes (10.1016/j.cbpa.2019.10.003_bib12) 2012; 11
Gromski (10.1016/j.cbpa.2019.10.003_bib39) 2019; 3
Reutlinger (10.1016/j.cbpa.2019.10.003_bib66) 2014; 53
Rodrigues (10.1016/j.cbpa.2019.10.003_bib57) 2015; 54
Reker (10.1016/j.cbpa.2019.10.003_sref54) 2014; 6
Rodrigues (10.1016/j.cbpa.2019.10.003_sref73) 2018; 9
Rodrigues (10.1016/j.cbpa.2019.10.003_bib50) 2015; 54
Schneider (10.1016/j.cbpa.2019.10.003_bib62) 2017; 56
Duros (10.1016/j.cbpa.2019.10.003_bib30) 2017; 56
Rodrigues (10.1016/j.cbpa.2019.10.003_bib68) 2015; 51
de Almeida (10.1016/j.cbpa.2019.10.003_bib40) 2019; 3
Coley (10.1016/j.cbpa.2019.10.003_bib41) 2019; 365
Reker (10.1016/j.cbpa.2019.10.003_bib3) 2019; 11
Drewes (10.1016/j.cbpa.2019.10.003_bib22) 2018; 36
Cortes-Ciriano (10.1016/j.cbpa.2019.10.003_bib72) 2019; 59
Akbulut (10.1016/j.cbpa.2019.10.003_bib26) 2015; 54
Schneider (10.1016/j.cbpa.2019.10.003_bib55) 2016; 55
Parker (10.1016/j.cbpa.2019.10.003_sref23) 2017; 3
Chuang (10.1016/j.cbpa.2019.10.003_sref64) 2018; 13
Schneider (10.1016/j.cbpa.2019.10.003_bib60) 2018; 37
Häse (10.1016/j.cbpa.2019.10.003_bib29) 2019; 1
Zhavoronkov (10.1016/j.cbpa.2019.10.003_sref48) 2019; 37
Reutlinger (10.1016/j.cbpa.2019.10.003_bib67) 2014; 53
Ardila (10.1016/j.cbpa.2019.10.003_bib34) 2019; 25
Hopkins (10.1016/j.cbpa.2019.10.003_bib9) 2007; 25
Bruns (10.1016/j.cbpa.2019.10.003_bib58) 2019
Rodrigues (10.1016/j.cbpa.2019.10.003_bib69) 2015; 54
van Waterschoot (10.1016/j.cbpa.2019.10.003_bib1) 2018; 17
Holly (10.1016/j.cbpa.2019.10.003_bib24) 2013; 20
Mullard (10.1016/j.cbpa.2019.10.003_bib2) 2019; 18
Daeyaert (10.1016/j.cbpa.2019.10.003_bib44) 2019; 116
Reutlinger (10.1016/j.cbpa.2019.10.003_bib53) 2013; 32
Cortes-Ciriano (10.1016/j.cbpa.2019.10.003_bib71) 2019; 11
Reker (10.1016/j.cbpa.2019.10.003_bib52) 2015; 20
Schenone (10.1016/j.cbpa.2019.10.003_bib13) 2013; 9
Donner (10.1016/j.cbpa.2019.10.003_bib70) 2018; 15
Lounkine (10.1016/j.cbpa.2019.10.003_bib11) 2012; 486
Rodrigues (10.1016/j.cbpa.2019.10.003_bib74) 2019; 55
Zitnik (10.1016/j.cbpa.2019.10.003_bib32) 2019; 50
Reker (10.1016/j.cbpa.2019.10.003_bib38) 2014; 53
Laraia (10.1016/j.cbpa.2019.10.003_bib14) 2018; 4
De Fauw (10.1016/j.cbpa.2019.10.003_bib35) 2018; 24
Segler (10.1016/j.cbpa.2019.10.003_bib45) 2018; 555
Rodrigues (10.1016/j.cbpa.2019.10.003_bib56) 2016; 55
Bar-Peled (10.1016/j.cbpa.2019.10.003_bib19) 2017; 171
References_xml – volume: 4
  start-page: 682
  year: 2008
  end-page: 690
  ident: bib8
  article-title: Network pharmacology: the next paradigm in drug discovery
  publication-title: Nat Chem Biol
– volume: 9
  start-page: 6899
  year: 2018
  end-page: 6903
  ident: bib73
  article-title: Machine intelligence decrypts beta-lapachone as an allosteric 5-lipoxygenase inhibitor
  publication-title: Chem Sci
– volume: 19
  start-page: 188
  year: 2018
  end-page: 200
  ident: bib4
  article-title: Colloidal aggregation: from screening nuisance to formulation nuance
  publication-title: Nano Today
– volume: 9
  start-page: 232
  year: 2013
  end-page: 240
  ident: bib13
  article-title: Target identification and mechanism of action in chemical biology and drug discovery
  publication-title: Nat Chem Biol
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: bib17
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 3
  year: 2019
  ident: bib40
  article-title: Synthetic organic chemistry driven by artificial intelligence
  publication-title: Nat Rev Chem
– volume: 5
  start-page: 892
  year: 2019
  end-page: 899
  ident: bib43
  article-title: A machine learning approach to zeolite synthesis enabled by automatic literature data extraction
  publication-title: ACS Cent Sci
– volume: 6
  start-page: 267
  year: 2014
  end-page: 280
  ident: bib65
  article-title: Combinatorial chemistry by ant colony optimization
  publication-title: Future Med Chem
– volume: 111
  start-page: 4067
  year: 2014
  end-page: 4072
  ident: bib6
  article-title: Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus
  publication-title: Proc Natl Acad Sci USA
– volume: 56
  start-page: 10815
  year: 2017
  end-page: 10820
  ident: bib30
  article-title: Human versus robots in the discovery and crystallization of gigantic polyoxometalates
  publication-title: Angew Chem Int Ed
– volume: 555
  start-page: 604
  year: 2018
  end-page: 610
  ident: bib45
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
– volume: 3
  start-page: 1276
  year: 2017
  end-page: 1285
  ident: bib23
  article-title: Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs
  publication-title: ACS Cent Sci
– year: 2019
  ident: bib63
  article-title: Validation strategies for target prediction methods
  publication-title: Briefings Bioinf
– volume: 9
  start-page: 234
  year: 2017
  end-page: 243
  ident: bib21
  article-title: Chemoproteomic profiling and discovery of protein electrophiles in human cells
  publication-title: Nat Chem
– volume: 365
  year: 2019
  ident: bib41
  article-title: A robotic platform for flow synthesis of organic compounds informed by AI planning
  publication-title: Science
– volume: 25
  start-page: 954
  year: 2019
  end-page: 961
  ident: bib34
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
– volume: 51
  start-page: 7478
  year: 2015
  end-page: 7481
  ident: bib68
