Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography

Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Method...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 50; no. 5; pp. 2126 - 2139
Main Authors Yang, Nan, Ma, Zhuangxuan, Zhang, Ling, Ji, Wenbin, Xi, Qian, Li, Ming, Jin, Liang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2366-0058
2366-004X
2366-0058
DOI10.1007/s00261-024-04685-y

Cover

Abstract Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Methods We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. Results In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. Conclusion The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions. Lay summary The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.
AbstractList Background & AimsEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.MethodsWe enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.ResultsIn the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.ConclusionThe fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.Lay summaryThe preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.
Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Methods We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. Results In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. Conclusion The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions. Lay summary The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.
Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.
Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.BACKGROUND & AIMSEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.METHODSWe enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.RESULTSIn the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.CONCLUSIONThe fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.
The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.
Author Jin, Liang
Ma, Zhuangxuan
Li, Ming
Ji, Wenbin
Zhang, Ling
Yang, Nan
Xi, Qian
Author_xml – sequence: 1
  givenname: Nan
  surname: Yang
  fullname: Yang, Nan
  organization: Department of Radiology, Huadong Hospital, Fudan University
– sequence: 2
  givenname: Zhuangxuan
  surname: Ma
  fullname: Ma, Zhuangxuan
  organization: Department of Radiology, Huadong Hospital, Fudan University
– sequence: 3
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
  organization: Department of Radiology, Fudan University Shanghai Cancer Center
– sequence: 4
  givenname: Wenbin
  surname: Ji
  fullname: Ji, Wenbin
  organization: Radiology Department, Shanghai Electric Power Hospital
– sequence: 5
  givenname: Qian
  surname: Xi
  fullname: Xi, Qian
  email: xiqian1129@163.com
  organization: Department of Radiology, Eye & ENT Hospital of Fudan University
– sequence: 6
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: ming_li@fudan.edu.cn
  organization: Department of Radiology, Huadong Hospital, Fudan University
– sequence: 7
  givenname: Liang
  surname: Jin
  fullname: Jin, Liang
  email: jin_liang@fudan.edu.cn
  organization: Department of Radiology, Huadong Hospital, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39572431$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1UREvpC7BAkdiwCfgvTrJCqAJaqRISgrU1dib3ukrsYCet8va4zYUWFgh54ZH9neOZ4-fkyAePhLxk9C2jtH6XKOWKlZTLkkrVVOX6hJxwoVRJadUcPaqPyVlK15RSpirGePWMHIu2qrkU7ITMX6FzYXQ2lQYSdgUscxhhztUIdu88FgNC9M7vij7EonN9jxH97GDeziwMxeBuMGYwueBTEXyxePR78Dbb2DBOy51f9g27CNN-fUGe9jAkPDvsp-T7p4_fzi_Kqy-fL88_XJVWcjWXBoGpvrWcIVLZ1bI1omm6vjO2NqYF2hrDG4a1qoF1XSWNFBIAbM8a0eZ1SsTmu_gJ1lsYBj1FN0JcNaP6Lka9xahzjPo-Rr1m1ftNNS1mxM7mYSM8KAM4_eeNd3u9CzeasbblOebs8ObgEMOPBdOsR5csDgN4DEvSggnWVEzdt_j6L_Q6LNHnVDLVZk4IKTP16nFLv3v59Y8Z4BtgY0gpYv9_gx7iSRn2O4wPb_9D9ROD4MRi
Cites_doi 10.1148/radiol.2016152234
10.1016/j.ejrad.2017.08.028
10.4254/wjh.v14.i5.923
10.1053/j.gastro.2016.11.048
10.1111/liv.14555
10.1016/j.gie.2020.08.024
10.1053/j.ajkd.2019.05.022
10.14218/JCTH.2016.00004
10.1007/s11831-022-09765-0
10.3389/fonc.2022.650797
10.1007/s00261-019-02269-9
10.1016/j.clinre.2014.01.014
10.1016/j.suc.2003.11.003
10.1111/liv.14093
10.2214/AJR.07.3421
10.1002/jmri.25550
10.1148/radiol.2016152110
10.1038/s41598-020-73237-3
10.1109/TPAMI.2021.3051276
10.1016/j.tvjl.2021.105773
10.1158/1078-0432.CCR-15-1636
10.1016/j.rcl.2022.05.005
10.1111/j.1872-034X.2007.00164.x
10.1148/radiology.215.3.r00jn03746
10.1148/radiol.2019192094
10.1148/radiol.2015151169
10.1155/2022/7693631
10.1016/j.jhep.2019.10.009
10.1016/j.diii.2020.01.010
10.1007/s00261-021-03181-x
10.1111/apt.16563
10.1148/radiol.10091848
10.1148/radiology.162.1.3786786
10.1007/s00330-006-0503-z
10.1016/j.jviscsurg.2015.01.013
10.1016/j.acra.2005.07.014
10.1102/1470-7330.2007.0002
10.1016/j.jacr.2017.07.018
10.1038/nrdp.2016.18
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. May 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. May 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00261-024-04685-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 2139
ExternalDocumentID oai:pubmedcentral.nih.gov:11992001
PMC11992001
39572431
10_1007_s00261_024_04685_y
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GroupedDBID 04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AYFIA
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
C6C
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PHGZT
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
8FD
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
BA0
CS3
DL5
ESBYG
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P64
P9S
PF0
QOK
QOS
R9I
RHV
RPX
RRX
S1Z
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
Z45
ZOVNA
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-bea16f9c21ee04d749b388dfdbc7bb9a09bb281e767a1dd54b434aaacf1839393
IEDL.DBID AGYKE
ISSN 2366-0058
2366-004X
IngestDate Sun Oct 26 04:06:26 EDT 2025
Thu Aug 21 18:32:36 EDT 2025
Fri Sep 05 13:39:01 EDT 2025
Fri Oct 03 08:40:58 EDT 2025
Wed Sep 03 02:25:22 EDT 2025
Wed Oct 01 06:34:20 EDT 2025
Sat Apr 12 01:21:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Carcinoma
CT scan
Liver
Machine learning
Radiomics
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-bea16f9c21ee04d749b388dfdbc7bb9a09bb281e767a1dd54b434aaacf1839393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-024-04685-y
PMID 39572431
PQID 3191313344
PQPubID 31175
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s00261_024_04685_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11992001
proquest_miscellaneous_3131851639
proquest_journals_3191313344
pubmed_primary_39572431
crossref_primary_10_1007_s00261_024_04685_y
springer_journals_10_1007_s00261_024_04685_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References S Burti (4685_CR30) 2021; 278
4685_CR33
J Wei (4685_CR19) 2020; 40
X Zhao (4685_CR36) 2022; 12
S Milette (4685_CR39) 2017; 23
RK Kelley (4685_CR31) 2020; 72
MS Davenport (4685_CR32) 2020; 294
E Reizine (4685_CR4) 2022; 60
T KendalL (4685_CR38) 2019
Y-L Huang (4685_CR37) 2006; 13
4685_CR6
Y Toyama (4685_CR17) 2020; 10
D Sia (4685_CR22) 2017; 152
Y Li (4685_CR34) 2020; 45
4685_CR35
G Mamone (4685_CR5) 2020; 101
MR Rudnick (4685_CR9) 2020; 75
JM Llovet (4685_CR27) 2016; 2
L PetitclerC (4685_CR12) 2017; 45
WH Im (4685_CR11) 2022; 47
M GattI (4685_CR1) 2022; 14
M Nino-Murcia (4685_CR13) 2000; 215
MG Mavilia (4685_CR23) 2016; 4
RM Gore (4685_CR3) 2017; 14
T Li (4685_CR7) 2007; 37
Y Huang (4685_CR18) 2016; 281
A AlshareF (4685_CR28) 2022; 29
M Wever (4685_CR29) 2021; 43
S Lardière-Deguelte (4685_CR25) 2015; 152
CL Wang (4685_CR8) 2008; 191
S Loh (4685_CR26) 2010; 255
JF Gibbs (4685_CR14) 2004; 84
M Ronot (4685_CR2) 2014; 38
E Harding-Theobald (4685_CR21) 2021; 54
S Namasivayam (4685_CR24) 2007; 7
L Grazioli (4685_CR20) 2017; 95
JW Reinig (4685_CR10) 1987; 162
F Caseiro-Alves (4685_CR15) 2007; 17
H Li (4685_CR16) 2016; 281
References_xml – volume: 281
  start-page: 947
  issue: 3
  year: 2016
  ident: 4685_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.2016152234
– volume: 95
  start-page: 378
  year: 2017
  ident: 4685_CR20
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.08.028
– volume: 14
  start-page: 923
  issue: 5
  year: 2022
  ident: 4685_CR1
  publication-title: World J Hepatol
  doi: 10.4254/wjh.v14.i5.923
– volume: 152
  start-page: 745
  issue: 4
  year: 2017
  ident: 4685_CR22
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.11.048
– volume: 40
  start-page: 2050
  issue: 9
  year: 2020
  ident: 4685_CR19
  publication-title: Liver Int
  doi: 10.1111/liv.14555
– ident: 4685_CR6
  doi: 10.1016/j.gie.2020.08.024
– volume: 75
  start-page: 105
  issue: 1
  year: 2020
  ident: 4685_CR9
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2019.05.022
– volume: 4
  start-page: 158
  issue: 2
  year: 2016
  ident: 4685_CR23
  publication-title: J Clin Transl Hepatol
  doi: 10.14218/JCTH.2016.00004
– volume: 29
  start-page: 5297
  issue: 7
  year: 2022
  ident: 4685_CR28
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09765-0
– volume: 12
  start-page: 650797
  year: 2022
  ident: 4685_CR36
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.650797
– volume: 45
  start-page: 3193
  issue: 10
  year: 2020
  ident: 4685_CR34
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02269-9
– volume: 38
  start-page: 681
  issue: 6
  year: 2014
  ident: 4685_CR2
  publication-title: Clin Res Hepatol Gastroenterol
  doi: 10.1016/j.clinre.2014.01.014
– volume: 84
  start-page: 463
  issue: 2
  year: 2004
  ident: 4685_CR14
  publication-title: Surg Clin North Am
  doi: 10.1016/j.suc.2003.11.003
– year: 2019
  ident: 4685_CR38
  publication-title: Liver Int
  doi: 10.1111/liv.14093
– volume: 191
  start-page: 409
  issue: 2
  year: 2008
  ident: 4685_CR8
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.07.3421
– volume: 45
  start-page: 1276-95
  issue: 5
  year: 2017
  ident: 4685_CR12
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25550
– volume: 281
  start-page: 382
  issue: 2
  year: 2016
  ident: 4685_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.2016152110
– volume: 10
  start-page: 17024
  issue: 1
  year: 2020
  ident: 4685_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-73237-3
– volume: 43
  start-page: 3037
  issue: 9
  year: 2021
  ident: 4685_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3051276
– volume: 278
  start-page: 105773
  year: 2021
  ident: 4685_CR30
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2021.105773
– volume: 23
  start-page: 6390
  issue: 21
  year: 2017
  ident: 4685_CR39
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-1636
– volume: 60
  start-page: 755
  issue: 5
  year: 2022
  ident: 4685_CR4
  publication-title: Radiol Clin North Am
  doi: 10.1016/j.rcl.2022.05.005
– volume: 37
  start-page: 1100
  issue: 12
  year: 2007
  ident: 4685_CR7
  publication-title: Hepatol Res
  doi: 10.1111/j.1872-034X.2007.00164.x
– volume: 215
  start-page: 746
  issue: 3
  year: 2000
  ident: 4685_CR13
  publication-title: Radiology
  doi: 10.1148/radiology.215.3.r00jn03746
– volume: 294
  start-page: 660-8
  issue: 3
  year: 2020
  ident: 4685_CR32
  publication-title: Radiology
  doi: 10.1148/radiol.2019192094
– ident: 4685_CR33
  doi: 10.1148/radiol.2015151169
– ident: 4685_CR35
  doi: 10.1155/2022/7693631
– volume: 72
  start-page: 353
  issue: 2
  year: 2020
  ident: 4685_CR31
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.10.009
– volume: 101
  start-page: 519
  issue: 9
  year: 2020
  ident: 4685_CR5
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2020.01.010
– volume: 47
  start-page: 3051
  issue: 9
  year: 2022
  ident: 4685_CR11
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-021-03181-x
– volume: 54
  start-page: 890
  issue: 7
  year: 2021
  ident: 4685_CR21
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.16563
– volume: 255
  start-page: 764
  issue: 3
  year: 2010
  ident: 4685_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.10091848
– volume: 162
  start-page: 43
  issue: 1 Pt 1
  year: 1987
  ident: 4685_CR10
  publication-title: Radiology
  doi: 10.1148/radiology.162.1.3786786
– volume: 17
  start-page: 1544
  issue: 6
  year: 2007
  ident: 4685_CR15
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0503-z
– volume: 152
  start-page: 231
  issue: 4
  year: 2015
  ident: 4685_CR25
  publication-title: J Visc Surg
  doi: 10.1016/j.jviscsurg.2015.01.013
– volume: 13
  start-page: 713
  issue: 6
  year: 2006
  ident: 4685_CR37
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2005.07.014
– volume: 7
  start-page: 2
  issue: 1
  year: 2007
  ident: 4685_CR24
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2007.0002
– volume: 14
  start-page: 1429-37
  issue: 11
  year: 2017
  ident: 4685_CR3
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.07.018
– volume: 2
  start-page: 16018
  year: 2016
  ident: 4685_CR27
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2016.18
SSID ssj0001651125
ssj0008379
Score 2.4301987
Snippet Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML)...
Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to...
Background & AimsEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML)...
The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2126
SubjectTerms Abscesses
Adult
Aged
Algorithms
Automation
Computed tomography
Cysts
Diagnosis
Diagnosis, Differential
Female
Gastroenterology
Health care facilities
Hemangioma
Hepatology
Humans
Imaging
Learning algorithms
Lesions
Liver
Liver - diagnostic imaging
Liver Diseases - diagnostic imaging
Liver Neoplasms - diagnostic imaging
Machine Learning
Male
Malignancy
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Radiomics
Retrospective Studies
Tomography
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYG-rUn_ItvxYxkoZrIyxQPZkJFlpwxIlNDYj--t3J390WWGs-MVYsi1xJ9_vrN_dAbxDi56Zma24xWFygTaCK0S-vEB4n1e5IBBNbIvz7GwiPk3T6R7EfSyMJ-0bPR-7xXLs5peeW7lemuOeJ3YcEWEypJCt_SxF_D2C_cn5l5Pvvopchu5xKKbX56nsImV8vJz3ODiaJWI0ypRvd63RDYh5kyk5bJfeh7uNW6vtT7VY_GGRTh-2UYIbn8iQiCg_xk2tx-bXX2kebzfZR_CgA6jspG17DHvWPYE7n7st-KdQf1XVnEKZN5wsYMVUU68Q9uLZ0hMzLesqUVwwBMSsr8BSkw74a6gVbEF0EOxI_-o2bOVY46y79GwEZtpCExXD53YJtZ_B5PTjtw9nvCvdwA2a_Jprq6JsVpg4sjYUKPNCJ1JWs0qbXOtChYXWsYxsnuUqqqpUaJEIpZSZEWLD4zmM3MrZA2AG70rzItY2JF82QYcODWourJRC6iQK4H0vwnLdZugoh1zMXuAlCrz0Ai-3ARz2Ui671bop8TMUJeisCxHA26EZ1xltnihnVw31oThzRK9FAC9apRheR3udsaChyB11GTpQDu_dFpS2z-XdCziAo16zrsf1r2kcDdr3H7N-ebvur-BeTGWOPa_zEEb1VWNfI_aq9Ztusf0GARwsCw
  priority: 102
  providerName: Unpaywall
Title Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography
URI https://link.springer.com/article/10.1007/s00261-024-04685-y
https://www.ncbi.nlm.nih.gov/pubmed/39572431
https://www.proquest.com/docview/3191313344
https://www.proquest.com/docview/3131851639
https://pubmed.ncbi.nlm.nih.gov/PMC11992001
https://www.ncbi.nlm.nih.gov/pmc/articles/11992001
UnpaywallVersion submittedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2366-0058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651125
  issn: 2366-0058
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2366-0058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651125
  issn: 2366-0058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2366-0058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008379
  issn: 2366-0058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swED_WFPb4sPfDaxc02LdVJbbl18c0LCsbC2PM0H4ykqW0ZZlTFpuR_vW9k2W3WcdYMRhjy7YeJ99Pvt_dAbxDjR6Xc6O5wWpygTqCS0S-PEN4n-hEEIgmtsUsPszFp6PoyDmFrTq2e2eStF_q3tnNLhc46hSiI6YRX2_Bto23NYDt8cfjz9f-rcQEIyLnI_P3mzf10A1weZMj2RtKH8C9pjqX699ysbimi6aPIO9a0VJQfuw3tdovL_4I8HjbZj6Ghw6csnErTU_gjqmewt0vzvz-DOpvUp-RG_OKk_bTTDb1EiEvHv20pEzDXBaKE4ZgmHXZV2oaf3sOJYItiAqCBek_3YotK9ZUpjq1TARWtkkmNMPnumDazyGffvg-OeQubQMvUd3XXBnpx_OsDHxjRgLHO1Nhmuq5VmWiVCZHmVJB6pskTqSvdSSUCIWUspwTWsPtBQyqZWVeASvxrijJAmVGtI4NcTGHyjQRJk1FqkLfg_fdIBbnbXSOoo_DbDuywI4sbEcWaw92u3Eu3ExdFfgJ8kNcqAvhwdv-Ms4xMpzIyiwbKkM-5ohcMw9etmLRv47snIGgqqQbAtMXoPjdm1eqs1Mbx9sn6i9Kqwd7nShc1etfzdjr5e8_Wv36dk_fgfsBpTi2nM5dGNS_GvMGcVethjjNpgcHs6GbbkPYmsQT3OfBGM_ls6_j40s6Ziye
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUTpgfJuaAEjcaOuNonzOlaIstDHAXWlcors2EsrFm_FJqq2v54Zx0m7FCGqXFaJk_VjnPkm880MwDvU6Gk1MZob7CYXqCO4ROTLC4T3mc4EgWhiWxyno7H4cpqc-qCwecd271yS7k3dB7s5c4GjTiE6Yp7wxT1YFWigRANY3fv07eDGt5WUYETiY2T-fvOyHroFLm9zJHtH6TqsNfZCLi7ldHpDF-1vwLgbRUtB-bHb1Gq3uvojweNdh_kIHnpwyvZaaXoMK8Y-gftH3v3-FOqvUp9TGPOck_bTTDb1DCEv_vrpSJmG-SoU3xmCYdZVX6lp_d05lAg2JSoINqTvdHM2s6yxxp45JgKr2iITmuFzfTLtZzDe_3jyYcR92QZeobqvuTIyTCdFFYXGDAWud6HiPNcTrapMqUIOC6WiPDRZmslQ60QoEQspZTUhtIbHcxjYmTWbwCq8K8mKSJkh2bExGnOoTDNh8lzkKg4DeN8tYnnRZuco-zzMbiJLnMjSTWS5CGC7W-fS79R5ia-gMEZDXYgA3vaXcY-R40RaM2uoDcWYI3ItAnjRikX_d-TnjAR1JV8SmL4B5e9evmLPz1we75CovyitAex0onDdr38NY6eXv_8Y9cu7Pf0NrI1Ojg7Lw8_HB1vwIKJyx47fuQ2D-ldjXiEGq9Vrv-V-A3kVKos
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4aTILtAW3slo2BkXgbVpvEuT1OhYrBQAiBxFtkxw4gdW61Jpr673eOc4EKNDH1JWqcxMln5_uccwPYQ0aPi9JobrCbXCBHcInKl2co7xOdCBLR5G1xFh9diePr6PpBFL_zdu9Mkk1MA2VpstVgpstBH_jmlg4c-YVcE9OIL1bgpUB2oxoGo3h0_5UlJkERtdEyTx-6zEiPZOZjb8neZPoa1ms7k4s_cjJ5wErjN7DRykn2vcH_LbwwdhPWTluD-TuoLqS-o8DjOSe-0kzW1RRFKm79cm6UhrV1I24YylfW1UupCDH3H2LIJuS8gQ3py9qcTS2rrbG3zneAFU1ZCM3wvG366_dwNT68HB3xttACL5CgK66M9OMyKwLfmKFAhDIVpqkutSoSpTI5zJQKUt8kcSJ9rSOhRCiklEVJ-gp_H2DVTq35BKzAo6IkC5QZ0sozxOUX0l8iTJqKVIW-B9-6h53PmnwaeZ852UGTIzS5gyZfeLDV4ZG3c2ue40vDD3FpLYQHu_1unBVk6pDWTGtqQ1HhqDUzDz428PWXI8tkIKgr6RKwfQPKuL28x97duszbPjnr4qjyYL8bA_f9-tdt7Pfj5Bl3_fn_zr4Da-cH4_znj7OTL_AqoPrEziFzC1ar37X5iqKpUttuXvwFfuIReg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYG-rUn_ItvxYxkoZrIyxQPZkJFlpwxIlNDYj--t3J390WWGs-MVYsi1xJ9_vrN_dAbxDi56Zma24xWFygTaCK0S-vEB4n1e5IBBNbIvz7GwiPk3T6R7EfSyMJ-0bPR-7xXLs5peeW7lemuOeJ3YcEWEypJCt_SxF_D2C_cn5l5Pvvopchu5xKKbX56nsImV8vJz3ODiaJWI0ypRvd63RDYh5kyk5bJfeh7uNW6vtT7VY_GGRTh-2UYIbn8iQiCg_xk2tx-bXX2kebzfZR_CgA6jspG17DHvWPYE7n7st-KdQf1XVnEKZN5wsYMVUU68Q9uLZ0hMzLesqUVwwBMSsr8BSkw74a6gVbEF0EOxI_-o2bOVY46y79GwEZtpCExXD53YJtZ_B5PTjtw9nvCvdwA2a_Jprq6JsVpg4sjYUKPNCJ1JWs0qbXOtChYXWsYxsnuUqqqpUaJEIpZSZEWLD4zmM3MrZA2AG70rzItY2JF82QYcODWourJRC6iQK4H0vwnLdZugoh1zMXuAlCrz0Ai-3ARz2Ui671bop8TMUJeisCxHA26EZ1xltnihnVw31oThzRK9FAC9apRheR3udsaChyB11GTpQDu_dFpS2z-XdCziAo16zrsf1r2kcDdr3H7N-ebvur-BeTGWOPa_zEEb1VWNfI_aq9Ztusf0GARwsCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics-based+automated+machine+learning+for+differentiating+focal+liver+lesions+on+unenhanced+computed+tomography&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Yang%2C+Nan&rft.au=Ma%2C+Zhuangxuan&rft.au=Zhang%2C+Ling&rft.au=Ji%2C+Wenbin&rft.date=2025-05-01&rft.pub=Springer+US&rft.eissn=2366-0058&rft.volume=50&rft.issue=5&rft.spage=2126&rft.epage=2139&rft_id=info:doi/10.1007%2Fs00261-024-04685-y&rft.externalDocID=10_1007_s00261_024_04685_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon