Heliospheric modulation of the interstellar dust flow on to Earth

Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 621; p. A54
Main Authors Strub, P., Sterken, V. J., Soja, R., Krüger, H., Grün, E., Srama, R.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.01.2019
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/201832644

Cover

Abstract Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10−4 m−2 s−1 of particles with radii ≳0.3 μm) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s-1), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s-1). The mean ISD mass flow on to the Earth is approximately 100 kg yr-1 with the highest flux of ~3.5 kg day-1 occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1 μm can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun.
AbstractList Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10 −4 m −2 s −1 of particles with radii ≳0.3 μ m) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s -1 ), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s -1 ). The mean ISD mass flow on to the Earth is approximately 100 kg yr -1 with the highest flux of ~3.5 kg day -1 occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1 μ m can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun.
Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10−4 m−2 s−1 of particles with radii ≳0.3 μm) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s-1), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s-1). The mean ISD mass flow on to the Earth is approximately 100 kg yr-1 with the highest flux of ~3.5 kg day-1 occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1 μm can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun.
Author Srama, R.
Soja, R.
Grün, E.
Sterken, V. J.
Krüger, H.
Strub, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Strub
  fullname: Strub, P.
  organization: Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
– sequence: 2
  givenname: V. J.
  surname: Sterken
  fullname: Sterken, V. J.
  organization: Astronomical Institute University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
– sequence: 3
  givenname: R.
  surname: Soja
  fullname: Soja, R.
  organization: Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany
– sequence: 4
  givenname: H.
  surname: Krüger
  fullname: Krüger, H.
  organization: Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
– sequence: 5
  givenname: E.
  surname: Grün
  fullname: Grün, E.
  organization: Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
– sequence: 6
  givenname: R.
  surname: Srama
  fullname: Srama, R.
  organization: Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany
BookMark eNqFkMtOAjEUQBuDiYB-gZsmrkd6-5phiQTESKLxEZZNZ6YTisMU207Uv3cQw8KNq-Ym59ybngHqNa4xCF0CuQYiYEQI4YlkEkaUQMao5PwE9YEzmpCUyx7qH4kzNAhh0420A_tosjC1dWG3Nt4WeOvKttbRuga7Cse1wbaJxodo6lp7XLYh4qp2H7gDosMz7eP6HJ1Wug7m4vcdotf57GW6SJYPt3fTyTIpOJUxMYQTCWkJwnBByqLk40JSToEYbZjUPKcUcp2LXLNxAZDSjKcZ0wVUeSmEYEN0ddi78-69NSGqjWt9051UFFLOCLCMdtT4QBXeheBNpQobf34Uvba1AqL2xdS-h9r3UMdincv-uDtvt9p__WMlB8t2mT6PivZvSqYsFSojKwWrm_nj_fOTIuwb6mV9Og
CitedBy_id crossref_primary_10_1098_rsta_2023_0199
crossref_primary_10_1016_j_pss_2023_105751
crossref_primary_10_1016_j_actaastro_2022_08_036
crossref_primary_10_3847_1538_4357_ad5a93
crossref_primary_10_1007_s11214_023_00952_4
crossref_primary_10_1016_j_pss_2019_04_005
crossref_primary_10_3847_2041_8213_ab7195
crossref_primary_10_1016_j_asr_2022_07_022
crossref_primary_10_1051_0004_6361_202449569
crossref_primary_10_1134_S1063773721010047
crossref_primary_10_3847_PSJ_abf928
crossref_primary_10_3847_PSJ_ac5ab7
crossref_primary_10_1016_j_asr_2023_09_016
crossref_primary_10_3847_1538_4365_ab50c1
crossref_primary_10_1093_rasti_rzad034
crossref_primary_10_1007_s11214_019_0607_9
crossref_primary_10_1134_S0015462824602298
crossref_primary_10_1029_2022JA030749
crossref_primary_10_1098_rsta_2023_0200
crossref_primary_10_1051_0004_6361_202451950
crossref_primary_10_1051_0004_6361_202450069
crossref_primary_10_1007_s11214_020_00775_7
crossref_primary_10_1051_0004_6361_202450257
crossref_primary_10_1186_s40623_021_01412_5
crossref_primary_10_1016_j_asr_2021_04_002
crossref_primary_10_1016_j_pss_2024_106010
