Detection of sleep apnea using only inertial measurement unit signals from apple watch: a pilot-study with machine learning approach
Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU). Methods An algorit...
Saved in:
| Published in | Sleep & breathing Vol. 29; no. 1; p. 91 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.03.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1520-9512 1522-1709 1522-1709 |
| DOI | 10.1007/s11325-025-03255-w |
Cover
| Abstract | Purpose
Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU).
Methods
An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.
Results
The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (
r
= 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.
Conclusion
Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility. |
|---|---|
| AbstractList | Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).
An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.
The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.
Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility. Purpose Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU). Methods An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects. Results The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography ( r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity. Conclusion Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility. PurposeDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch’s inertial measurement unit (IMU).MethodsAn algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.ResultsThe Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model’s per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.ConclusionUtilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility. Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).PURPOSEDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.METHODSAn algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.RESULTSThe Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.CONCLUSIONUtilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility. |
| ArticleNumber | 91 |
| Author | Yuda, Emi Sasaki, Fumihiko Murakami, Yutaka Adachi, Mine Hayano, Junichiro |
| Author_xml | – sequence: 1 givenname: Junichiro orcidid: 0000-0002-5340-6325 surname: Hayano fullname: Hayano, Junichiro email: hayano@acm.org organization: Department of Research and Development, Heart Beat Science Lab Inc – sequence: 2 givenname: Mine surname: Adachi fullname: Adachi, Mine organization: Takaoka Clinic – sequence: 3 givenname: Yutaka surname: Murakami fullname: Murakami, Yutaka organization: Sony Group Inc – sequence: 4 givenname: Fumihiko surname: Sasaki fullname: Sasaki, Fumihiko organization: Takaoka Clinic – sequence: 5 givenname: Emi orcidid: 0000-0002-1865-7735 surname: Yuda fullname: Yuda, Emi organization: Department of Research and Development, Heart Beat Science Lab Inc., Graduate School of Information Sciences, Tohoku University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39891814$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUU1v1DAQjVAR_YA_wAFZ4sIl4HES2-GCUGkBqRKX3i0nmey6cuxgO6z2zg_H6S4UOCAOoxmN33sz83xenDjvsCieA30NlIo3EaBiTUnXyEVT7h4VZ9AwVoKg7cl9Tcu2AXZanMd4RynUsoUnxWnV5iyhPiu-f8CEfTLeET-SaBFnomeHmizRuA3xzu6JcRiS0ZZMqOMScEKXyOJMItFsnLaRjMFPmTdbJDud-u1boslsrE9lTMuwJzuTtmTS_TZLEYs6uFU8E4LPzafF4zGr4LNjvihur69uLz-VN18-fr58f1P2NeOp7FnNqk72gx5EzbngA3Sco2SdZJWsxcgbXvGuk60cJOqm4Uy3IFoEGOkI1UVRHWQXN-v9Tlur5mAmHfYKqFotVQdLFV1jtVTtMuvdgTUv3YRDn28P-oHptVF_vjizVRv_TQEIKZhc5746KgT_dcGY1GRij9Zqh36JqgLOGlGLpsrQl39B7_wSVovvUTUDYDKjXvy-0q9dfn5rBrADoA8-xoDj_x16tCdmsNtgeJj9D9YPBb3HRQ |
| Cites_doi | 10.1007/s11325-024-02991-9 10.1016/j.jocn.2023.12.009 10.5664/jcsm.6506 10.1109/embc40787.2023.10340237 10.1016/j.isci.2021.103727 10.1038/s41598-024-54817-z 10.3390/s22134786 10.18787/jr.2022.00424 10.1183/09031936.03.00298103 10.5664/jcsm.9744 10.1016/j.smrv.2020.101275 10.2147/nss.S6844 10.2147/nss.S438065 10.1007/s11325-022-02751-7 10.1109/embc40787.2023.10340446 10.18637/jss.v028.i05 10.5935/1984-0063.20200111 10.1513/pats.200709-155MG 10.1109/jbhi.2022.3159727 10.1111/anec.12901 10.1111/jsr.13819 10.2147/nss.S323286 10.1111/j.1440-1843.2009.01627.x 10.1371/journal.pone.0237279 10.1016/s2213-2600(19)30198-5 10.3390/s23094229 10.1515/reveh-2018-0068 10.2196/18297 10.5664/jcsm.9254 10.1093/aje/kws342 10.3390/s22155805 10.1111/j.1365-2869.2010.00854.x 10.1161/CIRCEP.110.958009 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Springer Nature B.V. Mar 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Springer Nature B.V. Mar 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s11325-025-03255-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Dentistry |
| EISSN | 1522-1709 |
| ExternalDocumentID | 10.1007/s11325-025-03255-w PMC11787281 39891814 10_1007_s11325_025_03255_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Sony Group Inc. grantid: Sony Group Inc. |
| GroupedDBID | --- -Y2 -~C .86 .VR 0-V 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM M1P M2M M2R M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P9S PF0 PHGZT PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOK QOR QOS R89 R9I RHV RIG ROL RPX RRX RSV RTC S16 S1Z S27 S37 S3B SAP SCLPG SDE SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~KM AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PJZUB PPXIY PRQQA PUEGO CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c426t-c2423b8cdad746676d1b66e82b823847f65636bb898d8ea5562a9179e11f0f13 |
| IEDL.DBID | UNPAY |
| ISSN | 1520-9512 1522-1709 |
| IngestDate | Sun Oct 26 03:56:24 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Thu Oct 02 11:39:33 EDT 2025 Tue Oct 07 06:13:13 EDT 2025 Mon Jul 21 06:02:07 EDT 2025 Wed Oct 01 06:38:04 EDT 2025 Wed Mar 26 01:23:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Seismocardiogram Wearable sensor Gyrocardiogram Apnea-hypopnea index Gyroscope Home sleep apnea testing Acceleration Out-of-center sleep testing |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-c2423b8cdad746676d1b66e82b823847f65636bb898d8ea5562a9179e11f0f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1865-7735 0000-0002-5340-6325 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11325-025-03255-w |
| PMID | 39891814 |
| PQID | 3162421128 |
| PQPubID | 326308 |
| ParticipantIDs | unpaywall_primary_10_1007_s11325_025_03255_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_11787281 proquest_miscellaneous_3162574753 proquest_journals_3162421128 pubmed_primary_39891814 crossref_primary_10_1007_s11325_025_03255_w springer_journals_10_1007_s11325_025_03255_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
| PublicationSubtitle | International Journal of the Science and Practice of Sleep Medicine |
| PublicationTitle | Sleep & breathing |
| PublicationTitleAbbrev | Sleep Breath |
| PublicationTitleAlternate | Sleep Breath |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | 3255_CR14 3255_CR19 F Massie (3255_CR24) 2022; 18 T Gharibeh (3255_CR1) 2010; 2 D Léger (3255_CR34) 2020; 51 J Hayano (3255_CR31) 2024; 28 J Hayano (3255_CR17) 2024; 14 A Faria (3255_CR5) 2021; 14 RB Berry (3255_CR18) 2018 MW Kim (3255_CR9) 2022; 29 C Heneghan (3255_CR26) 2008; 31 JT Jagielski (3255_CR25) 2023; 27 A Bhongade (3255_CR16) 2023; 2023 VK Kapur (3255_CR33) 2017; 13 J Hayano (3255_CR32) 2020; 15 KL Ode (3255_CR20) 2022; 25 PE Peppard (3255_CR3) 2013; 177 M Kuhn (3255_CR21) 2008; 28 J Hayano (3255_CR35) 2021; 27 P Cinar Bilge (3255_CR12) 2024; 119 AV Benjafield (3255_CR4) 2019; 7 AJ Campbell (3255_CR22) 2011; 20 NE Morsy (3255_CR2) 2019; 34 G Zhou (3255_CR11) 2024; 16 G Zhou (3255_CR10) 2023; 2023 I Sadek (3255_CR30) 2020; 22 M Borsky (3255_CR13) 2022; 26 W Liang (3255_CR15) 2023; 23 GN Pires (3255_CR7) 2023; 32 Y Chen (3255_CR8) 2021; 13 K Dingli (3255_CR23) 2003; 21 T Agatsuma (3255_CR29) 2009; 14 JN Westenberg (3255_CR28) 2021; 17 NM Punjabi (3255_CR6) 2008; 5 J Hayano (3255_CR27) 2011; 4 |
| References_xml | – volume: 31 start-page: 1432 issue: 10 year: 2008 ident: 3255_CR26 publication-title: Sleep – volume: 28 start-page: 1273 issue: 3 year: 2024 ident: 3255_CR31 publication-title: Sleep Breath doi: 10.1007/s11325-024-02991-9 – volume: 119 start-page: 212 year: 2024 ident: 3255_CR12 publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2023.12.009 – volume: 13 start-page: 479 issue: 3 year: 2017 ident: 3255_CR33 publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6506 – volume: 2023 start-page: 1 year: 2023 ident: 3255_CR10 publication-title: Annu Int Conf IEEE Eng Med Biol Soc doi: 10.1109/embc40787.2023.10340237 – volume: 25 start-page: 103727 issue: 2 year: 2022 ident: 3255_CR20 publication-title: iScience doi: 10.1016/j.isci.2021.103727 – volume: 14 start-page: 4050 issue: 1 year: 2024 ident: 3255_CR17 publication-title: Sci Rep doi: 10.1038/s41598-024-54817-z – ident: 3255_CR14 doi: 10.3390/s22134786 – volume: 29 start-page: 155 issue: 3 year: 2022 ident: 3255_CR9 publication-title: J Rhinol doi: 10.18787/jr.2022.00424 – volume: 21 start-page: 253 issue: 2 year: 2003 ident: 3255_CR23 publication-title: Eur Respir J doi: 10.1183/09031936.03.00298103 – volume: 18 start-page: 871 issue: 3 year: 2022 ident: 3255_CR24 publication-title: J Clin Sleep Med doi: 10.5664/jcsm.9744 – volume: 51 start-page: 101275 year: 2020 ident: 3255_CR34 publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2020.101275 – volume: 2 start-page: 233 year: 2010 ident: 3255_CR1 publication-title: Nat Sci Sleep doi: 10.2147/nss.S6844 – volume: 16 start-page: 125 year: 2024 ident: 3255_CR11 publication-title: Nat Sci Sleep doi: 10.2147/nss.S438065 – volume: 27 start-page: 1433 issue: 4 year: 2023 ident: 3255_CR25 publication-title: Sleep Breath doi: 10.1007/s11325-022-02751-7 – volume: 2023 start-page: 1 year: 2023 ident: 3255_CR16 publication-title: Annu Int Conf IEEE Eng Med Biol Soc doi: 10.1109/embc40787.2023.10340446 – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 3255_CR21 publication-title: J Stat Softw doi: 10.18637/jss.v028.i05 – volume: 14 start-page: 257 issue: 3 year: 2021 ident: 3255_CR5 publication-title: Sleep Sci doi: 10.5935/1984-0063.20200111 – volume: 5 start-page: 136 issue: 2 year: 2008 ident: 3255_CR6 publication-title: Proc Am Thorac Soc doi: 10.1513/pats.200709-155MG – volume: 26 start-page: 3418 issue: 7 year: 2022 ident: 3255_CR13 publication-title: IEEE J Biomed Health Inf doi: 10.1109/jbhi.2022.3159727 – volume: 27 start-page: e12901 issue: 2 year: 2021 ident: 3255_CR35 publication-title: Ann Noninvasive Electrocardiol doi: 10.1111/anec.12901 – volume: 32 start-page: e13819 issue: 4 year: 2023 ident: 3255_CR7 publication-title: J Sleep Res doi: 10.1111/jsr.13819 – volume: 13 start-page: 1533 year: 2021 ident: 3255_CR8 publication-title: Nat Sci Sleep doi: 10.2147/nss.S323286 – volume: 14 start-page: 1143 issue: 8 year: 2009 ident: 3255_CR29 publication-title: Respirology doi: 10.1111/j.1440-1843.2009.01627.x – volume: 15 start-page: e0237279 issue: 11 year: 2020 ident: 3255_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0237279 – volume: 7 start-page: 687 issue: 8 year: 2019 ident: 3255_CR4 publication-title: Lancet Respir Med doi: 10.1016/s2213-2600(19)30198-5 – volume: 23 start-page: 4229 issue: 9 year: 2023 ident: 3255_CR15 publication-title: Sens (Basel) doi: 10.3390/s23094229 – volume: 34 start-page: 153 issue: 2 year: 2019 ident: 3255_CR2 publication-title: Rev Environ Health doi: 10.1515/reveh-2018-0068 – volume: 22 start-page: e18297 issue: 9 year: 2020 ident: 3255_CR30 publication-title: J Med Internet Res doi: 10.2196/18297 – volume: 17 start-page: 1579 issue: 8 year: 2021 ident: 3255_CR28 publication-title: J Clin Sleep Med doi: 10.5664/jcsm.9254 – volume: 177 start-page: 1006 issue: 9 year: 2013 ident: 3255_CR3 publication-title: Am J Epidemiol doi: 10.1093/aje/kws342 – volume-title: The AASM Manual for the Scoring of Sleep and Association events: rules, terminology and technical specifications, Version 2.5 year: 2018 ident: 3255_CR18 – ident: 3255_CR19 doi: 10.3390/s22155805 – volume: 20 start-page: 207 issue: 1 Pt 2 year: 2011 ident: 3255_CR22 publication-title: J Sleep Res doi: 10.1111/j.1365-2869.2010.00854.x – volume: 4 start-page: 64 issue: 1 year: 2011 ident: 3255_CR27 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.110.958009 |
| SSID | ssj0014891 |
| Score | 2.3969417 |
| Snippet | Purpose
Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods.... Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This... PurposeDespite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 91 |
| SubjectTerms | Adult Aged Algorithms Apnea Dentistry Female Heart rate Humans Hygiene Internal Medicine Learning algorithms Machine Learning Male Medicine Medicine & Public Health Middle Aged Neurology Otorhinolaryngology Pediatrics Pilot Projects Pneumology/Respiratory System Polysomnography - instrumentation Regression analysis Respiration Signal Processing, Computer-Assisted - instrumentation Sleep apnea Sleep Apnea Syndromes - diagnosis Sleep Breathing Physiology and Disorders • Original Sleep Breathing Physiology and Disorders • Original Article Sleep disorders |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB-0gq0H0WpttMoI3uzibpJNNt6ktRShnir0FnaTTVtIk-B7j0fv_uHOJHl5Piuihw2BXTZZZmbntztfAO806cCqigphZRaKONZeuDDVIkutk05nhXQcnHz2NTn9Fn-50BdjmhyOhfnNfv9hxpXQOYaYGr1osbwPD0hJJb1hNjmaLAbxUB2P1JEUhBrCMUDmz3NsKqE7yPKug-RkJX0E24ums7dLW9e_KKKTJ_B4RJD4aSD5U7jnm13YPmavHy7ctgsPz0Z7-TP4ceznva9Vg22Fs9r7Dm3XeIvs736JbVPfIof_kZzXeLO-L8QFiTqycwexJ3IMCrKp2-OStu6rj2ixu67bueiz0yJf5uJN75bpcaxDcYmrdOXP4fzk8_nRqRjrLoiC9PVcFIyxnClKW6Yx-8CWyiWJN6EzpODjtCIMGCXOmcyUxltNEMrSqS_zSlWyUtEebDVt4_cBq1S6zJVFaqoitlKbgk6PVei8rEp6FgG8X9Eh74bsGvk6jzJTLZfcmGr5MoCDFanyUdJmeaQ4woVQowng7dRNMsKGD9v4djGM0XRu0lEALwbKTp-LMmIco-IAzAbNpwGcf3uzp7m-6vNwK0W7XWhUAIcr9lj_19-WcTix0D-s-uX_zf4KdsKB04VUB7A1_77wrwk3zd2bXmB-AvVJEL4 priority: 102 providerName: Springer Nature |
| Title | Detection of sleep apnea using only inertial measurement unit signals from apple watch: a pilot-study with machine learning approach |
| URI | https://link.springer.com/article/10.1007/s11325-025-03255-w https://www.ncbi.nlm.nih.gov/pubmed/39891814 https://www.proquest.com/docview/3162421128 https://www.proquest.com/docview/3162574753 https://pubmed.ncbi.nlm.nih.gov/PMC11787281 https://doi.org/10.1007/s11325-025-03255-w |
| UnpaywallVersion | publishedVersion |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1522-1709 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014891 issn: 1520-9512 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1522-1709 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014891 issn: 1520-9512 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1522-1709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014891 issn: 1520-9512 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R3QNw4CFeKWVlJG7UJU7ixOG2WloqEBWHrtSeIttx2oo0ibqJVuXMD2ecZLNsi1A52IpkK4nt8cxne-YzwDuONjDLfE2lG3s0CLihyos4jSOpXMVj7SobnPztKDycB19O-ElPk2NjYW6c339Y2JvQbQwxJnzgdLkF45Aj7h7BeH70fXraEqLiGgihgtc9e5RFbtxHyPz9JZtW6Ba0vO0hORyTPoT7TVHJ66XM8z8s0cHj7kqjRUtgaB1Qfuw1tdrTP2_QO96tkU_gUQ9IybSToKdwzxTP4NcnU7c-WgUpM7LIjamIrAojifWTPyNlkV8TGzaI-iEnl-t9RtKgiiDWKQTFmtjYFWKPyA1Zoso__0gkqS7ysqYtqy2xm8DksnXnNKS_v-KMrGjOn8Pxwf7x7JD29zVQjXa-ptpiMyV0KtMosL6zKVNhaISnBAKDIMoQO_qhUiIWqTCSI_SSuFqMDWOZmzH_BYyKsjCvgGSRq2KV6khkOpAuFxpXnZmnjJulmGsH3q-GL6k6Vo5kzb9sOzNxbbKdmSwd2FmNcNLP0EXiMxsZg2hTOPB2KMa5ZQ9MZGHKpqvDcb3FfQdedgIxfM6PRYzoKHBAbIjKUMHydm-WFBfnLX83Y6glPcEc2F1J1fq__tWM3UHy7tDq7f-r_hoeeJ0AUpftwKi-aswbxFu1msB4-vn06_4EtmbhDPO5N530k-83Tgwllw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVmLhwKO8AgWMxI26svPYONwq2rLQbk9bqZwi23HaijSJ2ESrcuaHM85rWYoQPSSKZMuJnbHnG883Y4B3AerANPU0lSxyqe8Hhio3DGgUSsVUEGmmbHDy7HgyPfG_nAanXVDYome79y7JZqVeBbuh4WSjifHCh4Aub8OGjwaKO4KN3U9fD_cH74HfnpSHqolRRBBuFyzz91bWFdI1lHmdLDl4TO_BuM5LebWUWfabUjp4ACd9d1ouyredulI7-scfmR5v2t-HcL9DqWS3FatHcMvkmzDes8wiezjcJtyZdT75x_Bzz1QNnysnRUoWmTElkWVuJLGc-jNS5NkVsSGGuJZk5HK1J0lqXE6IJZDgFCA2zoVYd7ohS1QP5x-IJOVFVlS0yYBL7IYxuWyon4Z0Z12ckT4l-hOYH-zPP05pd7YD1YgJKqotjlNCJzIJfcuzTbiaTIxwlUAQ4Ycp4kxvopSIRCKMDBCmSbQsI8N5ylLuPYVRXuTmOZA0ZCpSiQ5Fqn3JAqHRQk1dZVia4F078L7_v3HZZvCIV7ma7RjHzF52jOOlA1u9CMTdbF7EHrdRNIhMhQNvh2Kch9a5InNT1G2dAG2zwHPgWSsxw-u8CAVScN8BsSZLQwWb43u9JL84b3J9c44rqiu4A9u9lKy-61_d2B5E8z96_eJmrb-B8XQ-O4qPPh8fvoS7biujlPEtGFXfa_MKcVqlXnfT8hcX4DT_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkVo4ICiUBgoYiRu1aifxxuGGdlmVRysOReotshO7rZQ6UZvVqnd-OOO8tqsiBAdHkWw5sWbsmfHMNwPwXqAMtDbKqWJpSONYGKrDRNA0UZppkeZMe3Dy0fHk8Gf89VSc3kLxt9Hug0uywzT4LE2uOagLe7ACvqER5ZHF2PBF0OV9eBCjdPM1DKaT6ehHiLuaeSikGEVdIuxhM3-eY1003dE374ZNjr7TR7C1cLW6WaqyvCWe5k_gca9Xkk8dIzyFe8Ztw9bMxwL5cm7bsHnUe9Gfwa-ZadoILEcqS65LY2qiamcU8VHwZ6Ry5Q3xoEDc_SW5XN0ikgUeAMSHfCDTEo9MId4BbsgSD_Tzj0SR-qKsGtrmrCX-ipdctsGahvTVKc7IkMT8OZzMP59MD2lfjYHmKMUbmnvNS8u8UEUS-8jYguvJxMhQSxT7cWJRM4wmWstUFtIogYqVQlswNZxbZnm0AxuucmYXiE2YTnWRJ9LmsWJC5mhT2lAbZgt85gF8GOiQ1V3OjWyVXdlTLWO-eaplywD2BlJl_f67ziLucS-oS8oA3o3duHO8O0Q5Uy26MQKtKREF8KKj7Pi5KEXGkTwOQK7RfBzgs3Kv97iL8zY7N-d4BoaSB7A_sMfqv_62jP2Rhf5h1S__b_a3sPljNs--fzn-9goehh3TU8b3YKO5WpjXqFg1-k27d34DIksb9A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOPMQrpaBB4kZd7CROHG4VUFVIVBxaqZwi27HbqmkSsYlW7ZkfzjjJZtkWoXJwZMlWEtvjmc_2zGdC3gm0gc5FhiqWhTSOhaU6TAXNUqWZFplh2gcnfztI9o_ir8fieKTJ8bEw187vP8z9Teg-hhgTZgRd3CUbiUDcPSMbRwffd3_0hKi4BkKoEA75kPKUZWOEzN9fsm6FbkDLmx6S0zHpA3Kvqxp1uVBl-Ycl2ns0XGk07wkMvQPK-U7X6h1zdY3e8XaNfEwejoAUdgcJekLu2Oop-fXZtr2PVgW1g3lpbQOqqawC7yd_AnVVXoIPG0T9UMLFap8ROlQR4J1CUKzBx66APyK3sECVf_oRFDRnZd3SntUW_CYwXPTunBbG-ytOYElz_owc7n05_LRPx_saqEE731LjsZmWplBFGnvf2YLrJLEy1BKBQZw6xI5RorXMZCGtEgi9FK4WM8u5Y45Hz8msqiv7koBLmc50YVLpTKyYkAZXnS7UlrkCnyYg75fDlzcDK0e-4l_2nZkzn3xn5ouAbC1HOB9n6DyPuI-MQbQpA_J2Ksa55Q9MVGXrbqgjcL0looC8GARi-lyUyQzRURwQuSYqUwXP271eUp2d9vzdnKOWDCUPyPZSqlb_9a9mbE-Sd4tWb_5f9VfkfjgIIGV8i8zan519jXir1W_GifYbhfwiPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+sleep+apnea+using+only+inertial+measurement+unit+signals+from+apple+watch%3A+a+pilot-study+with+machine+learning+approach&rft.jtitle=Sleep+%26+breathing&rft.au=Hayano%2C+Junichiro&rft.au=Adachi%2C+Mine&rft.au=Murakami%2C+Yutaka&rft.au=Sasaki%2C+Fumihiko&rft.date=2025-03-01&rft.issn=1520-9512&rft.eissn=1522-1709&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs11325-025-03255-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11325_025_03255_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9512&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9512&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9512&client=summon |