Managing the patient portfolio using mathematical programming: decision support guidelines using a real-world use case at a university hospital
Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case m...
Saved in:
Published in | Zeitschrift für Betriebswirtschaft Vol. 94; no. 9; pp. 1245 - 1260 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin, Heidelberg
Springer
01.11.2024
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1861-8928 0044-2372 1861-8928 |
DOI | 10.1007/s11573-024-01201-y |
Cover
Abstract | Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management. |
---|---|
AbstractList | Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management. Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by $$\:13\%$$ in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management. Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by in 2020 compared to the previous year. This negative tendency can also be seen in operating theaters (OTs). Strategic management of the case mix in hospital OTs now necessitates a solid data foundation. The case mix and the case mix index have become central economic indicators in contemporary hospital operations. In this work, we develop a mathematical model for case mix optimization at Augsburg University Hospital in Germany, which is based on an extensive data analysis with descriptive methods. The optimization model is subject to rigorous testing and evaluation through an extensive series of scenario analyses. The primary objective is to calculate a revenue-maximizing patient mix while respecting the available scarce personnel resources in the OT and intensive care unit. This research marks a pioneering effort in delineating the practical integration of case mix planning into a hospital’s routine operations using mathematical optimization. The analyses reveal a strong correlation between an upsurge in revenue and an increased number of cases. Furthermore, the results demonstrate that strategic planning of the patient mix has the potential to enhance revenue with existing resources. Even though the optimal patient mix may not be directly implementable in practice, the findings yield valuable insights for managerial decision-making. A critical examination of these results also fosters a nuanced discourse on the utilization of optimization models as decision support tools within hospital management. |
Author | Heider, Steffen Grieger, Milena Koperna, Thomas Brunner, Jens O McRae, Sebastian |
Author_xml | – sequence: 1 givenname: Milena surname: Grieger fullname: Grieger, Milena – sequence: 2 givenname: Steffen surname: Heider fullname: Heider, Steffen – sequence: 3 givenname: Sebastian surname: McRae fullname: McRae, Sebastian – sequence: 4 givenname: Thomas surname: Koperna fullname: Koperna, Thomas – sequence: 5 givenname: Jens O surname: Brunner fullname: Brunner, Jens O |
BookMark | eNp9kM1KxDAUhYMoODP6AoIQcF3NX9vUnQz-wYgbXYeYpp0MnaQmqTJP4Sub2gFdubk33HO-m-TMwaF1VgNwhtElRqi8ChjnJc0QYRnCBOFsdwBmmBc44xXhh3_Ox2AewgahnBBSzcDXk7SyNbaFca1hL6PRNsLe-di4zjg4hFHbyqSmYpTsYO9d6-V2m4RrWGtlgnEWhqEfKdgOptadsTrsWQm9ll326XxXp5GGSqYiYxIGaz60Dybu4NqF3kTZnYCjRnZBn-77Arze3b4sH7LV8_3j8maVKUaKmNUFReqtkZTQOpe8YCXPucasUhUtZcVK2ijd8LIiTGFES5JklCaYlymvAtEFuJj2pt-8DzpEsXGDt-lKQTHhjBPKRheZXMq7ELxuRO_NVvqdwEiMwYspeJGCFz_Bi12C6ASFZLat9r-r_6XOJ0orZ00QYwvR-fScnBFOvwHFxJTD |
Cites_doi | 10.1057/hs.2012.18 10.1007/s11573-012-0616-6 10.1007/s11573-012-0643-3 10.1007/s00101-015-0124-5 10.1111/j.1937-5956.2007.tb00289.x 10.1007/s10729-019-09476-2 10.1016/j.omega.2019.07.002 10.1111/jbl.12105 10.1007/s10729-015-9342-2 10.1016/j.ejor.2017.06.037 10.1007/s10729-021-09588-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | OT2 C6C AAYXX CITATION |
DOI | 10.1007/s11573-024-01201-y |
DatabaseName | EconStor Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1861-8928 |
EndPage | 1260 |
ExternalDocumentID | 10_1007_s11573_024_01201_y 315428 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Universität Augsburg (3144) |
GroupedDBID | -Y2 -~X .86 .VR 06D 0R1 0R~ 0VY 123 1N0 1OL 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 6NX 7WY 8FL 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM B-. BA0 BAPOH BDATZ BENPR BEZIV BGNMA BPHCQ CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EIOEI ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM M0C M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9G O9J OT2 P2P P9M PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PUEGO QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBE SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR C6C RIG AAYXX CITATION |
ID | FETCH-LOGICAL-c426t-d630cbfa323d5a8647858e149c937a9473fcef87924c103728580cef187100603 |
IEDL.DBID | U2A |
ISSN | 1861-8928 0044-2372 |
IngestDate | Fri Jul 25 23:34:37 EDT 2025 Tue Jul 01 03:59:11 EDT 2025 Mon Jul 21 06:23:12 EDT 2025 Fri Sep 26 12:12:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Case mix Hospital Mathematical optimization OT planning Decision support |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-d630cbfa323d5a8647858e149c937a9473fcef87924c103728580cef187100603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-9672-6224 |
OpenAccessLink | https://link.springer.com/10.1007/s11573-024-01201-y |
PQID | 3128482340 |
PQPubID | 816402 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3128482340 crossref_primary_10_1007_s11573_024_01201_y springer_journals_10_1007_s11573_024_01201_y econis_econstor_315428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Zeitschrift für Betriebswirtschaft |
PublicationTitle | Zeitschrift für Betriebswirtschaft |
PublicationTitleAbbrev | J Bus Econ |
PublicationYear | 2024 |
Publisher | Springer Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Deutsche KrankenhausgesellschaftSpitzenverbändederKrankenkassenVerband der privaten KrankenversicherungKalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern20164DüsseldorfDeutsche Krankenhaus Verlagsgesellschaft mbH WaeschleRMHinzJBleekerFSliwaBPopovASchmidtCEBauerMMythos OP-Minute: Leitfaden Zur Kalkulation Von DRG-Erlösen pro Op-Minute (OR minute myth: guidelines for calculation of DRG revenues per OR minute)Anaesthesist20166513714710.1007/s00101-015-0124-5 ErhardMSchoenfelderJFügenerABrunnerJOState of the art in physician schedulingEur J Oper Res201826511810.1016/j.ejor.2017.06.037 Osterloh F (2018) Pflegemangel Im Krankenhaus: die Situation Wird Immer dramatischer. Deutsches Ärzteblatt 115 Deutscher Ärzteverlag GmbH, Redaktion Deutsches Ärzteblatt (2022) Krankenhausreform: Monopolkommission schlägt Qualitätssicherung der Länder vor. https://www.aerzteblatt.de/nachrichten/134677/Krankenhausreform-Monopolkommission-schlaegt-Qualitaetssicherung-der-Laender-vor. Accessed 13 June 2022 HofSFügenerASchoenfelderJBrunnerJOCase