Detection of sleep apnea using only inertial measurement unit signals from apple watch: a pilot-study with machine learning approach

Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU). Methods An algorit...

Full description

Saved in:
Bibliographic Details
Published inSleep & breathing Vol. 29; no. 1; p. 91
Main Authors Hayano, Junichiro, Adachi, Mine, Murakami, Yutaka, Sasaki, Fumihiko, Yuda, Emi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1520-9512
1522-1709
1522-1709
DOI10.1007/s11325-025-03255-w

Cover

Abstract Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU). Methods An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects. Results The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography ( r  = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity. Conclusion Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
AbstractList Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU). An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects. The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity. Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU). Methods An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects. Results The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography ( r  = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity. Conclusion Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
PurposeDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU).MethodsAn algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.ResultsThe Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.ConclusionUtilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).PURPOSEDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.METHODSAn algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.RESULTSThe Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.CONCLUSIONUtilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
ArticleNumber 91
Author Yuda, Emi
Sasaki, Fumihiko
Murakami, Yutaka
Adachi, Mine
Hayano, Junichiro
Author_xml – sequence: 1
  givenname: Junichiro
  orcidid: 0000-0002-5340-6325
  surname: Hayano
  fullname: Hayano, Junichiro
  email: hayano@acm.org
  organization: Department of Research and Development, Heart Beat Science Lab Inc
– sequence: 2
  givenname: Mine
  surname: Adachi
  fullname: Adachi, Mine
  organization: Takaoka Clinic
– sequence: 3
  givenname: Yutaka
  surname: Murakami
  fullname: Murakami, Yutaka
  organization: Sony Group Inc
– sequence: 4
  givenname: Fumihiko
  surname: Sasaki
  fullname: Sasaki, Fumihiko
  organization: Takaoka Clinic
– sequence: 5
  givenname: Emi
  orcidid: 0000-0002-1865-7735
  surname: Yuda
  fullname: Yuda, Emi
  organization: Department of Research and Development, Heart Beat Science Lab Inc., Graduate School of Information Sciences, Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39891814$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQjVAR_YA_wAFZ4sIl4HES2-GCUGkBqRKX3i0nmey6cuxgO6z2zg_H6S4UOCAOoxmN33sz83xenDjvsCieA30NlIo3EaBiTUnXyEVT7h4VZ9AwVoKg7cl9Tcu2AXZanMd4RynUsoUnxWnV5iyhPiu-f8CEfTLeET-SaBFnomeHmizRuA3xzu6JcRiS0ZZMqOMScEKXyOJMItFsnLaRjMFPmTdbJDud-u1boslsrE9lTMuwJzuTtmTS_TZLEYs6uFU8E4LPzafF4zGr4LNjvihur69uLz-VN18-fr58f1P2NeOp7FnNqk72gx5EzbngA3Sco2SdZJWsxcgbXvGuk60cJOqm4Uy3IFoEGOkI1UVRHWQXN-v9Tlur5mAmHfYKqFotVQdLFV1jtVTtMuvdgTUv3YRDn28P-oHptVF_vjizVRv_TQEIKZhc5746KgT_dcGY1GRij9Zqh36JqgLOGlGLpsrQl39B7_wSVovvUTUDYDKjXvy-0q9dfn5rBrADoA8-xoDj_x16tCdmsNtgeJj9D9YPBb3HRQ
Cites_doi 10.1007/s11325-024-02991-9
10.1016/j.jocn.2023.12.009
10.5664/jcsm.6506
10.1109/embc40787.2023.10340237
10.1016/j.isci.2021.103727
10.1038/s41598-024-54817-z
10.3390/s22134786
10.18787/jr.2022.00424
10.1183/09031936.03.00298103
10.5664/jcsm.9744
10.1016/j.smrv.2020.101275
10.2147/nss.S6844
10.2147/nss.S438065
10.1007/s11325-022-02751-7
10.1109/embc40787.2023.10340446
10.18637/jss.v028.i05
10.5935/1984-0063.20200111
10.1513/pats.200709-155MG
10.1109/jbhi.2022.3159727
10.1111/anec.12901
10.1111/jsr.13819
10.2147/nss.S323286
10.1111/j.1440-1843.2009.01627.x
10.1371/journal.pone.0237279
10.1016/s2213-2600(19)30198-5
10.3390/s23094229
10.1515/reveh-2018-0068
10.2196/18297
10.5664/jcsm.9254
10.1093/aje/kws342
10.3390/s22155805
10.1111/j.1365-2869.2010.00854.x
10.1161/CIRCEP.110.958009
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. Mar 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. Mar 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11325-025-03255-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1522-1709
ExternalDocumentID 10.1007/s11325-025-03255-w
PMC11787281
39891814
10_1007_s11325_025_03255_w
Genre Journal Article
GrantInformation_xml – fundername: Sony Group Inc.
  grantid: Sony Group Inc.
GroupedDBID ---
-Y2
-~C
.86
.VR
0-V
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OVD
P9S
PF0
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
ROL
RPX
RRX
RSV
RTC
S16
S1Z
S27
S37
S3B
SAP
SCLPG
SDE
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~KM
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PJZUB
PPXIY
PRQQA
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-c2423b8cdad746676d1b66e82b823847f65636bb898d8ea5562a9179e11f0f13
IEDL.DBID UNPAY
ISSN 1520-9512
1522-1709
IngestDate Sun Oct 26 03:56:24 EDT 2025
Thu Aug 21 18:38:45 EDT 2025
Thu Oct 02 11:39:33 EDT 2025
Tue Oct 07 06:13:13 EDT 2025
Mon Jul 21 06:02:07 EDT 2025
Wed Oct 01 06:38:04 EDT 2025
Wed Mar 26 01:23:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Seismocardiogram
Wearable sensor
Gyrocardiogram
Apnea-hypopnea index
Gyroscope
Home sleep apnea testing
Acceleration
Out-of-center sleep testing
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-c2423b8cdad746676d1b66e82b823847f65636bb898d8ea5562a9179e11f0f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1865-7735
0000-0002-5340-6325
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11325-025-03255-w
PMID 39891814
PQID 3162421128
PQPubID 326308
ParticipantIDs unpaywall_primary_10_1007_s11325_025_03255_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11787281
proquest_miscellaneous_3162574753
proquest_journals_3162421128
pubmed_primary_39891814
crossref_primary_10_1007_s11325_025_03255_w
springer_journals_10_1007_s11325_025_03255_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of the Science and Practice of Sleep Medicine
PublicationTitle Sleep & breathing
PublicationTitleAbbrev Sleep Breath
PublicationTitleAlternate Sleep Breath
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 3255_CR14
3255_CR19
F Massie (3255_CR24) 2022; 18
T Gharibeh (3255_CR1) 2010; 2
D Léger (3255_CR34) 2020; 51
J Hayano (3255_CR31) 2024; 28
J Hayano (3255_CR17) 2024; 14
A Faria (3255_CR5) 2021; 14
RB Berry (3255_CR18) 2018
MW Kim (3255_CR9) 2022; 29
C Heneghan (3255_CR26) 2008; 31
JT Jagielski (3255_CR25) 2023; 27
A Bhongade (3255_CR16) 2023; 2023
VK Kapur (3255_CR33) 2017; 13
J Hayano (3255_CR32) 2020; 15
KL Ode (3255_CR20) 2022; 25
PE Peppard (3255_CR3) 2013; 177
M Kuhn (3255_CR21) 2008; 28
J Hayano (3255_CR35) 2021; 27
P Cinar Bilge (3255_CR12) 2024; 119
AV Benjafield (3255_CR4) 2019; 7
AJ Campbell (3255_CR22) 2011; 20
NE Morsy (3255_CR2) 2019; 34
G Zhou (3255_CR11) 2024; 16
G Zhou (3255_CR10) 2023; 2023
I Sadek (3255_CR30) 2020; 22
M Borsky (3255_CR13) 2022; 26
W Liang (3255_CR15) 2023; 23
GN Pires (3255_CR7) 2023; 32
Y Chen (3255_CR8) 2021; 13
K Dingli (3255_CR23) 2003; 21
T Agatsuma (3255_CR29) 2009; 14
JN Westenberg (3255_CR28) 2021; 17
NM Punjabi (3255_CR6) 2008; 5
J Hayano (3255_CR27) 2011; 4
References_xml – volume: 31
  start-page: 1432
  issue: 10
  year: 2008
  ident: 3255_CR26
  publication-title: Sleep
– volume: 28
  start-page: 1273
  issue: 3
  year: 2024
  ident: 3255_CR31
  publication-title: Sleep Breath
  doi: 10.1007/s11325-024-02991-9
– volume: 119
  start-page: 212
  year: 2024
  ident: 3255_CR12
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2023.12.009
– volume: 13
  start-page: 479
  issue: 3
  year: 2017
  ident: 3255_CR33
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6506
– volume: 2023
  start-page: 1
  year: 2023
  ident: 3255_CR10
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/embc40787.2023.10340237
– volume: 25
  start-page: 103727
  issue: 2
  year: 2022
  ident: 3255_CR20
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103727
– volume: 14
  start-page: 4050
  issue: 1
  year: 2024
  ident: 3255_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54817-z
– ident: 3255_CR14
  doi: 10.3390/s22134786
– volume: 29
  start-page: 155
  issue: 3
  year: 2022
  ident: 3255_CR9
  publication-title: J Rhinol
  doi: 10.18787/jr.2022.00424
– volume: 21
  start-page: 253
  issue: 2
  year: 2003
  ident: 3255_CR23
  publication-title: Eur Respir J
  doi: 10.1183/09031936.03.00298103
– volume: 18
  start-page: 871
  issue: 3
  year: 2022
  ident: 3255_CR24
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.9744
– volume: 51
  start-page: 101275
  year: 2020
  ident: 3255_CR34
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2020.101275
– volume: 2
  start-page: 233
  year: 2010
  ident: 3255_CR1
  publication-title: Nat Sci Sleep
  doi: 10.2147/nss.S6844
– volume: 16
  start-page: 125
  year: 2024
  ident: 3255_CR11
  publication-title: Nat Sci Sleep
  doi: 10.2147/nss.S438065
– volume: 27
  start-page: 1433
  issue: 4
  year: 2023
  ident: 3255_CR25
  publication-title: Sleep Breath
  doi: 10.1007/s11325-022-02751-7
– volume: 2023
  start-page: 1
  year: 2023
  ident: 3255_CR16
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/embc40787.2023.10340446
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 3255_CR21
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 14
  start-page: 257
  issue: 3
  year: 2021
  ident: 3255_CR5
  publication-title: Sleep Sci
  doi: 10.5935/1984-0063.20200111
– volume: 5
  start-page: 136
  issue: 2
  year: 2008
  ident: 3255_CR6
  publication-title: Proc Am Thorac Soc
  doi: 10.1513/pats.200709-155MG
– volume: 26
  start-page: 3418
  issue: 7
  year: 2022
  ident: 3255_CR13
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/jbhi.2022.3159727
– volume: 27
  start-page: e12901
  issue: 2
  year: 2021
  ident: 3255_CR35
  publication-title: Ann Noninvasive Electrocardiol
  doi: 10.1111/anec.12901
– volume: 32
  start-page: e13819
  issue: 4
  year: 2023
  ident: 3255_CR7
  publication-title: J Sleep Res
  doi: 10.1111/jsr.13819
– volume: 13
  start-page: 1533
  year: 2021
  ident: 3255_CR8
  publication-title: Nat Sci Sleep
  doi: 10.2147/nss.S323286
– volume: 14
  start-page: 1143
  issue: 8
  year: 2009
  ident: 3255_CR29
  publication-title: Respirology
  doi: 10.1111/j.1440-1843.2009.01627.x
– volume: 15
  start-page: e0237279
  issue: 11
  year: 2020
  ident: 3255_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0237279
– volume: 7
  start-page: 687
  issue: 8
  year: 2019
  ident: 3255_CR4
  publication-title: Lancet Respir Med
  doi: 10.1016/s2213-2600(19)30198-5
– volume: 23
  start-page: 4229
  issue: 9
  year: 2023
  ident: 3255_CR15
  publication-title: Sens (Basel)
  doi: 10.3390/s23094229
– volume: 34
  start-page: 153
  issue: 2
  year: 2019
  ident: 3255_CR2
  publication-title: Rev Environ Health
  doi: 10.1515/reveh-2018-0068
– volume: 22
  start-page: e18297
  issue: 9
  year: 2020
  ident: 3255_CR30
  publication-title: J Med Internet Res
  doi: 10.2196/18297
– volume: 17
  start-page: 1579
  issue: 8
  year: 2021
  ident: 3255_CR28
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.9254
– volume: 177
  start-page: 1006
  issue: 9
  year: 2013
  ident: 3255_CR3
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kws342
– volume-title: The AASM Manual for the Scoring of Sleep and Association events: rules, terminology and technical specifications, Version 2.5
  year: 2018
  ident: 3255_CR18
– ident: 3255_CR19
  doi: 10.3390/s22155805
– volume: 20
  start-page: 207
  issue: 1 Pt 2
  year: 2011
  ident: 3255_CR22
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2010.00854.x
– volume: 4
  start-page: 64
  issue: 1
  year: 2011
  ident: 3255_CR27
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.110.958009
SSID ssj0014891
Score 2.3969417
Snippet Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods....
Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This...
PurposeDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 91
SubjectTerms Adult
Aged
Algorithms
Apnea
Dentistry
Female
Heart rate
Humans
Hygiene
Internal Medicine
Learning algorithms
Machine Learning
Male
Medicine
Medicine & Public Health
Middle Aged
Neurology
Otorhinolaryngology
Pediatrics
Pilot Projects
Pneumology/Respiratory System
Polysomnography - instrumentation
Regression analysis
Respiration
Signal Processing, Computer-Assisted - instrumentation
Sleep apnea
Sleep Apnea Syndromes - diagnosis
Sleep Breathing Physiology and Disorders • Original
Sleep Breathing Physiology and Disorders • Original Article
Sleep disorders
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB-0gq0H0WpttMoI3uzibpJNNt6ktRShnir0FnaTTVtIk-B7j0fv_uHOJHl5Piuihw2BXTZZZmbntztfAO806cCqigphZRaKONZeuDDVIkutk05nhXQcnHz2NTn9Fn-50BdjmhyOhfnNfv9hxpXQOYaYGr1osbwPD0hJJb1hNjmaLAbxUB2P1JEUhBrCMUDmz3NsKqE7yPKug-RkJX0E24ums7dLW9e_KKKTJ_B4RJD4aSD5U7jnm13YPmavHy7ctgsPz0Z7-TP4ceznva9Vg22Fs9r7Dm3XeIvs736JbVPfIof_kZzXeLO-L8QFiTqycwexJ3IMCrKp2-OStu6rj2ixu67bueiz0yJf5uJN75bpcaxDcYmrdOXP4fzk8_nRqRjrLoiC9PVcFIyxnClKW6Yx-8CWyiWJN6EzpODjtCIMGCXOmcyUxltNEMrSqS_zSlWyUtEebDVt4_cBq1S6zJVFaqoitlKbgk6PVei8rEp6FgG8X9Eh74bsGvk6jzJTLZfcmGr5MoCDFanyUdJmeaQ4woVQowng7dRNMsKGD9v4djGM0XRu0lEALwbKTp-LMmIco-IAzAbNpwGcf3uzp7m-6vNwK0W7XWhUAIcr9lj_19-WcTix0D-s-uX_zf4KdsKB04VUB7A1_77wrwk3zd2bXmB-AvVJEL4
  priority: 102
  providerName: Springer Nature
Title Detection of sleep apnea using only inertial measurement unit signals from apple watch: a pilot-study with machine learning approach
URI https://link.springer.com/article/10.1007/s11325-025-03255-w
https://www.ncbi.nlm.nih.gov/pubmed/39891814
https://www.proquest.com/docview/3162421128
https://www.proquest.com/docview/3162574753
https://pubmed.ncbi.nlm.nih.gov/PMC11787281
https://doi.org/10.1007/s11325-025-03255-w
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R3QNw4CFeKWVlJG7UJU7ixOG2WloqEBWHrtSeIttx2oo0ibqJVuXMD2ecZLNsi1A52IpkK4nt8cxne-YzwDuONjDLfE2lG3s0CLihyos4jSOpXMVj7SobnPztKDycB19O-ElPk2NjYW6c339Y2JvQbQwxJnzgdLkF45Aj7h7BeH70fXraEqLiGgihgtc9e5RFbtxHyPz9JZtW6Ba0vO0hORyTPoT7TVHJ66XM8z8s0cHj7kqjRUtgaB1Qfuw1tdrTP2_QO96tkU_gUQ9IybSToKdwzxTP4NcnU7c-WgUpM7LIjamIrAojifWTPyNlkV8TGzaI-iEnl-t9RtKgiiDWKQTFmtjYFWKPyA1Zoso__0gkqS7ysqYtqy2xm8DksnXnNKS_v-KMrGjOn8Pxwf7x7JD29zVQjXa-ptpiMyV0KtMosL6zKVNhaISnBAKDIMoQO_qhUiIWqTCSI_SSuFqMDWOZmzH_BYyKsjCvgGSRq2KV6khkOpAuFxpXnZmnjJulmGsH3q-GL6k6Vo5kzb9sOzNxbbKdmSwd2FmNcNLP0EXiMxsZg2hTOPB2KMa5ZQ9MZGHKpqvDcb3FfQdedgIxfM6PRYzoKHBAbIjKUMHydm-WFBfnLX83Y6glPcEc2F1J1fq__tWM3UHy7tDq7f-r_hoeeJ0AUpftwKi-aswbxFu1msB4-vn06_4EtmbhDPO5N530k-83Tgwllw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVmLhwKO8AgWMxI26svPYONwq2rLQbk9bqZwi23HaijSJ2ESrcuaHM85rWYoQPSSKZMuJnbHnG883Y4B3AerANPU0lSxyqe8Hhio3DGgUSsVUEGmmbHDy7HgyPfG_nAanXVDYome79y7JZqVeBbuh4WSjifHCh4Aub8OGjwaKO4KN3U9fD_cH74HfnpSHqolRRBBuFyzz91bWFdI1lHmdLDl4TO_BuM5LebWUWfabUjp4ACd9d1ouyredulI7-scfmR5v2t-HcL9DqWS3FatHcMvkmzDes8wiezjcJtyZdT75x_Bzz1QNnysnRUoWmTElkWVuJLGc-jNS5NkVsSGGuJZk5HK1J0lqXE6IJZDgFCA2zoVYd7ohS1QP5x-IJOVFVlS0yYBL7IYxuWyon4Z0Z12ckT4l-hOYH-zPP05pd7YD1YgJKqotjlNCJzIJfcuzTbiaTIxwlUAQ4Ycp4kxvopSIRCKMDBCmSbQsI8N5ylLuPYVRXuTmOZA0ZCpSiQ5Fqn3JAqHRQk1dZVia4F078L7_v3HZZvCIV7ma7RjHzF52jOOlA1u9CMTdbF7EHrdRNIhMhQNvh2Kch9a5InNT1G2dAG2zwHPgWSsxw-u8CAVScN8BsSZLQwWb43u9JL84b3J9c44rqiu4A9u9lKy-61_d2B5E8z96_eJmrb-B8XQ-O4qPPh8fvoS7biujlPEtGFXfa_MKcVqlXnfT8hcX4DT_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkVo4ICiUBgoYiRu1aifxxuGGdlmVRysOReotshO7rZQ6UZvVqnd-OOO8tqsiBAdHkWw5sWbsmfHMNwPwXqAMtDbKqWJpSONYGKrDRNA0UZppkeZMe3Dy0fHk8Gf89VSc3kLxt9Hug0uywzT4LE2uOagLe7ACvqER5ZHF2PBF0OV9eBCjdPM1DKaT6ehHiLuaeSikGEVdIuxhM3-eY1003dE374ZNjr7TR7C1cLW6WaqyvCWe5k_gca9Xkk8dIzyFe8Ztw9bMxwL5cm7bsHnUe9Gfwa-ZadoILEcqS65LY2qiamcU8VHwZ6Ry5Q3xoEDc_SW5XN0ikgUeAMSHfCDTEo9MId4BbsgSD_Tzj0SR-qKsGtrmrCX-ipdctsGahvTVKc7IkMT8OZzMP59MD2lfjYHmKMUbmnvNS8u8UEUS-8jYguvJxMhQSxT7cWJRM4wmWstUFtIogYqVQlswNZxbZnm0AxuucmYXiE2YTnWRJ9LmsWJC5mhT2lAbZgt85gF8GOiQ1V3OjWyVXdlTLWO-eaplywD2BlJl_f67ziLucS-oS8oA3o3duHO8O0Q5Uy26MQKtKREF8KKj7Pi5KEXGkTwOQK7RfBzgs3Kv97iL8zY7N-d4BoaSB7A_sMfqv_62jP2Rhf5h1S__b_a3sPljNs--fzn-9goehh3TU8b3YKO5WpjXqFg1-k27d34DIksb9A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOPMQrpaBB4kZd7CROHG4VUFVIVBxaqZwi27HbqmkSsYlW7ZkfzjjJZtkWoXJwZMlWEtvjmc_2zGdC3gm0gc5FhiqWhTSOhaU6TAXNUqWZFplh2gcnfztI9o_ir8fieKTJ8bEw187vP8z9Teg-hhgTZgRd3CUbiUDcPSMbRwffd3_0hKi4BkKoEA75kPKUZWOEzN9fsm6FbkDLmx6S0zHpA3Kvqxp1uVBl-Ycl2ns0XGk07wkMvQPK-U7X6h1zdY3e8XaNfEwejoAUdgcJekLu2Oop-fXZtr2PVgW1g3lpbQOqqawC7yd_AnVVXoIPG0T9UMLFap8ROlQR4J1CUKzBx66APyK3sECVf_oRFDRnZd3SntUW_CYwXPTunBbG-ytOYElz_owc7n05_LRPx_saqEE731LjsZmWplBFGnvf2YLrJLEy1BKBQZw6xI5RorXMZCGtEgi9FK4WM8u5Y45Hz8msqiv7koBLmc50YVLpTKyYkAZXnS7UlrkCnyYg75fDlzcDK0e-4l_2nZkzn3xn5ouAbC1HOB9n6DyPuI-MQbQpA_J2Ksa55Q9MVGXrbqgjcL0looC8GARi-lyUyQzRURwQuSYqUwXP271eUp2d9vzdnKOWDCUPyPZSqlb_9a9mbE-Sd4tWb_5f9VfkfjgIIGV8i8zan519jXir1W_GifYbhfwiPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+sleep+apnea+using+only+inertial+measurement+unit+signals+from+apple+watch%3A+a+pilot-study+with+machine+learning+approach&rft.jtitle=Sleep+%26+breathing&rft.au=Hayano%2C+Junichiro&rft.au=Adachi%2C+Mine&rft.au=Murakami%2C+Yutaka&rft.au=Sasaki%2C+Fumihiko&rft.date=2025-03-01&rft.issn=1520-9512&rft.eissn=1522-1709&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs11325-025-03255-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11325_025_03255_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9512&client=summon