  article-title: Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators
  publication-title: Chem Commun
– volume: 10
  start-page: 188
  year: 2011
  end-page: 195
  ident: bib28
  article-title: Impact of high-throughput screening in biomedical research
  publication-title: Nat Rev Drug Discov
– volume: 18
  start-page: 85
  year: 2019
  end-page: 89
  ident: bib2
  article-title: 2018 FDA drug approvals
  publication-title: Nat Rev Drug Discov
– volume: 15
  start-page: 1120
  year: 2016
  end-page: 1127
  ident: bib42
  article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
  publication-title: Nat Mater
– volume: 53
  start-page: 582
  year: 2014
  end-page: 585
  ident: bib67
  article-title: Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands
  publication-title: Angew Chem Int Ed
– volume: 356
  start-page: 1084
  year: 2017
  end-page: 1087
  ident: bib25
  article-title: Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474
  publication-title: Science
– volume: 55
  start-page: 12408
  year: 2016
  end-page: 12411
  ident: bib55
  article-title: Deorphaning the macromolecular targets of the natural anticancer compound doliculide
  publication-title: Angew Chem Int Ed
– volume: 10
  year: 2015
  ident: bib27
  article-title: Englerin a agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation
  publication-title: PLoS One
– volume: 54
  start-page: 3787
  year: 2015
  end-page: 3791
  ident: bib26
  article-title: (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels
  publication-title: Angew Chem Int Ed
– volume: 18
  start-page: 463
  year: 2019
  end-page: 477
  ident: bib16
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat Rev Drug Discov
– volume: 53
  start-page: 7079
  year: 2014
  end-page: 7084
  ident: bib38
  article-title: Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents
  publication-title: Angew Chem Int Ed
– volume: 60
  start-page: 7393
  year: 2017
  end-page: 7409
  ident: bib59
  article-title: A simple representation of three-dimensional molecular structure
  publication-title: J Med Chem
– volume: 37
  year: 2018
  ident: bib60
  article-title: Polypharmacological drug-target inference for chemogenomics
  publication-title: Mol Inf
– volume: 3
  start-page: 119
  year: 2019
  end-page: 128
  ident: bib39
  article-title: How to explore chemical space using algorithms and automation
  publication-title: Nat Rev Chem
– year: 2019
  ident: bib58
  article-title: Identification of synthetic activators of cancer cell migration by hybrid deep learning
  publication-title: Chembiochem
– volume: 40
  start-page: D1100
  year: 2012
  end-page: D1107
  ident: bib75
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
– volume: 168
  start-page: 527
  year: 2017
  end-page: 541 e529
  ident: bib18
  article-title: Ligand and target discovery by fragment-based screening in human cells
  publication-title: Cell
– volume: 116
  start-page: 3413
  year: 2019
  end-page: 3418
  ident: bib44
  article-title: Machine-learning approach to the design of OSDAs for zeolite beta
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 1125
  year: 2013
  end-page: 1134
  ident: bib24
  article-title: Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation
  publication-title: Chem Biol
– volume: 4
  start-page: 705
  year: 2018
  end-page: 730
  ident: bib14
  article-title: Bioactive compound collections: from design to target identification
  publication-title: Chem
– volume: 55
  start-page: 6369
  year: 2019
  end-page: 6372
  ident: bib74
  article-title: Dissecting celastrol with machine learning to unveil dark pharmacology
  publication-title: Chem Commun
– year: 2018
  ident: bib31
  article-title: Evolving and nano data enabled machine intelligence for chemical reaction optimization
  publication-title: ChemRxiv
– volume: 54
  start-page: 1551
  year: 2015
  end-page: 1555
  ident: bib69
  article-title: Multidimensional de novo design reveals 5-HT2B receptor-selective ligands
  publication-title: Angew Chem Int Ed
– volume: 11
  start-page: 402
  year: 2019
  end-page: 418
  ident: bib3
  article-title: Computational advances in combating colloidal aggregation in drug discovery
  publication-title: Nat Chem
– volume: 53
  start-page: 2272
  year: 2017
  end-page: 2274
  ident: bib61
  article-title: De-orphaning the marine natural product (+/-)-marinopyrrole A by computational target prediction and biochemical validation
  publication-title: Chem Commun
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: bib35
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
– volume: 23
  start-page: 75
  year: 2017
  end-page: 82
  ident: bib15
  article-title: Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification
  publication-title: Drug Discov Today Technol
– volume: 59
  start-page: 3330
  year: 2019
  end-page: 3339
  ident: bib72
  article-title: Reliable prediction errors for deep neural networks using test-time dropout
  publication-title: J Chem Inf Model
– volume: 9
  start-page: 7703
  year: 2019
  ident: bib36
  article-title: Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees
  publication-title: Sci Rep
– volume: 486
  start-page: 361
  year: 2012
  end-page: 367
  ident: bib11
  article-title: Large-scale prediction and testing of drug activity on side-effect targets
  publication-title: Nature
– volume: 20
  start-page: 458
  year: 2015
  end-page: 465
  ident: bib52
  article-title: Active-learning strategies in computer-assisted drug discovery
  publication-title: Drug Discov. Today
– volume: 13
  start-page: 2819
  year: 2018
  end-page: 2821
  ident: bib64
  article-title: Adversarial controls for scientific machine learning
  publication-title: ACS Chem Biol
– volume: 37
  start-page: 1038
  year: 2019
  end-page: 1040
  ident: bib48
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat Biotechnol
– volume: 54
  start-page: 15079
  year: 2015
  end-page: 15083
  ident: bib50
  article-title: De novo fragment design for drug discovery and chemical biology
  publication-title: Angew Chem Int Ed
– volume: 1
  start-page: 307
  year: 2019
  end-page: 315
  ident: bib46
  article-title: Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis
  publication-title: Nat Mach Intell
– year: 2019
  ident: bib49
  article-title: Allosteric antagonist modulation of TRPV2 by piperlongumine impairs glioblastoma progression
  publication-title: SSRN Electr J
– volume: 1
  start-page: 282
  year: 2019
  end-page: 291
  ident: bib29
  article-title: Next-generation experimentation with self-driving laboratories
  publication-title: Trends Chem
– volume: 11
  start-page: 41
  year: 2019
  ident: bib71
  article-title: KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
  publication-title: J Cheminf
– volume: 32
  start-page: 133
  year: 2013
  end-page: 138
  ident: bib53
  article-title: Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for 'orphan' molecules
  publication-title: Mol Inf
– volume: 53
  start-page: 4244
  year: 2014
  end-page: 4248
  ident: bib66
  article-title: Multi-objective molecular de novo design by adaptive fragment prioritization
  publication-title: Angew Chem Int Ed
– volume: 11
  start-page: 909
  year: 2012
  end-page: 922
  ident: bib12
  article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling
  publication-title: Nat Rev Drug Discov
– volume: 25
  start-page: 1110
  year: 2007
  end-page: 1111
  ident: bib9
  article-title: Network pharmacology
  publication-title: Nat Biotechnol
– volume: 50
  start-page: 71
  year: 2019
  end-page: 91
  ident: bib32
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf Fusion
– volume: 6
  start-page: 1072
  year: 2014
  end-page: 1078
  ident: bib54
  article-title: Revealing the macromolecular targets of complex natural products
  publication-title: Nat Chem
– volume: 8
  start-page: 1007
  year: 2017
  end-page: 1022
  ident: bib37
  article-title: New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate
  publication-title: Oncotarget
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  ident: bib47
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 19
  start-page: 11
  year: 2012
  end-page: 22
  ident: bib20
  article-title: How chemoproteomics can enable drug discovery and development
  publication-title: Chem Biol
– volume: 56
  start-page: 11520
  year: 2017
  end-page: 11524
  ident: bib62
  article-title: A computational method for unveiling the target promiscuity of pharmacologically active compounds
  publication-title: Angew Chem Int Ed
– volume: 462
  start-page: 175
  year: 2009
  end-page: 181
  ident: bib7
  article-title: Predicting new molecular targets for known drugs
  publication-title: Nature
– volume: 10
  start-page: 130
  year: 2010
  end-page: 137
  ident: bib10
  article-title: Targeting the cancer kinome through polypharmacology
  publication-title: Nat Rev Cancer
– volume: 15
  start-page: 4314
  year: 2018
  end-page: 4325
  ident: bib70
  article-title: Drug repurposing using deep embeddings of gene expression profiles
  publication-title: Mol Pharm
– volume: 171
  start-page: 696
  year: 2017
  end-page: 709 e623
  ident: bib19
  article-title: Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer
  publication-title: Cell
– volume: 36
  start-page: 1275
  year: 2018
  end-page: 1286
  ident: bib22
  article-title: Chemoproteomics and chemical probes for target discovery
  publication-title: Trends Biotechnol
– volume: 36
  start-page: 829
  year: 2018
  end-page: 838
  ident: bib33
  article-title: Deep learning in biomedicine
  publication-title: Nat Biotechnol
– volume: 54
  start-page: 10516
  year: 2015
  end-page: 10520
  ident: bib57
  article-title: Revealing the macromolecular targets of fragment-like natural products
  publication-title: Angew Chem Int Ed
– volume: 55
  start-page: 11077
  year: 2016
  end-page: 11081
  ident: bib56
  article-title: Unveiling (-)-Englerin a as a modulator of L-type calcium channels
  publication-title: Angew Chem Int Ed
– volume: 17
  start-page: 299
  year: 2018
  ident: bib1
  article-title: Impact of target interactions on small-molecule drug disposition: an overlooked area
  publication-title: Nat Rev Drug Discov
– volume: 7
  start-page: 3919
  year: 2016
  end-page: 3927
  ident: bib51
  article-title: Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors
  publication-title: Chem Sci
– volume: 18
  start-page: 19
  year: 2019
  end-page: 40
  ident: bib5
  article-title: Non-invasive delivery strategies for biologics
  publication-title: Nat Rev Drug Discov
– volume: 60
  start-page: 7393
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib59
  article-title: A simple representation of three-dimensional molecular structure
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00696
– volume: 50
  start-page: 71
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib32
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.09.012
– volume: 55
  start-page: 11077
  year: 2016
  ident: 10.1016/j.cbpa.2019.10.003_bib56
  article-title: Unveiling (-)-Englerin a as a modulator of L-type calcium channels
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201604336
– volume: 11
  start-page: 909
  year: 2012
  ident: 10.1016/j.cbpa.2019.10.003_bib12
  article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3845
– volume: 24
  start-page: 1342
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib35
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 53
  start-page: 7079
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_bib38
  article-title: Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201311162
– year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib58
  article-title: Identification of synthetic activators of cancer cell migration by hybrid deep learning
  publication-title: Chembiochem
– volume: 55
  start-page: 6369
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib74
  article-title: Dissecting celastrol with machine learning to unveil dark pharmacology
  publication-title: Chem Commun
  doi: 10.1039/C9CC03116B
– volume: 37
  start-page: 1038
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_sref48
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0224-x
– volume: 54
  start-page: 15079
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib50
  article-title: De novo fragment design for drug discovery and chemical biology
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201508055
– volume: 55
  start-page: 12408
  year: 2016
  ident: 10.1016/j.cbpa.2019.10.003_bib55
  article-title: Deorphaning the macromolecular targets of the natural anticancer compound doliculide
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201605707
– volume: 54
  start-page: 3787
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib26
  article-title: (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201411511
– volume: 7
  start-page: 3919
  year: 2016
  ident: 10.1016/j.cbpa.2019.10.003_sref51
  article-title: Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors
  publication-title: Chem Sci
  doi: 10.1039/C5SC04272K
– year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_sref63
  article-title: Validation strategies for target prediction methods
  publication-title: Briefings Bioinf
– volume: 9
  start-page: 6899
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_sref73
  article-title: Machine intelligence decrypts beta-lapachone as an allosteric 5-lipoxygenase inhibitor
  publication-title: Chem Sci
  doi: 10.1039/C8SC02634C
– volume: 559
  start-page: 547
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib17
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 19
  start-page: 11
  year: 2012
  ident: 10.1016/j.cbpa.2019.10.003_bib20
  article-title: How chemoproteomics can enable drug discovery and development
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2012.01.001
– volume: 3
  start-page: 1276
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_sref23
  article-title: Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00420
– volume: 1
  start-page: 282
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib29
  article-title: Next-generation experimentation with self-driving laboratories
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2019.02.007
– volume: 53
  start-page: 582
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_bib67
  article-title: Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201307786
– volume: 111
  start-page: 4067
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_sref6
  article-title: Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1320001111
– volume: 56
  start-page: 10815
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib30
  article-title: Human versus robots in the discovery and crystallization of gigantic polyoxometalates
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201705721
– volume: 1
  start-page: 307
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_sref46
  article-title: Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0067-7
– volume: 13
  start-page: 2819
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_sref64
  article-title: Adversarial controls for scientific machine learning
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.8b00881
– volume: 25
  start-page: 1110
  year: 2007
  ident: 10.1016/j.cbpa.2019.10.003_bib9
  article-title: Network pharmacology
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1007-1110
– volume: 3
  start-page: 119
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib39
  article-title: How to explore chemical space using algorithms and automation
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-018-0066-y
– volume: 168
  start-page: 527
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib18
  article-title: Ligand and target discovery by fragment-based screening in human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.029
– volume: 11
  start-page: 41
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib71
  article-title: KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
  publication-title: J Cheminf
– volume: 32
  start-page: 133
  year: 2013
  ident: 10.1016/j.cbpa.2019.10.003_bib53
  article-title: Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for 'orphan' molecules
  publication-title: Mol Inf
  doi: 10.1002/minf.201200141
– volume: 18
  start-page: 463
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib16
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0024-5
– volume: 4
  start-page: 682
  year: 2008
  ident: 10.1016/j.cbpa.2019.10.003_bib8
  article-title: Network pharmacology: the next paradigm in drug discovery
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.118
– volume: 3
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib40
  article-title: Synthetic organic chemistry driven by artificial intelligence
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-019-0124-0
– volume: 10
  start-page: 130
  year: 2010
  ident: 10.1016/j.cbpa.2019.10.003_bib10
  article-title: Targeting the cancer kinome through polypharmacology
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2787
– volume: 171
  start-page: 696
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib19
  article-title: Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.051
– volume: 8
  start-page: 1007
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib37
  article-title: New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13537
– volume: 9
  start-page: 7703
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib36
  article-title: Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43125-6
– volume: 36
  start-page: 829
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib33
  article-title: Deep learning in biomedicine
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4233
– volume: 15
  start-page: 4314
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib70
  article-title: Drug repurposing using deep embeddings of gene expression profiles
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b00284
– volume: 59
  start-page: 3330
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib72
  article-title: Reliable prediction errors for deep neural networks using test-time dropout
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00297
– volume: 18
  start-page: 19
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib5
  article-title: Non-invasive delivery strategies for biologics
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.183
– volume: 20
  start-page: 1125
  year: 2013
  ident: 10.1016/j.cbpa.2019.10.003_bib24
  article-title: Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2013.07.011
– volume: 356
  start-page: 1084
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib25
  article-title: Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474
  publication-title: Science
  doi: 10.1126/science.aaf7497
– volume: 51
  start-page: 7478
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib68
  article-title: Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators
  publication-title: Chem Commun
  doi: 10.1039/C5CC01376C
– volume: 486
  start-page: 361
  year: 2012
  ident: 10.1016/j.cbpa.2019.10.003_bib11
  article-title: Large-scale prediction and testing of drug activity on side-effect targets
  publication-title: Nature
  doi: 10.1038/nature11159
– year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_sref49
  article-title: Allosteric antagonist modulation of TRPV2 by piperlongumine impairs glioblastoma progression
  publication-title: SSRN Electr J
– volume: 37
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib60
  article-title: Polypharmacological drug-target inference for chemogenomics
  publication-title: Mol Inf
  doi: 10.1002/minf.201800050
– volume: 462
  start-page: 175
  year: 2009
  ident: 10.1016/j.cbpa.2019.10.003_sref7
  article-title: Predicting new molecular targets for known drugs
  publication-title: Nature
  doi: 10.1038/nature08506
– volume: 6
  start-page: 267
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_bib65
  article-title: Combinatorial chemistry by ant colony optimization
  publication-title: Future Med Chem
  doi: 10.4155/fmc.13.203
– volume: 18
  start-page: 85
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib2
  article-title: 2018 FDA drug approvals
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/d41573-019-00014-x
– volume: 9
  start-page: 232
  year: 2013
  ident: 10.1016/j.cbpa.2019.10.003_bib13
  article-title: Target identification and mechanism of action in chemical biology and drug discovery
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1199
– volume: 9
  start-page: 234
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib21
  article-title: Chemoproteomic profiling and discovery of protein electrophiles in human cells
  publication-title: Nat Chem
  doi: 10.1038/nchem.2645
– volume: 17
  start-page: 299
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib1
  article-title: Impact of target interactions on small-molecule drug disposition: an overlooked area
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.26
– volume: 53
  start-page: 4244
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_bib66
  article-title: Multi-objective molecular de novo design by adaptive fragment prioritization
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201310864
– volume: 56
  start-page: 11520
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib62
  article-title: A computational method for unveiling the target promiscuity of pharmacologically active compounds
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201706376
– volume: 5
  start-page: 892
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib43
  article-title: A machine learning approach to zeolite synthesis enabled by automatic literature data extraction
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.9b00193
– volume: 54
  start-page: 1551
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib69
  article-title: Multidimensional de novo design reveals 5-HT2B receptor-selective ligands
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201410201
– volume: 116
  start-page: 3413
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib44
  article-title: Machine-learning approach to the design of OSDAs for zeolite beta
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1818763116
– volume: 36
  start-page: 1275
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib22
  article-title: Chemoproteomics and chemical probes for target discovery
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2018.06.008
– year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib31
  article-title: Evolving and nano data enabled machine intelligence for chemical reaction optimization
  publication-title: ChemRxiv
– volume: 53
  start-page: 2272
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib61
  article-title: De-orphaning the marine natural product (+/-)-marinopyrrole A by computational target prediction and biochemical validation
  publication-title: Chem Commun
  doi: 10.1039/C6CC09693J
– volume: 365
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib41
  article-title: A robotic platform for flow synthesis of organic compounds informed by AI planning
  publication-title: Science
  doi: 10.1126/science.aax1566
– volume: 10
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib27
  article-title: Englerin a agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127498
– volume: 4
  start-page: 268
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib47
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00572
– volume: 20
  start-page: 458
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib52
  article-title: Active-learning strategies in computer-assisted drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.12.004
– volume: 6
  start-page: 1072
  year: 2014
  ident: 10.1016/j.cbpa.2019.10.003_sref54
  article-title: Revealing the macromolecular targets of complex natural products
  publication-title: Nat Chem
  doi: 10.1038/nchem.2095
– volume: 10
  start-page: 188
  year: 2011
  ident: 10.1016/j.cbpa.2019.10.003_bib28
  article-title: Impact of high-throughput screening in biomedical research
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3368
– volume: 19
  start-page: 188
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib4
  article-title: Colloidal aggregation: from screening nuisance to formulation nuance
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.02.011
– volume: 555
  start-page: 604
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib45
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
  doi: 10.1038/nature25978
– volume: 15
  start-page: 1120
  year: 2016
  ident: 10.1016/j.cbpa.2019.10.003_bib42
  article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
  publication-title: Nat Mater
  doi: 10.1038/nmat4717
– volume: 25
  start-page: 954
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib34
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0447-x
– volume: 40
  start-page: D1100
  year: 2012
  ident: 10.1016/j.cbpa.2019.10.003_sref75
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr777
– volume: 11
  start-page: 402
  year: 2019
  ident: 10.1016/j.cbpa.2019.10.003_bib3
  article-title: Computational advances in combating colloidal aggregation in drug discovery
  publication-title: Nat Chem
  doi: 10.1038/s41557-019-0234-9
– volume: 4
  start-page: 705
  year: 2018
  ident: 10.1016/j.cbpa.2019.10.003_bib14
  article-title: Bioactive compound collections: from design to target identification
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.012
– volume: 54
  start-page: 10516
  year: 2015
  ident: 10.1016/j.cbpa.2019.10.003_bib57
  article-title: Revealing the macromolecular targets of fragment-like natural products
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201504241
– volume: 23
  start-page: 75
  year: 2017
  ident: 10.1016/j.cbpa.2019.10.003_bib15
  article-title: Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification
  publication-title: Drug Discov Today Technol
  doi: 10.1016/j.ddtec.2017.03.003
SSID ssj0006285
Score 2.5015693
SecondaryResourceType review_article
Snippet The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically,...
© 2019 Elsevier Ltd. All rights reserved. The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of...
SourceID unpaywall
proquest
pubmed
crossref
rcaap
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Chemical probes
Chemical proteomics
Computer Simulation
Drug discovery
Drug Evaluation, Preclinical - methods
Humans
Lipoxygenase - metabolism
Machine Learning
Molecular Targeted Therapy
Naphthoquinones - chemistry
Naphthoquinones - pharmacology
Pentacyclic Triterpenes - chemistry
Pentacyclic Triterpenes - pharmacology
Proteomics - methods
Receptors, Cannabinoid - metabolism
Sesquiterpenes - chemistry
Sesquiterpenes - pharmacology
Sesquiterpenes, Guaiane - chemistry
Sesquiterpenes, Guaiane - pharmacology
Target identification
Transient Receptor Potential Channels - metabolism
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8gA8sPGxkY4hT5p4gbSpnY_5sUJDaBJoD1SCJ8t2DALaULWNUPnruUucMg2BxqtlR3Hucvc7-3d3AD94qrkRJgm55CaMBdehJmMo0F5ameOgoHzn07P0ZBD_vkgufB731NMq6bR8ekN3zBijjXxOVV10oIsOKepyBC08W4LlNEEA3oLlwdmf_mWdYZWFiay6EFIb7TCq-DvtZ1aXNWOqNtSTnYrTJV5zRy_hJqLXidV6vAYrZTHW8wc9HP7lio4_wnmziZqBctcpZ6ZjH_-p7_jOXX6CdQ9NWb_WpQ344IpN2OoXGJaP5myfVWTR6hR-E1aOmkZxWyBPK0KmY74DxTVDIMxqijmjrF9iic7ZTcHySXnN8mea0jYMjn-dH52EviNDaNGTz0LXi7RMuOWxQ8NgMgrHhJZXXJgsdUJj7IHhnpHRz5ziFM41Iiw07Voal1_lmfgMreK-cDvAsiyPZBZpNBgI2Uwkc8sR7TgXW4fTeQC9RjDK-nLl1DVjqBpe2q0iYSoSJo2hMAM4WKwZ18U63pydNPJWHm7UMEKhN3lz3fdGORR-abpg0YW7L6cKsXKCNg0RYQBfaq1ZvAfiNIFgNQ2gXamRIhY3BgBTfGqc9BQBNxnA4UK3_mMH7fdN_wqrnE4LqjOkXWjNJqX7hpBqZvb8L_QEQXIZbg
  priority: 102
  providerName: Unpaywall
Title Machine learning for target discovery in drug development
URI https://dx.doi.org/10.1016/j.cbpa.2019.10.003
http://hdl.handle.net/10451/50919
https://www.ncbi.nlm.nih.gov/pubmed/31734566
https://www.proquest.com/docview/2315531273
https://www.repository.cam.ac.uk/handle/1810/297727
UnpaywallVersion submittedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006285
  issn: 1879-0402
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006285
  issn: 1879-0402
  databaseCode: ACRLP
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006285
  issn: 1879-0402
  databaseCode: .~1
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006285
  issn: 1879-0402
  databaseCode: AIKHN
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006285
  issn: 1879-0402
  databaseCode: AKRWK
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8heOj2gPgYkLIhI0172UITO2nwY1WBujEqtK1SebLsxK2KShr1Q6gv_O3c5aOAEAjtyZJlR86dc_c753c-gK-8qbkRJnS55MYNBNeuJmMo0F7GMsFOQfnOl91mpxf86of9NWhXuTBEqyxtf2HTc2td9jRKaTay0ajxly4bC6XwEYIQqqe4PQgiqmJwcv9I86AUwSL3KnJpdJk4U3C8YpPR3UO-PMkZXuI15_QSfCKWncZaZx-htkgzvbzT4_ETx3S-BZslomStYtHbsGbTHdhtpRhN3y7ZN5ZzPPPD8x2otav6brsgL3MepWVl4YghQ_zKCmY4o2RdIncu2ShlyXQxZMkju-gT9M7P_rU7bllIwY3RAc9d63tahjzmgUVRmYiiKKHlgAsTNa3QGDJglGakd5pQeMG5RmCEFllLY5NBEok9WE8nqT0AFkWJJyNP43eOSMt4Mok5ghRrg9jicO6AX0lQxeUt41TsYqwqOtmNIqkrkjr1odQd-L6akxV3bLw5OqwUo57tFIVO4M15x5UWFUqa_ovo1E4WM4UQN0RThEDOgf1Cvat1ILwSiDGbDtRzfSsiXyNun-FTg9BXhLekAz9Wm-Adb1D_zzc4hA-cov38DOgzrM-nC_sFIdHcHOV7_gg2Wu0_v6-o_XnR6WLb6161rh8AWtEIjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHAYHxJvyDBLiAmVt0q7kiCbQeIwLIHGLkjagodFVewjtwm_H7mOAEAhxjdIqsVP7c_rZBtjnDc2NMKHLJTduILh2NRlDgfYylgkOCsp3bt80WvfB5UP4MAXNKheGaJWl7S9sem6ty5F6Kc161unUb6nYWCiFjxCEUD3G7TNByCOKwI7fPngelCNYJF9FLk0vM2cKkldsMio-5MvjnOIlfvJO39Engtl-rHU2B7VRmunxq-52P3mm8wWYLyElOy1WvQhTNl2C5dMUw-mXMTtgOckzvz1fglqzavC2DLKdEyktKztHPDEEsKyghjPK1iV255h1Upb0R08s-aAXrcD9-dlds-WWnRTcGD3w0LW-p2XIYx5YlJWJKIwSWj5yYaKGFRpjBgzTjPROEoovONeIjNAka2ls8phEYhWm015q14FFUeLJyNP4oSPUMp5MYo4oxdogtjidO-BXElRxWWacul10VcUne1YkdUVSpzGUugOHk2eyosjGr7PDSjHqy1FR6AV-fW6v0qJCSdOPEZ3a3migEOOGaIsQyTmwVqh3sg7EVwJBZsOBjVzfitjXCNwH-NYg9BUBLunA0eQQ_GEHG__cwS7UWnfta3V9cXO1CbOcQv_8QmgLpof9kd1GfDQ0O_n5fwfpIwbf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8gA8sPGxkY4hT5p4gbSpnY_5sUJDaBJoD1SCJ8t2DALaULWNUPnruUucMg2BxqtlR3Hucvc7-3d3AD94qrkRJgm55CaMBdehJmMo0F5ameOgoHzn07P0ZBD_vkgufB731NMq6bR8ekN3zBijjXxOVV10oIsOKepyBC08W4LlNEEA3oLlwdmf_mWdYZWFiay6EFIb7TCq-DvtZ1aXNWOqNtSTnYrTJV5zRy_hJqLXidV6vAYrZTHW8wc9HP7lio4_wnmziZqBctcpZ6ZjH_-p7_jOXX6CdQ9NWb_WpQ344IpN2OoXGJaP5myfVWTR6hR-E1aOmkZxWyBPK0KmY74DxTVDIMxqijmjrF9iic7ZTcHySXnN8mea0jYMjn-dH52EviNDaNGTz0LXi7RMuOWxQ8NgMgrHhJZXXJgsdUJj7IHhnpHRz5ziFM41Iiw07Voal1_lmfgMreK-cDvAsiyPZBZpNBgI2Uwkc8sR7TgXW4fTeQC9RjDK-nLl1DVjqBpe2q0iYSoSJo2hMAM4WKwZ18U63pydNPJWHm7UMEKhN3lz3fdGORR-abpg0YW7L6cKsXKCNg0RYQBfaq1ZvAfiNIFgNQ2gXamRIhY3BgBTfGqc9BQBNxnA4UK3_mMH7fdN_wqrnE4LqjOkXWjNJqX7hpBqZvb8L_QEQXIZbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+target+discovery+in+drug+development&rft.jtitle=Current+opinion+in+chemical+biology&rft.au=Rodrigues%2C+Tiago&rft.au=Bernardes%2C+Gon%C3%A7alo+J+L&rft.date=2020-06-01&rft.eissn=1879-0402&rft.volume=56&rft.spage=16&rft_id=info:doi/10.1016%2Fj.cbpa.2019.10.003&rft_id=info%3Apmid%2F31734566&rft.externalDocID=31734566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5931&client=summon