mix planning in hospitals: a review and future agendaHealth Care Manag Sci20172020722010.1007/s10729-015-9342-2 McRaeSBrunnerJOAssessing the impact of uncertainty and the level of aggregation in case mix planningOmega20209710208610.1016/j.omega.2019.07.002 FügenerAAn Integrated Strategic and Tactical Master surgery Scheduling Approach with Stochastic Resource demandJ Bus Logist20153637438710.1111/jbl.12105 GuptaDSurgical Suites’ Operations ManagementProd Oper Manage20071668970010.1111/j.1937-5956.2007.tb00289.x HeiderSSchoenfelderJKopernaTBrunnerJOBalancing control and autonomy in master surgery scheduling: benefits of ICU quotas for recovery unitsHealth Care Manag Sci20222531133210.1007/s10729-021-09588-8 McRaeSBrunnerJOBardJFAnalyzing economies of scale and scope in hospitals by use of case mix planningHealth Care Manag Sci2020238010110.1007/s10729-019-09476-2 Statistisches Bundesamt (2021) 13% weniger stationäre Krankenhausbehandlungen im Jahr 2020. https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_445_231.html. Accessed 13 June 2022 van WassenhoveLNBesiouMComplex problems with multiple stakeholders: how to bridge the gap between reality and OR/MS?J Bus Econ201383879710.1007/s11573-012-0643-3 SalgeTOVeraAInnovationstätigkeit Und Der Erfolg öffentlicher Organisationen: Erkenntnisse Einer PanelstudieJ Bus Econ2012821019105610.1007/s11573-012-0616-6 HulshofPJHKortbeekNBoucherieRJHansEWBakkerPJMTaxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MSHealth Syst2012112917510.1057/hs.2012.18 Statistisches Bundesamt (2023) Kosten der Krankenhäuser nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/kosten-krankenhaeuser-bl.html. Accessed 12 June 2024 A Fügener (1201_CR4) 2015; 36 S McRae (1201_CR9) 2020; 97 S Hof (1201_CR7) 2017; 20 S Heider (1201_CR6) 2022; 25 PJH Hulshof (1201_CR8) 2012; 1 Spitzenverbändeder Deutsche Krankenhausgesellschaft (1201_CR1) 2016 S McRae (1201_CR10) 2020; 23 RM Waeschle (1201_CR16) 2016; 65 TO Salge (1201_CR12) 2012; 82 LN van Wassenhove (1201_CR15) 2013; 83 M Erhard (1201_CR3) 2018; 265 1201_CR13 1201_CR14 1201_CR11 D Gupta (1201_CR5) 2007; 16 1201_CR2 |
References_xml | – reference: Deutsche KrankenhausgesellschaftSpitzenverbändederKrankenkassenVerband der privaten KrankenversicherungKalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern20164DüsseldorfDeutsche Krankenhaus Verlagsgesellschaft mbH – reference: FügenerAAn Integrated Strategic and Tactical Master surgery Scheduling Approach with Stochastic Resource demandJ Bus Logist20153637438710.1111/jbl.12105 – reference: van WassenhoveLNBesiouMComplex problems with multiple stakeholders: how to bridge the gap between reality and OR/MS?J Bus Econ201383879710.1007/s11573-012-0643-3 – reference: Statistisches Bundesamt (2021) 13% weniger stationäre Krankenhausbehandlungen im Jahr 2020. https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_445_231.html. Accessed 13 June 2022 – reference: GuptaDSurgical Suites’ Operations ManagementProd Oper Manage20071668970010.1111/j.1937-5956.2007.tb00289.x – reference: ErhardMSchoenfelderJFügenerABrunnerJOState of the art in physician schedulingEur J Oper Res201826511810.1016/j.ejor.2017.06.037 – reference: HeiderSSchoenfelderJKopernaTBrunnerJOBalancing control and autonomy in master surgery scheduling: benefits of ICU quotas for recovery unitsHealth Care Manag Sci20222531133210.1007/s10729-021-09588-8 – reference: HulshofPJHKortbeekNBoucherieRJHansEWBakkerPJMTaxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MSHealth Syst2012112917510.1057/hs.2012.18 – reference: McRaeSBrunnerJOBardJFAnalyzing economies of scale and scope in hospitals by use of case mix planningHealth Care Manag Sci2020238010110.1007/s10729-019-09476-2 – reference: Statistisches Bundesamt (2023) Kosten der Krankenhäuser nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/kosten-krankenhaeuser-bl.html. Accessed 12 June 2024 – reference: SalgeTOVeraAInnovationstätigkeit Und Der Erfolg öffentlicher Organisationen: Erkenntnisse Einer PanelstudieJ Bus Econ2012821019105610.1007/s11573-012-0616-6 – reference: McRaeSBrunnerJOAssessing the impact of uncertainty and the level of aggregation in case mix planningOmega20209710208610.1016/j.omega.2019.07.002 – reference: HofSFügenerASchoenfelderJBrunnerJOCase mix planning in hospitals: a review and future agendaHealth Care Manag Sci20172020722010.1007/s10729-015-9342-2 – reference: Deutscher Ärzteverlag GmbH, Redaktion Deutsches Ärzteblatt (2022) Krankenhausreform: Monopolkommission schlägt Qualitätssicherung der Länder vor. https://www.aerzteblatt.de/nachrichten/134677/Krankenhausreform-Monopolkommission-schlaegt-Qualitaetssicherung-der-Laender-vor. Accessed 13 June 2022 – reference: WaeschleRMHinzJBleekerFSliwaBPopovASchmidtCEBauerMMythos OP-Minute: Leitfaden Zur Kalkulation Von DRG-Erlösen pro Op-Minute (OR minute myth: guidelines for calculation of DRG revenues per OR minute)Anaesthesist20166513714710.1007/s00101-015-0124-5 – reference: Osterloh F (2018) Pflegemangel Im Krankenhaus: die Situation Wird Immer dramatischer. Deutsches Ärzteblatt 115 – volume: 1 start-page: 129 year: 2012 ident: 1201_CR8 publication-title: Health Syst doi: 10.1057/hs.2012.18 – volume: 82 start-page: 1019 year: 2012 ident: 1201_CR12 publication-title: J Bus Econ doi: 10.1007/s11573-012-0616-6 – volume: 83 start-page: 87 year: 2013 ident: 1201_CR15 publication-title: J Bus Econ doi: 10.1007/s11573-012-0643-3 – volume: 65 start-page: 137 year: 2016 ident: 1201_CR16 publication-title: Anaesthesist doi: 10.1007/s00101-015-0124-5 – volume: 16 start-page: 689 year: 2007 ident: 1201_CR5 publication-title: Prod Oper Manage doi: 10.1111/j.1937-5956.2007.tb00289.x – volume: 23 start-page: 80 year: 2020 ident: 1201_CR10 publication-title: Health Care Manag Sci doi: 10.1007/s10729-019-09476-2 – volume: 97 start-page: 102086 year: 2020 ident: 1201_CR9 publication-title: Omega doi: 10.1016/j.omega.2019.07.002 – volume: 36 start-page: 374 year: 2015 ident: 1201_CR4 publication-title: J Bus Logist doi: 10.1111/jbl.12105 – volume: 20 start-page: 207 year: 2017 ident: 1201_CR7 publication-title: Health Care Manag Sci doi: 10.1007/s10729-015-9342-2 – ident: 1201_CR13 – ident: 1201_CR2 – volume: 265 start-page: 1 year: 2018 ident: 1201_CR3 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.06.037 – volume: 25 start-page: 311 year: 2022 ident: 1201_CR6 publication-title: Health Care Manag Sci doi: 10.1007/s10729-021-09588-8 – ident: 1201_CR14 – volume-title: Kalkulation Von Behandlungskosten: Handbuch Zur Anwendung in Krankenhäusern year: 2016 ident: 1201_CR1 – ident: 1201_CR11 |
SSID | ssj0052229 |
Score | 2.276431 |
Snippet | Many hospitals in Germany are facing escalating economic pressures. After several years of stagnation, the number of inpatient hospital treatments dropped by... |
SourceID | proquest crossref springer econis |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1245 |
SubjectTerms | Accounting/Auditing Business and Management Business Taxation/Tax Law Case mix Decision making Decision support Economic indicators Hospital Hospitality industry Human Resource Management Mathematical optimization Mathematical programming Operations Management Optimization Organization Original Article OT planning Portfolio management Strategic management |
Title | Managing the patient portfolio using mathematical programming: decision support guidelines using a real-world use case at a university hospital |
URI | https://www.econstor.eu/handle/10419/315428 https://link.springer.com/article/10.1007/s11573-024-01201-y https://www.proquest.com/docview/3128482340 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IGOPF-CKiSHrwpk2Wdru7eAMCEo2cJMHTZml3kYRXBA78Cv-yM0sXgtGDpyadtpvstJ2vmZlvAO4c7QS-MVVupOdwV7oCj5TS3BB5moyUp1OKjdeu1-m5z33Vt0lhiyzaPXNJpjf1LtmtqnzyOVLUBJotvs5BQdEGwl3cE_Xs_lVUoXrjV3a5kL6wqTK_r7Fnjg7pDTpa7IHNH_7R1Oy0T-HE4kVW3yj4DA7i6TkcZeHqF_CVFRpiiOSYZUllBKqT2Xg0YzRwyCZbclZcy4ZkTVDwyIytscMWqznNYsMVEV_R6nZuxBBXjnlKrYpdMdNo-Fi0RMFqG9XBPmz9kUvotVtvzQ63RRa4RuO85MaTjh4kkRTSqCig1FMVxPhu0ghcoprry0THSeDjO01TTqFAsYM91YB4gTxHFiE_nU3jK2BJomSMiC4Y-Mo1EYINfyAcT5iaqmmlqyW4z_51ON9waYQ71mTSTIiaCVPNhOsSFDfqCKmhUNFQIt4TQQnKmXpCe-AWKEI7GwjpOiV4yFS2E__9mev_Db-BY0HbJ81GLEN--bmKbxGWLAcVKNTbjUaX2qf3l1YFck2vWUn35jdmq93n |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CbggXhODATlwg0hd0rQdN4SYBmw7bdJuUZe0A4ltiHUHfgV_GbtNNw3BgVOlOEmlOIm_yPZngCvPeFFobZ1bGXjcl77AI6UMt0SeJmMVmJxio9MNWn3_aaAGLilsVka7ly7J_KZeJrvVVUg-R4qaQLPFP9dhk9yMtK_74q68fxVVqC78yj4XMhQuVeb3OVbM0Ra9QV9nK2Dzh380NzvNfdhzeJHdFQo-gLVkcgjbZbj6EXyVhYYYIjnmWFIZgep0-vY6ZdRxxMYLclacy4VkjVFwy6yrscNm83caxUZzIr6i2d3YmCGufOM5tSo2Jcyg4WNxhoL5IqqDvbj6I8fQbz707lvcFVngBo1zxm0gPTNMYymkVXFEqacqSvDdZBC4xA0_lKlJ0ijEd5qhnEKBYg9b6hHxAgWerMDGZDpJToClqZIJIrpoGCrfxgg2wqHwAmEbqmGUqVfhulxr_V5waeglazJpRqNmdK4Z_VmFSqEOTR8KFdUS8Z6IqlAr1aPdgZuhCO1sJKTvVeGmVNlS_PdvTv_X_RJ2Wr1OW7cfu89nsCtoK-WZiTXYyD7myTlClGx4ke_Ib8PG3N0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIMQF8RSDATlwg2hd0rQdtwmYxlMcmLRb1CUtIME2se6wX8Ffxm7TDRAcOFWKk1Sqk_qzbH8GOPaMF4XWNriVgcd96Qu8UspwS-RpMlaBySk27u6DTte_7qnelyr-PNu9DEkWNQ3E0jTI6iOb1ueFbw0VUvyRMijQhPHpIiz5aKvJ_eqKVvkvVtStuogx-1zIULiymd_3-GaalskffRl_A54_YqW5CWqvw5rDjqxVKHsDFpLBJqyUqetb8FE2HWKI6phjTGUEsNPh68uQ0cQn9jYjasW9XHrWGwrOmHX9dth4MqJV7GlCJFi0u1sbM8SYrzynWcWhhBk0gizOUDCZZXiwZ9eLZBu67cvH8w53DRe4QUOdcRtIz_TTWAppVRxRGaqKEvShDIKYuOmHMjVJGoXosxmqLxQo9nCkERFHUODJHagMhoNkF1iaKpkguov6ofJtjMAj7AsvELapmkaZRhVOym-tRwWvhp4zKJNmNGpG55rR0yrsFOrQ9KC0US0R-4moCrVSPdpdvjGK0OZGQvpeFU5Llc3Ff79m73_Tj2Dl4aKtb6_ub_ZhVdBJyosUa1DJ3ifJAaKVrH-YH8hPoGLhIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Managing+the+patient+portfolio+using+mathematical+programming%3A+decision+support+guidelines+using+a+real-world+use+case+at+a+university+hospital&rft.jtitle=Zeitschrift+f%C3%BCr+Betriebswirtschaft&rft.au=Grieger%2C+Milena&rft.au=Heider%2C+Steffen&rft.au=McRae%2C+Sebastian&rft.au=Koperna%2C+Thomas&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2372&rft.eissn=1861-8928&rft.volume=94&rft.issue=9&rft.spage=1245&rft.epage=1260&rft_id=info:doi/10.1007%2Fs11573-024-01201-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8928&client=summon |