crossref_primary_10_3847_PSJ_ad2de8
crossref_primary_10_1007_s11214_019_0610_1
crossref_primary_10_1063_5_0168088
crossref_primary_10_3847_PSJ_ad11f5
crossref_primary_10_1016_j_pss_2020_105060
crossref_primary_10_1051_0004_6361_201834316
crossref_primary_10_1007_s11214_022_00900_8
crossref_primary_10_3847_PSJ_ad8b27
Cites_doi 10.1029/1999JA900149
10.1086/155591
10.1088/0004-637X/812/2/141
10.1016/S0032-0633(02)00019-3
10.1086/307869
10.1038/362428a0
10.1007/s10686-008-9088-7
10.1007/s11214-004-1435-z
10.1007/s10686-008-9099-4
10.1029/2004JA010772
10.1126/science.aac6397
10.1029/2003JA009874
10.1051/0004-6361/201323216
10.1086/382351
10.1146/annurev.astro.34.1.383
10.1088/0004-637X/801/1/62
10.1016/j.icarus.2004.05.017
10.1029/2005JA011198
10.1051/0004-6361:20053909
10.1063/1.2431089
10.1086/162480
10.1007/s40295-017-0117-5
10.1029/1999JA900243
10.1146/annurev.ea.22.050194.003005
10.1063/1.4868506
10.1086/146579
10.1016/0032-0633(79)90105-3
10.1126/science.286.5448.2319
10.1088/0004-637X/812/2/139
10.1051/0004-6361/201117119
10.1016/j.pss.2011.09.006
10.1086/318651
10.1016/0019-1035(79)90050-2
10.1016/0273-1177(93)90401-V
10.1086/305613
10.1016/0019-1035(85)90121-6
10.1016/j.pss.2017.11.013
10.1088/0004-637X/760/1/46
10.1088/0004-637X/812/2/140
10.1126/science.262.5133.550
10.1051/0004-6361/201219609
ContentType Journal Article
Copyright Copyright EDP Sciences Jan 2019
Copyright_xml – notice: Copyright EDP Sciences Jan 2019
DBID BSCLL
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/201832644
DatabaseName Istex
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_201832644
ark_67375_80W_1WBFPKSR_0
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c426t-e040617d15e450dcd49c624210eae36a4b221bab5ba39c117284783ac1fbd5553
ISSN 0004-6361
IngestDate Wed Aug 13 03:55:22 EDT 2025
Tue Jul 01 03:59:15 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Wed Oct 30 09:47:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-e040617d15e450dcd49c624210eae36a4b221bab5ba39c117284783ac1fbd5553
Notes bibcode:2019A%26A...621A..54S
publisher-ID:aa32644-18
href:https://www.aanda.org/articles/aa/abs/2019/01/aa32644-18/aa32644-18.html
ark:/67375/80W-1WBFPKSR-0
istex:4E009F8844C945177D690966A74DEFAA8EBEEAC1
e-mail: P.Strub@gmail.com
dkey:10.1051/0004-6361/201832644
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2019/01/aa32644-18.pdf
PQID 2174301382
PQPubID 1796397
ParticipantIDs proquest_journals_2174301382
crossref_citationtrail_10_1051_0004_6361_201832644
crossref_primary_10_1051_0004_6361_201832644
istex_primary_ark_67375_80W_1WBFPKSR_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2019
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Kimura (R23) 1998; 499
Altobelli (R2) 2003; 108
Weingartner (R51) 2001; 548
Frisch (R13) 1999; 525
R20
Witte (R53) 1993; 13
R27
R26
R28
R1
Mathis (R35) 1977; 217
Arai (R6) 2018; 49
R7
Strub (R49) 2015; 812
Sternovsky (R48) 2007; 78
Kobayashi (R24) 2018; 49
Parker (R40) 1958; 128
Grün (R18) 2012; 60
Auer (R8) 2002; 50
Grün (R14) 1985; 62
R30
Lallement (R29) 2014; 565
Krüger (R25) 2015; 812
Sterken (R47) 2015; 812
Srama (R44) 2009; 23
Frisch (R12) 1999; 525
Sterken (R46) 2013; 552
Burns (R9) 1979; 40
Srama (R43) 2004; 114
Love (R34) 1993; 262
Grün (R15) 1993; 362
Wood (R54) 2015; 801
Wang (R50) 2005; 110
Sarli (R41) 2018; 65
Grün (R16) 1994; 286
O’Brien (R39) 2018; 156
Landgraf (R31) 2000; 105
Altobelli (R5) 2016; 352
Grün (R17) 2009; 23
Sterken (R45) 2012; 538
Gustafson (R19) 1994; 22
Kempf (R22) 2004; 171
Slavin (R42) 2012; 760
R52
R10
Linde (R33) 2000; 105
Draine (R11) 1984; 285
Mukai (R37) 1981; 99
Altobelli (R4) 2006; 448
Landgraf (R32) 1999; 286
O’Brien (R38) 2014; 85
Zubko (R55) 2004; 152
Altobelli (R3) 2005; 110
Horányi (R21) 1996; 34
Morfill (R36) 1979; 27
References_xml – volume: 105
  start-page: 10411
  year: 2000
  ident: R33
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JA900149
– volume: 217
  start-page: 425
  year: 1977
  ident: R35
  publication-title: ApJ
  doi: 10.1086/155591
– volume: 812
  start-page: 141
  year: 2015
  ident: R47
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/2/141
– volume: 50
  start-page: 773
  year: 2002
  ident: R8
  publication-title: Planet. Space Sci.
  doi: 10.1016/S0032-0633(02)00019-3
– ident: R26
– volume: 525
  start-page: 492
  year: 1999
  ident: R13
  publication-title: ApJ
  doi: 10.1086/307869
– volume: 362
  start-page: 428
  year: 1993
  ident: R15
  publication-title: Nature
  doi: 10.1038/362428a0
– volume: 525
  start-page: 492
  year: 1999
  ident: R12
  publication-title: ApJ
  doi: 10.1086/307869
– ident: R1
– ident: R10
– volume: 23
  start-page: 303
  year: 2009
  ident: R44
  publication-title: Exp. Astron.
  doi: 10.1007/s10686-008-9088-7
– volume: 114
  start-page: 465
  year: 2004
  ident: R43
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-004-1435-z
– ident: R52
– volume: 23
  start-page: 981
  year: 2009
  ident: R17
  publication-title: Exp. Astron.
  doi: 10.1007/s10686-008-9099-4
– volume: 110
  start-page: 7102
  year: 2005
  ident: R3
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JA010772
– volume: 352
  start-page: 312
  year: 2016
  ident: R5
  publication-title: Science
  doi: 10.1126/science.aac6397
– volume: 108
  start-page: A10
  year: 2003
  ident: R2
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JA009874
– volume: 565
  start-page: A41
  year: 2014
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361/201323216
– volume: 152
  start-page: 211
  year: 2004
  ident: R55
  publication-title: ApJS
  doi: 10.1086/382351
– volume: 34
  start-page: 383
  year: 1996
  ident: R21
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.34.1.383
– volume: 801
  start-page: 62
  year: 2015
  ident: R54
  publication-title: ApJ
  doi: 10.1088/0004-637X/801/1/62
– volume: 49
  start-page: 2050
  year: 2018
  ident: R24
  publication-title: Lunar and Planetary Institute Science Conference Abstracts
– volume: 171
  start-page: 317
  year: 2004
  ident: R22
  publication-title: Icarus
  doi: 10.1016/j.icarus.2004.05.017
– volume: 110
  start-page: A10107
  year: 2005
  ident: R50
  publication-title: J. Geophys. Res. (Space Phys.)
  doi: 10.1029/2005JA011198
– volume: 448
  start-page: 243
  year: 2006
  ident: R4
  publication-title: A&A
  doi: 10.1051/0004-6361:20053909
– volume: 78
  start-page: 014501
  year: 2007
  ident: R48
  publication-title: Rev. Sci. Instr.
  doi: 10.1063/1.2431089
– volume: 285
  start-page: 89
  year: 1984
  ident: R11
  publication-title: ApJ
  doi: 10.1086/162480
– volume: 65
  start-page: 82
  year: 2018
  ident: R41
  publication-title: J. Astronautical Sci.
  doi: 10.1007/s40295-017-0117-5
– volume: 105
  start-page: 10303
  year: 2000
  ident: R31
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JA900243
– volume: 22
  start-page: 553
  year: 1994
  ident: R19
  publication-title: Ann. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.ea.22.050194.003005
– ident: R28
– volume: 49
  start-page: 2570
  year: 2018
  ident: R6
  publication-title: Lunar and Planetary Institute Science Conference Abstracts
– volume: 85
  start-page: 035113
  year: 2014
  ident: R38
  publication-title: Rev. Sci. Instr.
  doi: 10.1063/1.4868506
– volume: 128
  start-page: 664
  year: 1958
  ident: R40
  publication-title: ApJ
  doi: 10.1086/146579
– volume: 27
  start-page: 1269
  year: 1979
  ident: R36
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(79)90105-3
– ident: R7
– volume: 286
  start-page: 2319
  year: 1999
  ident: R32
  publication-title: Science
  doi: 10.1126/science.286.5448.2319
– volume: 812
  start-page: 139
  year: 2015
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/2/139
– volume: 538
  start-page: A102
  year: 2012
  ident: R45
  publication-title: A&A
  doi: 10.1051/0004-6361/201117119
– volume: 60
  start-page: 261
  year: 2012
  ident: R18
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2011.09.006
– volume: 548
  start-page: 296
  year: 2001
  ident: R51
  publication-title: ApJ
  doi: 10.1086/318651
– volume: 40
  start-page: 1
  year: 1979
  ident: R9
  publication-title: Icarus
  doi: 10.1016/0019-1035(79)90050-2
– ident: R20
– volume: 286
  start-page: 915
  year: 1994
  ident: R16
  publication-title: A&A
– volume: 13
  start-page: 121
  year: 1993
  ident: R53
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(93)90401-V
– ident: R27
– volume: 499
  start-page: 454
  year: 1998
  ident: R23
  publication-title: ApJ
  doi: 10.1086/305613
– volume: 99
  start-page: 1
  year: 1981
  ident: R37
  publication-title: A&A
– volume: 62
  start-page: 244
  year: 1985
  ident: R14
  publication-title: Icarus
  doi: 10.1016/0019-1035(85)90121-6
– volume: 156
  start-page: 7
  year: 2018
  ident: R39
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2017.11.013
– volume: 760
  start-page: 46
  year: 2012
  ident: R42
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/1/46
– ident: R30
– volume: 812
  start-page: 140
  year: 2015
  ident: R49
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/2/140
– volume: 262
  start-page: 550
  year: 1993
  ident: R34
  publication-title: Science
  doi: 10.1126/science.262.5133.550
– volume: 552
  start-page: A130
  year: 2013
  ident: R46
  publication-title: A&A
  doi: 10.1051/0004-6361/201219609
SSID ssj0002183
Score 2.4540439
Snippet Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict...
Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage A54
SubjectTerms Cosmic dust
dust
Dust filters
Earth orbits
extinction
Flow-density-speed relationships
Flux
Heliosphere
High resolution
Interplanetary magnetic field
interplanetary medium
Interstellar matter
Mass distribution
Mass flow
methods: numerical
Modelling
Planetary systems
Radiation pressure
Solar wind
Space probes
Title Heliospheric modulation of the interstellar dust flow on to Earth
URI https://api.istex.fr/ark:/67375/80W-1WBFPKSR-0/fulltext.pdf
https://www.proquest.com/docview/2174301382
Volume 621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgExIXNAZohYF8QL2UbE5iJ8uxGy2FjVGxlvVm2Y4LY1sz1kogDvztvGenaaKhCbhEqePakt_z8_P7-hHykqU6YjrLAh0ZG_BcJIFO49wZcQzXzEYKs5HfHyeDMX83EZNVuqLLLlnoHfPzj3kl_0NVaAO6YpbsP1C2GhQa4B3oC0-gMDz_isZwZpwVcywMcGYQ06aE4lr6_bEUBCh3GN903UGEjs70ovju3ANFpwfjfamrpt05WsWLS1-QSeEvb_ZwdllfFqtmN0AIZN1IEDuB2c69FPtU8zYVX1UjMPHQOef3Dz57ZhnU7Q6Y6tSwO_ReD5fiZ94QsDxIYl9ffcd6mcpjDHAtLY2l0E18XvQNAQ4ywkc8-mEwX4Wh1El8lchmwezjD7I_PjqSo95k1L76FiCWGPrcS2CVu2Q9SpMEcS3evP1Vnc-oFPpLkZ9jWYtKhLtV2241a0NfWcet9-PGse10kdEGeVBeImjXc8RDcsfONslWRUDapt0a-TbJvaF_e0S6dZahK5ahxZQCy9A6y1BkGYosQ6HDoqCOZR6Tcb83OhgEJYpGYED7WgSWoc6W5qGwXLDc5DwzmBQUMqtsnCiuoyjUSgut4syEiFfG071YmXCqcyFE_ISszYqZ3SI0hrGs0iy3qeB5OlWIoylSJbTIFFe2RaLlWklTlphHpJML6UIdRIihDlziAstqgVvkVfWnK19h5fbubUeEqq-6PsfgxFTIPXYqw9P9_vDw5KNkLbK9pJIs9-xcugs4Ouejp7d_fkbur5h-m6zBnrLPQf1c6BeOm34DHMl-sg
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heliospheric+modulation+of+the+interstellar+dust+flow+on+to+Earth&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Strub%2C+P&rft.au=Sterken%2C+V+J&rft.au=Soja%2C+R&rft.au=Kr%C3%BCger%2C+H&rft.date=2019-01-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=621&rft_id=info:doi/10.1051%2F0004-6361%2F201832644&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon