Heliospheric modulation of the interstellar dust flow on to Earth
Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 621; p. A54 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/201832644 |
Cover
Abstract | Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10−4 m−2 s−1 of particles with radii ≳0.3 μm) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s-1), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s-1). The mean ISD mass flow on to the Earth is approximately 100 kg yr-1 with the highest flux of ~3.5 kg day-1 occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1 μm can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun. |
---|---|
AbstractList | Aims.
Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD.
Methods.
Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth.
Results.
Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10
−4
m
−2
s
−1
of particles with radii ≳0.3
μ
m) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s
-1
), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s
-1
). The mean ISD mass flow on to the Earth is approximately 100 kg yr
-1
with the highest flux of ~3.5 kg day
-1
occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1
μ
m can reach the Earth.
Conclusions.
We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun. Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and assess the necessary requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth’s position and the size of the interstellar grains. A broad maximum of the ISD flux (~2 × 10−4 m−2 s−1 of particles with radii ≳0.3 μm) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km s-1), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (≲10 km s-1). The mean ISD mass flow on to the Earth is approximately 100 kg yr-1 with the highest flux of ~3.5 kg day-1 occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region of the incoming ISD flow, downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/− 3) there is a chance that ISD particles with sizes even below 0.1 μm can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and even collected by space probes at 1 AU distance from the Sun. |
Author | Srama, R. Soja, R. Grün, E. Sterken, V. J. Krüger, H. Strub, P. |
Author_xml | – sequence: 1 givenname: P. surname: Strub fullname: Strub, P. organization: Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany – sequence: 2 givenname: V. J. surname: Sterken fullname: Sterken, V. J. organization: Astronomical Institute University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland – sequence: 3 givenname: R. surname: Soja fullname: Soja, R. organization: Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany – sequence: 4 givenname: H. surname: Krüger fullname: Krüger, H. organization: Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany – sequence: 5 givenname: E. surname: Grün fullname: Grün, E. organization: Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany – sequence: 6 givenname: R. surname: Srama fullname: Srama, R. organization: Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany |
BookMark | eNqFkMtOAjEUQBuDiYB-gZsmrkd6-5phiQTESKLxEZZNZ6YTisMU207Uv3cQw8KNq-Ym59ybngHqNa4xCF0CuQYiYEQI4YlkEkaUQMao5PwE9YEzmpCUyx7qH4kzNAhh0420A_tosjC1dWG3Nt4WeOvKttbRuga7Cse1wbaJxodo6lp7XLYh4qp2H7gDosMz7eP6HJ1Wug7m4vcdotf57GW6SJYPt3fTyTIpOJUxMYQTCWkJwnBByqLk40JSToEYbZjUPKcUcp2LXLNxAZDSjKcZ0wVUeSmEYEN0ddi78-69NSGqjWt9051UFFLOCLCMdtT4QBXeheBNpQobf34Uvba1AqL2xdS-h9r3UMdincv-uDtvt9p__WMlB8t2mT6PivZvSqYsFSojKwWrm_nj_fOTIuwb6mV9Og |
CitedBy_id | crossref_primary_10_1098_rsta_2023_0199 crossref_primary_10_1016_j_pss_2023_105751 crossref_primary_10_1016_j_actaastro_2022_08_036 crossref_primary_10_3847_1538_4357_ad5a93 crossref_primary_10_1007_s11214_023_00952_4 crossref_primary_10_1016_j_pss_2019_04_005 crossref_primary_10_3847_2041_8213_ab7195 crossref_primary_10_1016_j_asr_2022_07_022 crossref_primary_10_1051_0004_6361_202449569 crossref_primary_10_1134_S1063773721010047 crossref_primary_10_3847_PSJ_abf928 crossref_primary_10_3847_PSJ_ac5ab7 crossref_primary_10_1016_j_asr_2023_09_016 crossref_primary_10_3847_1538_4365_ab50c1 crossref_primary_10_1093_rasti_rzad034 crossref_primary_10_1007_s11214_019_0607_9 crossref_primary_10_1134_S0015462824602298 crossref_primary_10_1029_2022JA030749 crossref_primary_10_1098_rsta_2023_0200 crossref_primary_10_1051_0004_6361_202451950 crossref_primary_10_1051_0004_6361_202450069 crossref_primary_10_1007_s11214_020_00775_7 crossref_primary_10_1051_0004_6361_202450257 crossref_primary_10_1186_s40623_021_01412_5 crossref_primary_10_1016_j_asr_2021_04_002 crossref_primary_10_1016_j_pss_2024_106010 crossref_primary_10_3847_PSJ_ad2de8 crossref_primary_10_1007_s11214_019_0610_1 crossref_primary_10_1063_5_0168088 crossref_primary_10_3847_PSJ_ad11f5 crossref_primary_10_1016_j_pss_2020_105060 crossref_primary_10_1051_0004_6361_201834316 crossref_primary_10_1007_s11214_022_00900_8 crossref_primary_10_3847_PSJ_ad8b27 |
Cites_doi | 10.1029/1999JA900149 10.1086/155591 10.1088/0004-637X/812/2/141 10.1016/S0032-0633(02)00019-3 10.1086/307869 10.1038/362428a0 10.1007/s10686-008-9088-7 10.1007/s11214-004-1435-z 10.1007/s10686-008-9099-4 10.1029/2004JA010772 10.1126/science.aac6397 10.1029/2003JA009874 10.1051/0004-6361/201323216 10.1086/382351 10.1146/annurev.astro.34.1.383 10.1088/0004-637X/801/1/62 10.1016/j.icarus.2004.05.017 10.1029/2005JA011198 10.1051/0004-6361:20053909 10.1063/1.2431089 10.1086/162480 10.1007/s40295-017-0117-5 10.1029/1999JA900243 10.1146/annurev.ea.22.050194.003005 10.1063/1.4868506 10.1086/146579 10.1016/0032-0633(79)90105-3 10.1126/science.286.5448.2319 10.1088/0004-637X/812/2/139 10.1051/0004-6361/201117119 10.1016/j.pss.2011.09.006 10.1086/318651 10.1016/0019-1035(79)90050-2 10.1016/0273-1177(93)90401-V 10.1086/305613 10.1016/0019-1035(85)90121-6 10.1016/j.pss.2017.11.013 10.1088/0004-637X/760/1/46 10.1088/0004-637X/812/2/140 10.1126/science.262.5133.550 10.1051/0004-6361/201219609 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Jan 2019 |
Copyright_xml | – notice: Copyright EDP Sciences Jan 2019 |
DBID | BSCLL AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/201832644 |
DatabaseName | Istex CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_201832644 ark_67375_80W_1WBFPKSR_0 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c426t-e040617d15e450dcd49c624210eae36a4b221bab5ba39c117284783ac1fbd5553 |
ISSN | 0004-6361 |
IngestDate | Wed Aug 13 03:55:22 EDT 2025 Tue Jul 01 03:59:15 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Wed Oct 30 09:47:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c426t-e040617d15e450dcd49c624210eae36a4b221bab5ba39c117284783ac1fbd5553 |
Notes | bibcode:2019A%26A...621A..54S publisher-ID:aa32644-18 href:https://www.aanda.org/articles/aa/abs/2019/01/aa32644-18/aa32644-18.html ark:/67375/80W-1WBFPKSR-0 istex:4E009F8844C945177D690966A74DEFAA8EBEEAC1 e-mail: P.Strub@gmail.com dkey:10.1051/0004-6361/201832644 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2019/01/aa32644-18.pdf |
PQID | 2174301382 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2174301382 crossref_citationtrail_10_1051_0004_6361_201832644 crossref_primary_10_1051_0004_6361_201832644 istex_primary_ark_67375_80W_1WBFPKSR_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2019 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Kimura (R23) 1998; 499 Altobelli (R2) 2003; 108 Weingartner (R51) 2001; 548 Frisch (R13) 1999; 525 R20 Witte (R53) 1993; 13 R27 R26 R28 R1 Mathis (R35) 1977; 217 Arai (R6) 2018; 49 R7 Strub (R49) 2015; 812 Sternovsky (R48) 2007; 78 Kobayashi (R24) 2018; 49 Parker (R40) 1958; 128 Grün (R18) 2012; 60 Auer (R8) 2002; 50 Grün (R14) 1985; 62 R30 Lallement (R29) 2014; 565 Krüger (R25) 2015; 812 Sterken (R47) 2015; 812 Srama (R44) 2009; 23 Frisch (R12) 1999; 525 Sterken (R46) 2013; 552 Burns (R9) 1979; 40 Srama (R43) 2004; 114 Love (R34) 1993; 262 Grün (R15) 1993; 362 Wood (R54) 2015; 801 Wang (R50) 2005; 110 Sarli (R41) 2018; 65 Grün (R16) 1994; 286 O’Brien (R39) 2018; 156 Landgraf (R31) 2000; 105 Altobelli (R5) 2016; 352 Grün (R17) 2009; 23 Sterken (R45) 2012; 538 Gustafson (R19) 1994; 22 Kempf (R22) 2004; 171 Slavin (R42) 2012; 760 R52 R10 Linde (R33) 2000; 105 Draine (R11) 1984; 285 Mukai (R37) 1981; 99 Altobelli (R4) 2006; 448 Landgraf (R32) 1999; 286 O’Brien (R38) 2014; 85 Zubko (R55) 2004; 152 Altobelli (R3) 2005; 110 Horányi (R21) 1996; 34 Morfill (R36) 1979; 27 |
References_xml | – volume: 105 start-page: 10411 year: 2000 ident: R33 publication-title: J. Geophys. Res. doi: 10.1029/1999JA900149 – volume: 217 start-page: 425 year: 1977 ident: R35 publication-title: ApJ doi: 10.1086/155591 – volume: 812 start-page: 141 year: 2015 ident: R47 publication-title: ApJ doi: 10.1088/0004-637X/812/2/141 – volume: 50 start-page: 773 year: 2002 ident: R8 publication-title: Planet. Space Sci. doi: 10.1016/S0032-0633(02)00019-3 – ident: R26 – volume: 525 start-page: 492 year: 1999 ident: R13 publication-title: ApJ doi: 10.1086/307869 – volume: 362 start-page: 428 year: 1993 ident: R15 publication-title: Nature doi: 10.1038/362428a0 – volume: 525 start-page: 492 year: 1999 ident: R12 publication-title: ApJ doi: 10.1086/307869 – ident: R1 – ident: R10 – volume: 23 start-page: 303 year: 2009 ident: R44 publication-title: Exp. Astron. doi: 10.1007/s10686-008-9088-7 – volume: 114 start-page: 465 year: 2004 ident: R43 publication-title: Space Sci. Rev. doi: 10.1007/s11214-004-1435-z – ident: R52 – volume: 23 start-page: 981 year: 2009 ident: R17 publication-title: Exp. Astron. doi: 10.1007/s10686-008-9099-4 – volume: 110 start-page: 7102 year: 2005 ident: R3 publication-title: J. Geophys. Res. doi: 10.1029/2004JA010772 – volume: 352 start-page: 312 year: 2016 ident: R5 publication-title: Science doi: 10.1126/science.aac6397 – volume: 108 start-page: A10 year: 2003 ident: R2 publication-title: J. Geophys. Res. doi: 10.1029/2003JA009874 – volume: 565 start-page: A41 year: 2014 ident: R29 publication-title: A&A doi: 10.1051/0004-6361/201323216 – volume: 152 start-page: 211 year: 2004 ident: R55 publication-title: ApJS doi: 10.1086/382351 – volume: 34 start-page: 383 year: 1996 ident: R21 publication-title: ARA&A doi: 10.1146/annurev.astro.34.1.383 – volume: 801 start-page: 62 year: 2015 ident: R54 publication-title: ApJ doi: 10.1088/0004-637X/801/1/62 – volume: 49 start-page: 2050 year: 2018 ident: R24 publication-title: Lunar and Planetary Institute Science Conference Abstracts – volume: 171 start-page: 317 year: 2004 ident: R22 publication-title: Icarus doi: 10.1016/j.icarus.2004.05.017 – volume: 110 start-page: A10107 year: 2005 ident: R50 publication-title: J. Geophys. Res. (Space Phys.) doi: 10.1029/2005JA011198 – volume: 448 start-page: 243 year: 2006 ident: R4 publication-title: A&A doi: 10.1051/0004-6361:20053909 – volume: 78 start-page: 014501 year: 2007 ident: R48 publication-title: Rev. Sci. Instr. doi: 10.1063/1.2431089 – volume: 285 start-page: 89 year: 1984 ident: R11 publication-title: ApJ doi: 10.1086/162480 – volume: 65 start-page: 82 year: 2018 ident: R41 publication-title: J. Astronautical Sci. doi: 10.1007/s40295-017-0117-5 – volume: 105 start-page: 10303 year: 2000 ident: R31 publication-title: J. Geophys. Res. doi: 10.1029/1999JA900243 – volume: 22 start-page: 553 year: 1994 ident: R19 publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev.ea.22.050194.003005 – ident: R28 – volume: 49 start-page: 2570 year: 2018 ident: R6 publication-title: Lunar and Planetary Institute Science Conference Abstracts – volume: 85 start-page: 035113 year: 2014 ident: R38 publication-title: Rev. Sci. Instr. doi: 10.1063/1.4868506 – volume: 128 start-page: 664 year: 1958 ident: R40 publication-title: ApJ doi: 10.1086/146579 – volume: 27 start-page: 1269 year: 1979 ident: R36 publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(79)90105-3 – ident: R7 – volume: 286 start-page: 2319 year: 1999 ident: R32 publication-title: Science doi: 10.1126/science.286.5448.2319 – volume: 812 start-page: 139 year: 2015 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/812/2/139 – volume: 538 start-page: A102 year: 2012 ident: R45 publication-title: A&A doi: 10.1051/0004-6361/201117119 – volume: 60 start-page: 261 year: 2012 ident: R18 publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2011.09.006 – volume: 548 start-page: 296 year: 2001 ident: R51 publication-title: ApJ doi: 10.1086/318651 – volume: 40 start-page: 1 year: 1979 ident: R9 publication-title: Icarus doi: 10.1016/0019-1035(79)90050-2 – ident: R20 – volume: 286 start-page: 915 year: 1994 ident: R16 publication-title: A&A – volume: 13 start-page: 121 year: 1993 ident: R53 publication-title: Adv. Space Res. doi: 10.1016/0273-1177(93)90401-V – ident: R27 – volume: 499 start-page: 454 year: 1998 ident: R23 publication-title: ApJ doi: 10.1086/305613 – volume: 99 start-page: 1 year: 1981 ident: R37 publication-title: A&A – volume: 62 start-page: 244 year: 1985 ident: R14 publication-title: Icarus doi: 10.1016/0019-1035(85)90121-6 – volume: 156 start-page: 7 year: 2018 ident: R39 publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2017.11.013 – volume: 760 start-page: 46 year: 2012 ident: R42 publication-title: ApJ doi: 10.1088/0004-637X/760/1/46 – ident: R30 – volume: 812 start-page: 140 year: 2015 ident: R49 publication-title: ApJ doi: 10.1088/0004-637X/812/2/140 – volume: 262 start-page: 550 year: 1993 ident: R34 publication-title: Science doi: 10.1126/science.262.5133.550 – volume: 552 start-page: A130 year: 2013 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201219609 |
SSID | ssj0002183 |
Score | 2.4540439 |
Snippet | Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict... Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict... |
SourceID | proquest crossref istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | A54 |
SubjectTerms | Cosmic dust dust Dust filters Earth orbits extinction Flow-density-speed relationships Flux Heliosphere High resolution Interplanetary magnetic field interplanetary medium Interstellar matter Mass distribution Mass flow methods: numerical Modelling Planetary systems Radiation pressure Solar wind Space probes |
Title | Heliospheric modulation of the interstellar dust flow on to Earth |
URI | https://api.istex.fr/ark:/67375/80W-1WBFPKSR-0/fulltext.pdf https://www.proquest.com/docview/2174301382 |
Volume | 621 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgExIXNAZohYF8QL2UbE5iJ8uxGy2FjVGxlvVm2Y4LY1sz1kogDvztvGenaaKhCbhEqePakt_z8_P7-hHykqU6YjrLAh0ZG_BcJIFO49wZcQzXzEYKs5HfHyeDMX83EZNVuqLLLlnoHfPzj3kl_0NVaAO6YpbsP1C2GhQa4B3oC0-gMDz_isZwZpwVcywMcGYQ06aE4lr6_bEUBCh3GN903UGEjs70ovju3ANFpwfjfamrpt05WsWLS1-QSeEvb_ZwdllfFqtmN0AIZN1IEDuB2c69FPtU8zYVX1UjMPHQOef3Dz57ZhnU7Q6Y6tSwO_ReD5fiZ94QsDxIYl9ffcd6mcpjDHAtLY2l0E18XvQNAQ4ywkc8-mEwX4Wh1El8lchmwezjD7I_PjqSo95k1L76FiCWGPrcS2CVu2Q9SpMEcS3evP1Vnc-oFPpLkZ9jWYtKhLtV2241a0NfWcet9-PGse10kdEGeVBeImjXc8RDcsfONslWRUDapt0a-TbJvaF_e0S6dZahK5ahxZQCy9A6y1BkGYosQ6HDoqCOZR6Tcb83OhgEJYpGYED7WgSWoc6W5qGwXLDc5DwzmBQUMqtsnCiuoyjUSgut4syEiFfG071YmXCqcyFE_ISszYqZ3SI0hrGs0iy3qeB5OlWIoylSJbTIFFe2RaLlWklTlphHpJML6UIdRIihDlziAstqgVvkVfWnK19h5fbubUeEqq-6PsfgxFTIPXYqw9P9_vDw5KNkLbK9pJIs9-xcugs4Ouejp7d_fkbur5h-m6zBnrLPQf1c6BeOm34DHMl-sg |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heliospheric+modulation+of+the+interstellar+dust+flow+on+to+Earth&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Strub%2C+P&rft.au=Sterken%2C+V+J&rft.au=Soja%2C+R&rft.au=Kr%C3%BCger%2C+H&rft.date=2019-01-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=621&rft_id=info:doi/10.1051%2F0004-6361%2F201832644&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |