Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography
Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Method...
Saved in:
| Published in | Abdominal imaging Vol. 50; no. 5; pp. 2126 - 2139 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2366-0058 2366-004X 2366-0058 |
| DOI | 10.1007/s00261-024-04685-y |
Cover
| Abstract | Background & Aims
Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.
Methods
We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.
Results
In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.
Conclusion
The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.
Lay summary
The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. |
|---|---|
| AbstractList | Background & AimsEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.MethodsWe enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.ResultsIn the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.ConclusionThe fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.Lay summaryThe preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Background & Aims Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Methods We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. Results In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. Conclusion The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions. Lay summary The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions. Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.BACKGROUND & AIMSEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images.We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.METHODSWe enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established.In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.RESULTSIn the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively.The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.CONCLUSIONThe fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions. The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to differentiate benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. |
| Author | Jin, Liang Ma, Zhuangxuan Li, Ming Ji, Wenbin Zhang, Ling Yang, Nan Xi, Qian |
| Author_xml | – sequence: 1 givenname: Nan surname: Yang fullname: Yang, Nan organization: Department of Radiology, Huadong Hospital, Fudan University – sequence: 2 givenname: Zhuangxuan surname: Ma fullname: Ma, Zhuangxuan organization: Department of Radiology, Huadong Hospital, Fudan University – sequence: 3 givenname: Ling surname: Zhang fullname: Zhang, Ling organization: Department of Radiology, Fudan University Shanghai Cancer Center – sequence: 4 givenname: Wenbin surname: Ji fullname: Ji, Wenbin organization: Radiology Department, Shanghai Electric Power Hospital – sequence: 5 givenname: Qian surname: Xi fullname: Xi, Qian email: xiqian1129@163.com organization: Department of Radiology, Eye & ENT Hospital of Fudan University – sequence: 6 givenname: Ming surname: Li fullname: Li, Ming email: ming_li@fudan.edu.cn organization: Department of Radiology, Huadong Hospital, Fudan University – sequence: 7 givenname: Liang surname: Jin fullname: Jin, Liang email: jin_liang@fudan.edu.cn organization: Department of Radiology, Huadong Hospital, Fudan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39572431$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1TAQhS1UREvpC7BAkdiwCfgvTrJCqAJaqRISgrU1dib3ukrsYCet8va4zYUWFgh54ZH9neOZ4-fkyAePhLxk9C2jtH6XKOWKlZTLkkrVVOX6hJxwoVRJadUcPaqPyVlK15RSpirGePWMHIu2qrkU7ITMX6FzYXQ2lQYSdgUscxhhztUIdu88FgNC9M7vij7EonN9jxH97GDeziwMxeBuMGYwueBTEXyxePR78Dbb2DBOy51f9g27CNN-fUGe9jAkPDvsp-T7p4_fzi_Kqy-fL88_XJVWcjWXBoGpvrWcIVLZ1bI1omm6vjO2NqYF2hrDG4a1qoF1XSWNFBIAbM8a0eZ1SsTmu_gJ1lsYBj1FN0JcNaP6Lka9xahzjPo-Rr1m1ftNNS1mxM7mYSM8KAM4_eeNd3u9CzeasbblOebs8ObgEMOPBdOsR5csDgN4DEvSggnWVEzdt_j6L_Q6LNHnVDLVZk4IKTP16nFLv3v59Y8Z4BtgY0gpYv9_gx7iSRn2O4wPb_9D9ROD4MRi |
| Cites_doi | 10.1148/radiol.2016152234 10.1016/j.ejrad.2017.08.028 10.4254/wjh.v14.i5.923 10.1053/j.gastro.2016.11.048 10.1111/liv.14555 10.1016/j.gie.2020.08.024 10.1053/j.ajkd.2019.05.022 10.14218/JCTH.2016.00004 10.1007/s11831-022-09765-0 10.3389/fonc.2022.650797 10.1007/s00261-019-02269-9 10.1016/j.clinre.2014.01.014 10.1016/j.suc.2003.11.003 10.1111/liv.14093 10.2214/AJR.07.3421 10.1002/jmri.25550 10.1148/radiol.2016152110 10.1038/s41598-020-73237-3 10.1109/TPAMI.2021.3051276 10.1016/j.tvjl.2021.105773 10.1158/1078-0432.CCR-15-1636 10.1016/j.rcl.2022.05.005 10.1111/j.1872-034X.2007.00164.x 10.1148/radiology.215.3.r00jn03746 10.1148/radiol.2019192094 10.1148/radiol.2015151169 10.1155/2022/7693631 10.1016/j.jhep.2019.10.009 10.1016/j.diii.2020.01.010 10.1007/s00261-021-03181-x 10.1111/apt.16563 10.1148/radiol.10091848 10.1148/radiology.162.1.3786786 10.1007/s00330-006-0503-z 10.1016/j.jviscsurg.2015.01.013 10.1016/j.acra.2005.07.014 10.1102/1470-7330.2007.0002 10.1016/j.jacr.2017.07.018 10.1038/nrdp.2016.18 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. May 2025 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. May 2025 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00261-024-04685-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2366-0058 |
| EndPage | 2139 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11992001 PMC11992001 39572431 10_1007_s00261_024_04685_y |
| Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
| GroupedDBID | 04C 0R~ 29~ 2J2 2JN 2JY 2KG 2KM 2LR 406 53G 5VS 7RV 7X7 88E 8AO 8FH 8FI 8FJ 95- AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUDM ACZOJ ADBBV ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFDZB AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AYFIA AZFZN B-. BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BMSDO BSONS C6C CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIHBH EIOEI EJD EMB EMOBN FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GNWQR GRRUI H13 HCIFZ HMCUK IKXTQ IMOTQ ITM IWAJR J-C JZLTJ K7- KOV LK8 LLZTM M1P M4Y M7P NAPCQ NPVJJ NQJWS NU0 O9J PHGZT PQQKQ PROAC PSQYO PT4 QOR R89 ROL RSV S16 SCLPG SDE SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W23 YLTOR ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION CGR CUY CVF ECM EIF NPM PHGZM PJZUB PPXIY PQGLB PUEGO --- .86 .VR 06C 06D 0VY 1N0 23M 2~H 30V 36B 4.4 408 409 40D 40E 5GY 5RE 67Z 6NX 8FD 8TC 95. 95~ 96X AAWCG AAWTL AAYQN ABBXA ABOCM ACOMO ADHIR ADIMF AEGAL AENEX AEPYU AETLH AFWTZ AHAVH AIIXL AKMHD ALWAN BA0 CS3 DL5 ESBYG F5P FEDTE FR3 G-Y G-Z GGRSB GJIRD GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IXC IZIGR IZQ I~Z J0Z JQ2 K9. KDC KPH LAS M7Z MA- N9A NB0 O93 O9I OAM OVD P19 P64 P9S PF0 QOK QOS R9I RHV RPX RRX S1Z S27 S37 S3B SAP SDH SHX SMD T13 TSV TT1 TUC U2A U9L VC2 WH7 WJK WK8 Z45 ZOVNA 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c426t-bea16f9c21ee04d749b388dfdbc7bb9a09bb281e767a1dd54b434aaacf1839393 |
| IEDL.DBID | AGYKE |
| ISSN | 2366-0058 2366-004X |
| IngestDate | Sun Oct 26 04:06:26 EDT 2025 Thu Aug 21 18:32:36 EDT 2025 Fri Sep 05 13:39:01 EDT 2025 Fri Oct 03 08:40:58 EDT 2025 Wed Sep 03 02:25:22 EDT 2025 Wed Oct 01 06:34:20 EDT 2025 Sat Apr 12 01:21:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Carcinoma CT scan Liver Machine learning Radiomics |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-bea16f9c21ee04d749b388dfdbc7bb9a09bb281e767a1dd54b434aaacf1839393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-024-04685-y |
| PMID | 39572431 |
| PQID | 3191313344 |
| PQPubID | 31175 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1007_s00261_024_04685_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_11992001 proquest_miscellaneous_3131851639 proquest_journals_3191313344 pubmed_primary_39572431 crossref_primary_10_1007_s00261_024_04685_y springer_journals_10_1007_s00261_024_04685_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Abdominal imaging |
| PublicationTitleAbbrev | Abdom Radiol |
| PublicationTitleAlternate | Abdom Radiol (NY) |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | S Burti (4685_CR30) 2021; 278 4685_CR33 J Wei (4685_CR19) 2020; 40 X Zhao (4685_CR36) 2022; 12 S Milette (4685_CR39) 2017; 23 RK Kelley (4685_CR31) 2020; 72 MS Davenport (4685_CR32) 2020; 294 E Reizine (4685_CR4) 2022; 60 T KendalL (4685_CR38) 2019 Y-L Huang (4685_CR37) 2006; 13 4685_CR6 Y Toyama (4685_CR17) 2020; 10 D Sia (4685_CR22) 2017; 152 Y Li (4685_CR34) 2020; 45 4685_CR35 G Mamone (4685_CR5) 2020; 101 MR Rudnick (4685_CR9) 2020; 75 JM Llovet (4685_CR27) 2016; 2 L PetitclerC (4685_CR12) 2017; 45 WH Im (4685_CR11) 2022; 47 M GattI (4685_CR1) 2022; 14 M Nino-Murcia (4685_CR13) 2000; 215 MG Mavilia (4685_CR23) 2016; 4 RM Gore (4685_CR3) 2017; 14 T Li (4685_CR7) 2007; 37 Y Huang (4685_CR18) 2016; 281 A AlshareF (4685_CR28) 2022; 29 M Wever (4685_CR29) 2021; 43 S Lardière-Deguelte (4685_CR25) 2015; 152 CL Wang (4685_CR8) 2008; 191 S Loh (4685_CR26) 2010; 255 JF Gibbs (4685_CR14) 2004; 84 M Ronot (4685_CR2) 2014; 38 E Harding-Theobald (4685_CR21) 2021; 54 S Namasivayam (4685_CR24) 2007; 7 L Grazioli (4685_CR20) 2017; 95 JW Reinig (4685_CR10) 1987; 162 F Caseiro-Alves (4685_CR15) 2007; 17 H Li (4685_CR16) 2016; 281 |
| References_xml | – volume: 281 start-page: 947 issue: 3 year: 2016 ident: 4685_CR18 publication-title: Radiology doi: 10.1148/radiol.2016152234 – volume: 95 start-page: 378 year: 2017 ident: 4685_CR20 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2017.08.028 – volume: 14 start-page: 923 issue: 5 year: 2022 ident: 4685_CR1 publication-title: World J Hepatol doi: 10.4254/wjh.v14.i5.923 – volume: 152 start-page: 745 issue: 4 year: 2017 ident: 4685_CR22 publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.11.048 – volume: 40 start-page: 2050 issue: 9 year: 2020 ident: 4685_CR19 publication-title: Liver Int doi: 10.1111/liv.14555 – ident: 4685_CR6 doi: 10.1016/j.gie.2020.08.024 – volume: 75 start-page: 105 issue: 1 year: 2020 ident: 4685_CR9 publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2019.05.022 – volume: 4 start-page: 158 issue: 2 year: 2016 ident: 4685_CR23 publication-title: J Clin Transl Hepatol doi: 10.14218/JCTH.2016.00004 – volume: 29 start-page: 5297 issue: 7 year: 2022 ident: 4685_CR28 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09765-0 – volume: 12 start-page: 650797 year: 2022 ident: 4685_CR36 publication-title: Front Oncol doi: 10.3389/fonc.2022.650797 – volume: 45 start-page: 3193 issue: 10 year: 2020 ident: 4685_CR34 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02269-9 – volume: 38 start-page: 681 issue: 6 year: 2014 ident: 4685_CR2 publication-title: Clin Res Hepatol Gastroenterol doi: 10.1016/j.clinre.2014.01.014 – volume: 84 start-page: 463 issue: 2 year: 2004 ident: 4685_CR14 publication-title: Surg Clin North Am doi: 10.1016/j.suc.2003.11.003 – year: 2019 ident: 4685_CR38 publication-title: Liver Int doi: 10.1111/liv.14093 – volume: 191 start-page: 409 issue: 2 year: 2008 ident: 4685_CR8 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.07.3421 – volume: 45 start-page: 1276-95 issue: 5 year: 2017 ident: 4685_CR12 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25550 – volume: 281 start-page: 382 issue: 2 year: 2016 ident: 4685_CR16 publication-title: Radiology doi: 10.1148/radiol.2016152110 – volume: 10 start-page: 17024 issue: 1 year: 2020 ident: 4685_CR17 publication-title: Sci Rep doi: 10.1038/s41598-020-73237-3 – volume: 43 start-page: 3037 issue: 9 year: 2021 ident: 4685_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3051276 – volume: 278 start-page: 105773 year: 2021 ident: 4685_CR30 publication-title: Vet J doi: 10.1016/j.tvjl.2021.105773 – volume: 23 start-page: 6390 issue: 21 year: 2017 ident: 4685_CR39 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-1636 – volume: 60 start-page: 755 issue: 5 year: 2022 ident: 4685_CR4 publication-title: Radiol Clin North Am doi: 10.1016/j.rcl.2022.05.005 – volume: 37 start-page: 1100 issue: 12 year: 2007 ident: 4685_CR7 publication-title: Hepatol Res doi: 10.1111/j.1872-034X.2007.00164.x – volume: 215 start-page: 746 issue: 3 year: 2000 ident: 4685_CR13 publication-title: Radiology doi: 10.1148/radiology.215.3.r00jn03746 – volume: 294 start-page: 660-8 issue: 3 year: 2020 ident: 4685_CR32 publication-title: Radiology doi: 10.1148/radiol.2019192094 – ident: 4685_CR33 doi: 10.1148/radiol.2015151169 – ident: 4685_CR35 doi: 10.1155/2022/7693631 – volume: 72 start-page: 353 issue: 2 year: 2020 ident: 4685_CR31 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.10.009 – volume: 101 start-page: 519 issue: 9 year: 2020 ident: 4685_CR5 publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2020.01.010 – volume: 47 start-page: 3051 issue: 9 year: 2022 ident: 4685_CR11 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-021-03181-x – volume: 54 start-page: 890 issue: 7 year: 2021 ident: 4685_CR21 publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.16563 – volume: 255 start-page: 764 issue: 3 year: 2010 ident: 4685_CR26 publication-title: Radiology doi: 10.1148/radiol.10091848 – volume: 162 start-page: 43 issue: 1 Pt 1 year: 1987 ident: 4685_CR10 publication-title: Radiology doi: 10.1148/radiology.162.1.3786786 – volume: 17 start-page: 1544 issue: 6 year: 2007 ident: 4685_CR15 publication-title: Eur Radiol doi: 10.1007/s00330-006-0503-z – volume: 152 start-page: 231 issue: 4 year: 2015 ident: 4685_CR25 publication-title: J Visc Surg doi: 10.1016/j.jviscsurg.2015.01.013 – volume: 13 start-page: 713 issue: 6 year: 2006 ident: 4685_CR37 publication-title: Acad Radiol doi: 10.1016/j.acra.2005.07.014 – volume: 7 start-page: 2 issue: 1 year: 2007 ident: 4685_CR24 publication-title: Cancer Imaging doi: 10.1102/1470-7330.2007.0002 – volume: 14 start-page: 1429-37 issue: 11 year: 2017 ident: 4685_CR3 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.07.018 – volume: 2 start-page: 16018 year: 2016 ident: 4685_CR27 publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2016.18 |
| SSID | ssj0001651125 ssj0008379 |
| Score | 2.4301987 |
| Snippet | Background & Aims
Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML)... Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to... Background & AimsEnhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML)... The preoperative diagnosis of focal liver lesions is essential for choosing appropriate treatment. Thus, we aimed to use the MLJAR AutoML framework to... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 2126 |
| SubjectTerms | Abscesses Adult Aged Algorithms Automation Computed tomography Cysts Diagnosis Diagnosis, Differential Female Gastroenterology Health care facilities Hemangioma Hepatology Humans Imaging Learning algorithms Lesions Liver Liver - diagnostic imaging Liver Diseases - diagnostic imaging Liver Neoplasms - diagnostic imaging Machine Learning Male Malignancy Medical imaging Medicine Medicine & Public Health Middle Aged Radiographic Image Interpretation, Computer-Assisted - methods Radiology Radiomics Retrospective Studies Tomography Tomography, X-Ray Computed - methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYG-rUn_ItvxYxkoZrIyxQPZkJFlpwxIlNDYj--t3J390WWGs-MVYsi1xJ9_vrN_dAbxDi56Zma24xWFygTaCK0S-vEB4n1e5IBBNbIvz7GwiPk3T6R7EfSyMJ-0bPR-7xXLs5peeW7lemuOeJ3YcEWEypJCt_SxF_D2C_cn5l5Pvvopchu5xKKbX56nsImV8vJz3ODiaJWI0ypRvd63RDYh5kyk5bJfeh7uNW6vtT7VY_GGRTh-2UYIbn8iQiCg_xk2tx-bXX2kebzfZR_CgA6jspG17DHvWPYE7n7st-KdQf1XVnEKZN5wsYMVUU68Q9uLZ0hMzLesqUVwwBMSsr8BSkw74a6gVbEF0EOxI_-o2bOVY46y79GwEZtpCExXD53YJtZ_B5PTjtw9nvCvdwA2a_Jprq6JsVpg4sjYUKPNCJ1JWs0qbXOtChYXWsYxsnuUqqqpUaJEIpZSZEWLD4zmM3MrZA2AG70rzItY2JF82QYcODWourJRC6iQK4H0vwnLdZugoh1zMXuAlCrz0Ai-3ARz2Ui671bop8TMUJeisCxHA26EZ1xltnihnVw31oThzRK9FAC9apRheR3udsaChyB11GTpQDu_dFpS2z-XdCziAo16zrsf1r2kcDdr3H7N-ebvur-BeTGWOPa_zEEb1VWNfI_aq9Ztusf0GARwsCw priority: 102 providerName: Unpaywall |
| Title | Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography |
| URI | https://link.springer.com/article/10.1007/s00261-024-04685-y https://www.ncbi.nlm.nih.gov/pubmed/39572431 https://www.proquest.com/docview/3191313344 https://www.proquest.com/docview/3131851639 https://pubmed.ncbi.nlm.nih.gov/PMC11992001 https://www.ncbi.nlm.nih.gov/pmc/articles/11992001 |
| UnpaywallVersion | submittedVersion |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2366-0058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651125 issn: 2366-0058 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2366-0058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651125 issn: 2366-0058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2366-0058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008379 issn: 2366-0058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swED_WFPb4sPfDaxc02LdVJbbl18c0LCsbC2PM0H4ykqW0ZZlTFpuR_vW9k2W3WcdYMRhjy7YeJ99Pvt_dAbxDjR6Xc6O5wWpygTqCS0S-PEN4n-hEEIgmtsUsPszFp6PoyDmFrTq2e2eStF_q3tnNLhc46hSiI6YRX2_Bto23NYDt8cfjz9f-rcQEIyLnI_P3mzf10A1weZMj2RtKH8C9pjqX699ysbimi6aPIO9a0VJQfuw3tdovL_4I8HjbZj6Ghw6csnErTU_gjqmewt0vzvz-DOpvUp-RG_OKk_bTTDb1EiEvHv20pEzDXBaKE4ZgmHXZV2oaf3sOJYItiAqCBek_3YotK9ZUpjq1TARWtkkmNMPnumDazyGffvg-OeQubQMvUd3XXBnpx_OsDHxjRgLHO1Nhmuq5VmWiVCZHmVJB6pskTqSvdSSUCIWUspwTWsPtBQyqZWVeASvxrijJAmVGtI4NcTGHyjQRJk1FqkLfg_fdIBbnbXSOoo_DbDuywI4sbEcWaw92u3Eu3ExdFfgJ8kNcqAvhwdv-Ms4xMpzIyiwbKkM-5ohcMw9etmLRv47snIGgqqQbAtMXoPjdm1eqs1Mbx9sn6i9Kqwd7nShc1etfzdjr5e8_Wv36dk_fgfsBpTi2nM5dGNS_GvMGcVethjjNpgcHs6GbbkPYmsQT3OfBGM_ls6_j40s6Ziye |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUTpgfJuaAEjcaOuNonzOlaIstDHAXWlcors2EsrFm_FJqq2v54Zx0m7FCGqXFaJk_VjnPkm880MwDvU6Gk1MZob7CYXqCO4ROTLC4T3mc4EgWhiWxyno7H4cpqc-qCwecd271yS7k3dB7s5c4GjTiE6Yp7wxT1YFWigRANY3fv07eDGt5WUYETiY2T-fvOyHroFLm9zJHtH6TqsNfZCLi7ldHpDF-1vwLgbRUtB-bHb1Gq3uvojweNdh_kIHnpwyvZaaXoMK8Y-gftH3v3-FOqvUp9TGPOck_bTTDb1DCEv_vrpSJmG-SoU3xmCYdZVX6lp_d05lAg2JSoINqTvdHM2s6yxxp45JgKr2iITmuFzfTLtZzDe_3jyYcR92QZeobqvuTIyTCdFFYXGDAWud6HiPNcTrapMqUIOC6WiPDRZmslQ60QoEQspZTUhtIbHcxjYmTWbwCq8K8mKSJkh2bExGnOoTDNh8lzkKg4DeN8tYnnRZuco-zzMbiJLnMjSTWS5CGC7W-fS79R5ia-gMEZDXYgA3vaXcY-R40RaM2uoDcWYI3ItAnjRikX_d-TnjAR1JV8SmL4B5e9evmLPz1we75CovyitAex0onDdr38NY6eXv_8Y9cu7Pf0NrI1Ojg7Lw8_HB1vwIKJyx47fuQ2D-ldjXiEGq9Vrv-V-A3kVKos |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4aTILtAW3slo2BkXgbVpvEuT1OhYrBQAiBxFtkxw4gdW61Jpr673eOc4EKNDH1JWqcxMln5_uccwPYQ0aPi9JobrCbXCBHcInKl2co7xOdCBLR5G1xFh9diePr6PpBFL_zdu9Mkk1MA2VpstVgpstBH_jmlg4c-YVcE9OIL1bgpUB2oxoGo3h0_5UlJkERtdEyTx-6zEiPZOZjb8neZPoa1ms7k4s_cjJ5wErjN7DRykn2vcH_LbwwdhPWTluD-TuoLqS-o8DjOSe-0kzW1RRFKm79cm6UhrV1I24YylfW1UupCDH3H2LIJuS8gQ3py9qcTS2rrbG3zneAFU1ZCM3wvG366_dwNT68HB3xttACL5CgK66M9OMyKwLfmKFAhDIVpqkutSoSpTI5zJQKUt8kcSJ9rSOhRCiklEVJ-gp_H2DVTq35BKzAo6IkC5QZ0sozxOUX0l8iTJqKVIW-B9-6h53PmnwaeZ852UGTIzS5gyZfeLDV4ZG3c2ue40vDD3FpLYQHu_1unBVk6pDWTGtqQ1HhqDUzDz428PWXI8tkIKgr6RKwfQPKuL28x97duszbPjnr4qjyYL8bA_f9-tdt7Pfj5Bl3_fn_zr4Da-cH4_znj7OTL_AqoPrEziFzC1ar37X5iqKpUttuXvwFfuIReg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYG-rUn_ItvxYxkoZrIyxQPZkJFlpwxIlNDYj--t3J390WWGs-MVYsi1xJ9_vrN_dAbxDi56Zma24xWFygTaCK0S-vEB4n1e5IBBNbIvz7GwiPk3T6R7EfSyMJ-0bPR-7xXLs5peeW7lemuOeJ3YcEWEypJCt_SxF_D2C_cn5l5Pvvopchu5xKKbX56nsImV8vJz3ODiaJWI0ypRvd63RDYh5kyk5bJfeh7uNW6vtT7VY_GGRTh-2UYIbn8iQiCg_xk2tx-bXX2kebzfZR_CgA6jspG17DHvWPYE7n7st-KdQf1XVnEKZN5wsYMVUU68Q9uLZ0hMzLesqUVwwBMSsr8BSkw74a6gVbEF0EOxI_-o2bOVY46y79GwEZtpCExXD53YJtZ_B5PTjtw9nvCvdwA2a_Jprq6JsVpg4sjYUKPNCJ1JWs0qbXOtChYXWsYxsnuUqqqpUaJEIpZSZEWLD4zmM3MrZA2AG70rzItY2JF82QYcODWourJRC6iQK4H0vwnLdZugoh1zMXuAlCrz0Ai-3ARz2Ui671bop8TMUJeisCxHA26EZ1xltnihnVw31oThzRK9FAC9apRheR3udsaChyB11GTpQDu_dFpS2z-XdCziAo16zrsf1r2kcDdr3H7N-ebvur-BeTGWOPa_zEEb1VWNfI_aq9Ztusf0GARwsCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics-based+automated+machine+learning+for+differentiating+focal+liver+lesions+on+unenhanced+computed+tomography&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Yang%2C+Nan&rft.au=Ma%2C+Zhuangxuan&rft.au=Zhang%2C+Ling&rft.au=Ji%2C+Wenbin&rft.date=2025-05-01&rft.pub=Springer+US&rft.eissn=2366-0058&rft.volume=50&rft.issue=5&rft.spage=2126&rft.epage=2139&rft_id=info:doi/10.1007%2Fs00261-024-04685-y&rft.externalDocID=10_1007_s00261_024_04685_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon |