Managing the patient portfolio using mathematical programming: decision support guidelines using a real-world use case at a university hospital

Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case m...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für Betriebswirtschaft Vol. 94; no. 9; pp. 1245 - 1260
Main Authors Grieger, Milena, Heider, Steffen, McRae, Sebastian, Koperna, Thomas, Brunner, Jens O
Format Journal Article
LanguageEnglish
Published Berlin, Heidelberg Springer 01.11.2024
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-8928
0044-2372
1861-8928
DOI10.1007/s11573-024-01201-y

Cover

Abstract Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management.
AbstractList Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management.
Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by $$\:13\%$$ in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management.
Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management.
Author Heider, Steffen
Grieger, Milena
Koperna, Thomas
Brunner, Jens O
McRae, Sebastian
Author_xml – sequence: 1
  givenname: Milena
  surname: Grieger
  fullname: Grieger, Milena
– sequence: 2
  givenname: Steffen
  surname: Heider
  fullname: Heider, Steffen
– sequence: 3
  givenname: Sebastian
  surname: McRae
  fullname: McRae, Sebastian
– sequence: 4
  givenname: Thomas
  surname: Koperna
  fullname: Koperna, Thomas
– sequence: 5
  givenname: Jens O
  surname: Brunner
  fullname: Brunner, Jens O
BookMark eNp9kM1KxDAUhYMoODP6AoIQcF3NX9vUnQz-wYgbXYeYpp0MnaQmqTJP4Sub2gFdubk33HO-m-TMwaF1VgNwhtElRqi8ChjnJc0QYRnCBOFsdwBmmBc44xXhh3_Ox2AewgahnBBSzcDXk7SyNbaFca1hL6PRNsLe-di4zjg4hFHbyqSmYpTsYO9d6-V2m4RrWGtlgnEWhqEfKdgOptadsTrsWQm9ll326XxXp5GGSqYiYxIGaz60Dybu4NqF3kTZnYCjRnZBn-77Arze3b4sH7LV8_3j8maVKUaKmNUFReqtkZTQOpe8YCXPucasUhUtZcVK2ijd8LIiTGFES5JklCaYlymvAtEFuJj2pt-8DzpEsXGDt-lKQTHhjBPKRheZXMq7ELxuRO_NVvqdwEiMwYspeJGCFz_Bi12C6ASFZLat9r-r_6XOJ0orZ00QYwvR-fScnBFOvwHFxJTD
Cites_doi 10.1057/hs.2012.18
10.1007/s11573-012-0616-6
10.1007/s11573-012-0643-3
10.1007/s00101-015-0124-5
10.1111/j.1937-5956.2007.tb00289.x
10.1007/s10729-019-09476-2
10.1016/j.omega.2019.07.002
10.1111/jbl.12105
10.1007/s10729-015-9342-2
10.1016/j.ejor.2017.06.037
10.1007/s10729-021-09588-8
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
DOI 10.1007/s11573-024-01201-y
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1861-8928
EndPage 1260
ExternalDocumentID 10_1007_s11573_024_01201_y
315428
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Universität Augsburg (3144)
GroupedDBID -Y2
-~X
.86
.VR
06D
0R1
0R~
0VY
123
1N0
1OL
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
6NX
7WY
8FL
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LLZTM
M0C
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OT2
P2P
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PUEGO
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
C6C
RIG
AAYXX
CITATION
ID FETCH-LOGICAL-c426t-d630cbfa323d5a8647858e149c937a9473fcef87924c103728580cef187100603
IEDL.DBID U2A
ISSN 1861-8928
0044-2372
IngestDate Fri Jul 25 23:34:37 EDT 2025
Tue Jul 01 03:59:11 EDT 2025
Mon Jul 21 06:23:12 EDT 2025
Fri Sep 26 12:12:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Case mix
Hospital
Mathematical optimization
OT planning
Decision support
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-d630cbfa323d5a8647858e149c937a9473fcef87924c103728580cef187100603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-9672-6224
OpenAccessLink https://link.springer.com/10.1007/s11573-024-01201-y
PQID 3128482340
PQPubID 816402
PageCount 16
ParticipantIDs proquest_journals_3128482340
crossref_primary_10_1007_s11573_024_01201_y
springer_journals_10_1007_s11573_024_01201_y
econis_econstor_315428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Zeitschrift für Betriebswirtschaft
PublicationTitle Zeitschrift für Betriebswirtschaft
PublicationTitleAbbrev J Bus Econ
PublicationYear 2024
Publisher Springer
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Deutsche KrankenhausgesellschaftSpitzenverbändederKrankenkassenVerband der privaten KrankenversicherungKalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern20164DüsseldorfDeutsche Krankenhaus Verlagsgesellschaft mbH
WaeschleRMHinzJBleekerFSliwaBPopovASchmidtCEBauerMMythos OP-Minute: Leitfaden Zur Kalkulation Von DRG-Erlösen pro Op-Minute (OR minute myth: guidelines for calculation of DRG revenues per OR minute)Anaesthesist20166513714710.1007/s00101-015-0124-5
ErhardMSchoenfelderJFügenerABrunnerJOState of the art in physician schedulingEur J Oper Res201826511810.1016/j.ejor.2017.06.037
Osterloh F (2018) Pflegemangel Im Krankenhaus: die Situation Wird Immer dramatischer. Deutsches Ärzteblatt 115
Deutscher Ärzteverlag GmbH, Redaktion Deutsches Ärzteblatt (2022) Krankenhausreform: Monopolkommission schlägt Qualitätssicherung der Länder vor. https://www.aerzteblatt.de/nachrichten/134677/Krankenhausreform-Monopolkommission-schlaegt-Qualitaetssicherung-der-Laender-vor. Accessed 13 June 2022
HofSFügenerASchoenfelderJBrunnerJOCase mix planning in hospitals: a review and future agendaHealth Care Manag Sci20172020722010.1007/s10729-015-9342-2
McRaeSBrunnerJOAssessing the impact of uncertainty and the level of aggregation in case mix planningOmega20209710208610.1016/j.omega.2019.07.002
FügenerAAn Integrated Strategic and Tactical Master surgery Scheduling Approach with Stochastic Resource demandJ Bus Logist20153637438710.1111/jbl.12105
GuptaDSurgical Suites’ Operations ManagementProd Oper Manage20071668970010.1111/j.1937-5956.2007.tb00289.x
HeiderSSchoenfelderJKopernaTBrunnerJOBalancing control and autonomy in master surgery scheduling: benefits of ICU quotas for recovery unitsHealth Care Manag Sci20222531133210.1007/s10729-021-09588-8
McRaeSBrunnerJOBardJFAnalyzing economies of scale and scope in hospitals by use of case mix planningHealth Care Manag Sci2020238010110.1007/s10729-019-09476-2
Statistisches Bundesamt (2021) 13% weniger stationäre Krankenhausbehandlungen im Jahr 2020. https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_445_231.html. Accessed 13 June 2022
van WassenhoveLNBesiouMComplex problems with multiple stakeholders: how to bridge the gap between reality and OR/MS?J Bus Econ201383879710.1007/s11573-012-0643-3
SalgeTOVeraAInnovationstätigkeit Und Der Erfolg öffentlicher Organisationen: Erkenntnisse Einer PanelstudieJ Bus Econ2012821019105610.1007/s11573-012-0616-6
HulshofPJHKortbeekNBoucherieRJHansEWBakkerPJMTaxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MSHealth Syst2012112917510.1057/hs.2012.18
Statistisches Bundesamt (2023) Kosten der Krankenhäuser nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/kosten-krankenhaeuser-bl.html. Accessed 12 June 2024
A Fügener (1201_CR4) 2015; 36
S McRae (1201_CR9) 2020; 97
S Hof (1201_CR7) 2017; 20
S Heider (1201_CR6) 2022; 25
PJH Hulshof (1201_CR8) 2012; 1
Spitzenverbändeder Deutsche Krankenhausgesellschaft (1201_CR1) 2016
S McRae (1201_CR10) 2020; 23
RM Waeschle (1201_CR16) 2016; 65
TO Salge (1201_CR12) 2012; 82
LN van Wassenhove (1201_CR15) 2013; 83
M Erhard (1201_CR3) 2018; 265
1201_CR13
1201_CR14
1201_CR11
D Gupta (1201_CR5) 2007; 16
1201_CR2
References_xml – reference: Deutsche KrankenhausgesellschaftSpitzenverbändederKrankenkassenVerband der privaten KrankenversicherungKalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern20164DüsseldorfDeutsche Krankenhaus Verlagsgesellschaft mbH
– reference: FügenerAAn Integrated Strategic and Tactical Master surgery Scheduling Approach with Stochastic Resource demandJ Bus Logist20153637438710.1111/jbl.12105
– reference: van WassenhoveLNBesiouMComplex problems with multiple stakeholders: how to bridge the gap between reality and OR/MS?J Bus Econ201383879710.1007/s11573-012-0643-3
– reference: Statistisches Bundesamt (2021) 13% weniger stationäre Krankenhausbehandlungen im Jahr 2020. https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_445_231.html. Accessed 13 June 2022
– reference: GuptaDSurgical Suites’ Operations ManagementProd Oper Manage20071668970010.1111/j.1937-5956.2007.tb00289.x
– reference: ErhardMSchoenfelderJFügenerABrunnerJOState of the art in physician schedulingEur J Oper Res201826511810.1016/j.ejor.2017.06.037
– reference: HeiderSSchoenfelderJKopernaTBrunnerJOBalancing control and autonomy in master surgery scheduling: benefits of ICU quotas for recovery unitsHealth Care Manag Sci20222531133210.1007/s10729-021-09588-8
– reference: HulshofPJHKortbeekNBoucherieRJHansEWBakkerPJMTaxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MSHealth Syst2012112917510.1057/hs.2012.18
– reference: McRaeSBrunnerJOBardJFAnalyzing economies of scale and scope in hospitals by use of case mix planningHealth Care Manag Sci2020238010110.1007/s10729-019-09476-2
– reference: Statistisches Bundesamt (2023) Kosten der Krankenhäuser nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/kosten-krankenhaeuser-bl.html. Accessed 12 June 2024
– reference: SalgeTOVeraAInnovationstätigkeit Und Der Erfolg öffentlicher Organisationen: Erkenntnisse Einer PanelstudieJ Bus Econ2012821019105610.1007/s11573-012-0616-6
– reference: McRaeSBrunnerJOAssessing the impact of uncertainty and the level of aggregation in case mix planningOmega20209710208610.1016/j.omega.2019.07.002
– reference: HofSFügenerASchoenfelderJBrunnerJOCase mix planning in hospitals: a review and future agendaHealth Care Manag Sci20172020722010.1007/s10729-015-9342-2
– reference: Deutscher Ärzteverlag GmbH, Redaktion Deutsches Ärzteblatt (2022) Krankenhausreform: Monopolkommission schlägt Qualitätssicherung der Länder vor. https://www.aerzteblatt.de/nachrichten/134677/Krankenhausreform-Monopolkommission-schlaegt-Qualitaetssicherung-der-Laender-vor. Accessed 13 June 2022
– reference: WaeschleRMHinzJBleekerFSliwaBPopovASchmidtCEBauerMMythos OP-Minute: Leitfaden Zur Kalkulation Von DRG-Erlösen pro Op-Minute (OR minute myth: guidelines for calculation of DRG revenues per OR minute)Anaesthesist20166513714710.1007/s00101-015-0124-5
– reference: Osterloh F (2018) Pflegemangel Im Krankenhaus: die Situation Wird Immer dramatischer. Deutsches Ärzteblatt 115
– volume: 1
  start-page: 129
  year: 2012
  ident: 1201_CR8
  publication-title: Health Syst
  doi: 10.1057/hs.2012.18
– volume: 82
  start-page: 1019
  year: 2012
  ident: 1201_CR12
  publication-title: J Bus Econ
  doi: 10.1007/s11573-012-0616-6
– volume: 83
  start-page: 87
  year: 2013
  ident: 1201_CR15
  publication-title: J Bus Econ
  doi: 10.1007/s11573-012-0643-3
– volume: 65
  start-page: 137
  year: 2016
  ident: 1201_CR16
  publication-title: Anaesthesist
  doi: 10.1007/s00101-015-0124-5
– volume: 16
  start-page: 689
  year: 2007
  ident: 1201_CR5
  publication-title: Prod Oper Manage
  doi: 10.1111/j.1937-5956.2007.tb00289.x
– volume: 23
  start-page: 80
  year: 2020
  ident: 1201_CR10
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-019-09476-2
– volume: 97
  start-page: 102086
  year: 2020
  ident: 1201_CR9
  publication-title: Omega
  doi: 10.1016/j.omega.2019.07.002
– volume: 36
  start-page: 374
  year: 2015
  ident: 1201_CR4
  publication-title: J Bus Logist
  doi: 10.1111/jbl.12105
– volume: 20
  start-page: 207
  year: 2017
  ident: 1201_CR7
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-015-9342-2
– ident: 1201_CR13
– ident: 1201_CR2
– volume: 265
  start-page: 1
  year: 2018
  ident: 1201_CR3
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.06.037
– volume: 25
  start-page: 311
  year: 2022
  ident: 1201_CR6
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-021-09588-8
– ident: 1201_CR14
– volume-title: Kalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern
  year: 2016
  ident: 1201_CR1
– ident: 1201_CR11
SSID ssj0052229
Score 2.276431
Snippet Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by...
SourceID proquest
crossref
springer
econis
SourceType Aggregation Database
Index Database
Publisher
StartPage 1245
SubjectTerms Accounting/Auditing
Business and Management
Business Taxation/Tax Law
Case mix
Decision making
Decision support
Economic indicators
Hospital
Hospitality industry
Human Resource Management
Mathematical optimization
Mathematical programming
Operations Management
Optimization
Organization
Original Article
OT planning
Portfolio management
Strategic management
Title Managing the patient portfolio using mathematical programming: decision support guidelines using a real-world use case at a university hospital
URI https://www.econstor.eu/handle/10419/315428
https://link.springer.com/article/10.1007/s11573-024-01201-y
https://www.proquest.com/docview/3128482340
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IGOPF-CKiSHrwpk2Wdru7eAMCEo2cJMHTZml3kYRXBA78Cv-yM0sXgtGDpyadtpvstJ2vmZlvAO4c7QS-MVVupOdwV7oCj5TS3BB5moyUp1OKjdeu1-m5z33Vt0lhiyzaPXNJpjf1LtmtqnzyOVLUBJotvs5BQdEGwl3cE_Xs_lVUoXrjV3a5kL6wqTK_r7Fnjg7pDTpa7IHNH_7R1Oy0T-HE4kVW3yj4DA7i6TkcZeHqF_CVFRpiiOSYZUllBKqT2Xg0YzRwyCZbclZcy4ZkTVDwyIytscMWqznNYsMVEV_R6nZuxBBXjnlKrYpdMdNo-Fi0RMFqG9XBPmz9kUvotVtvzQ63RRa4RuO85MaTjh4kkRTSqCig1FMVxPhu0ghcoprry0THSeDjO01TTqFAsYM91YB4gTxHFiE_nU3jK2BJomSMiC4Y-Mo1EYINfyAcT5iaqmmlqyW4z_51ON9waYQ71mTSTIiaCVPNhOsSFDfqCKmhUNFQIt4TQQnKmXpCe-AWKEI7GwjpOiV4yFS2E__9mev_Db-BY0HbJ81GLEN--bmKbxGWLAcVKNTbjUaX2qf3l1YFck2vWUn35jdmq93n
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CbggXhODATlwg0hd0rQdN4SYBmw7bdJuUZe0A4ltiHUHfgV_GbtNNw3BgVOlOEmlOIm_yPZngCvPeFFobZ1bGXjcl77AI6UMt0SeJmMVmJxio9MNWn3_aaAGLilsVka7ly7J_KZeJrvVVUg-R4qaQLPFP9dhk9yMtK_74q68fxVVqC78yj4XMhQuVeb3OVbM0Ra9QV9nK2Dzh380NzvNfdhzeJHdFQo-gLVkcgjbZbj6EXyVhYYYIjnmWFIZgep0-vY6ZdRxxMYLclacy4VkjVFwy6yrscNm83caxUZzIr6i2d3YmCGufOM5tSo2Jcyg4WNxhoL5IqqDvbj6I8fQbz707lvcFVngBo1zxm0gPTNMYymkVXFEqacqSvDdZBC4xA0_lKlJ0ijEd5qhnEKBYg9b6hHxAgWerMDGZDpJToClqZIJIrpoGCrfxgg2wqHwAmEbqmGUqVfhulxr_V5waeglazJpRqNmdK4Z_VmFSqEOTR8KFdUS8Z6IqlAr1aPdgZuhCO1sJKTvVeGmVNlS_PdvTv_X_RJ2Wr1OW7cfu89nsCtoK-WZiTXYyD7myTlClGx4ke_Ib8PG3N0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIMQF8RSDATlwg2hd0rQdtwmYxlMcmLRb1CUtIME2se6wX8Ffxm7TDRAcOFWKk1Sqk_qzbH8GOPaMF4XWNriVgcd96Qu8UspwS-RpMlaBySk27u6DTte_7qnelyr-PNu9DEkWNQ3E0jTI6iOb1ueFbw0VUvyRMijQhPHpIiz5aKvJ_eqKVvkvVtStuogx-1zIULiymd_3-GaalskffRl_A54_YqW5CWqvw5rDjqxVKHsDFpLBJqyUqetb8FE2HWKI6phjTGUEsNPh68uQ0cQn9jYjasW9XHrWGwrOmHX9dth4MqJV7GlCJFi0u1sbM8SYrzynWcWhhBk0gizOUDCZZXiwZ9eLZBu67cvH8w53DRe4QUOdcRtIz_TTWAppVRxRGaqKEvShDIKYuOmHMjVJGoXosxmqLxQo9nCkERFHUODJHagMhoNkF1iaKpkguov6ofJtjMAj7AsvELapmkaZRhVOym-tRwWvhp4zKJNmNGpG55rR0yrsFOrQ9KC0US0R-4moCrVSPdpdvjGK0OZGQvpeFU5Llc3Ff79m73_Tj2Dl4aKtb6_ub_ZhVdBJyosUa1DJ3ifJAaKVrH-YH8hPoGLhIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Managing+the+patient+portfolio+using+mathematical+programming%3A+decision+support+guidelines+using+a+real-world+use+case+at+a+university+hospital&rft.jtitle=Zeitschrift+f%C3%BCr+Betriebswirtschaft&rft.au=Grieger%2C+Milena&rft.au=Heider%2C+Steffen&rft.au=McRae%2C+Sebastian&rft.au=Koperna%2C+Thomas&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2372&rft.eissn=1861-8928&rft.volume=94&rft.issue=9&rft.spage=1245&rft.epage=1260&rft_id=info:doi/10.1007%2Fs11573-024-01201-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8928&client=summon