COMBING: Clustering in Oncology for Mathematical and Biological Identification of Novel Gene Signatures
Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper,...
Saved in:
| Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 6; pp. 3317 - 3331 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-5963 1557-9964 2374-0043 1557-9964 |
| DOI | 10.1109/TCBB.2021.3123910 |
Cover
| Abstract | Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and <inline-formula><tex-math notation="LaTeX">25\%</tex-math> <mml:math><mml:mrow><mml:mn>25</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq1-3123910.gif"/> </inline-formula> better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of <inline-formula><tex-math notation="LaTeX">92\%</tex-math> <mml:math><mml:mrow><mml:mn>92</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq2-3123910.gif"/> </inline-formula> on tumor types classification and averaged balanced accuracy of <inline-formula><tex-math notation="LaTeX">68\%</tex-math> <mml:math><mml:mrow><mml:mn>68</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq3-3123910.gif"/> </inline-formula> on tumor subtypes classification, which represents, respectively <inline-formula><tex-math notation="LaTeX">7\%</tex-math> <mml:math><mml:mrow><mml:mn>7</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq4-3123910.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">9\%</tex-math> <mml:math><mml:mrow><mml:mn>9</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq5-3123910.gif"/> </inline-formula> higher performance compared to the referential signature. |
|---|---|
| AbstractList | Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional centerbased unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature. Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn’s Index) and [Formula Omitted] better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of [Formula Omitted] on tumor types classification and averaged balanced accuracy of [Formula Omitted] on tumor subtypes classification, which represents, respectively [Formula Omitted] and [Formula Omitted] higher performance compared to the referential signature. Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and <inline-formula><tex-math notation="LaTeX">25\%</tex-math> <mml:math><mml:mrow><mml:mn>25</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq1-3123910.gif"/> </inline-formula> better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of <inline-formula><tex-math notation="LaTeX">92\%</tex-math> <mml:math><mml:mrow><mml:mn>92</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq2-3123910.gif"/> </inline-formula> on tumor types classification and averaged balanced accuracy of <inline-formula><tex-math notation="LaTeX">68\%</tex-math> <mml:math><mml:mrow><mml:mn>68</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq3-3123910.gif"/> </inline-formula> on tumor subtypes classification, which represents, respectively <inline-formula><tex-math notation="LaTeX">7\%</tex-math> <mml:math><mml:mrow><mml:mn>7</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq4-3123910.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">9\%</tex-math> <mml:math><mml:mrow><mml:mn>9</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="battistella-ieq5-3123910.gif"/> </inline-formula> higher performance compared to the referential signature. Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature. Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature.Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature. |
| Author | Estienne, Theo Carre, Alexandre Nikolaev, Sergey Deutsch, Eric Lerousseau, Marvin Andres, Emilie Alvarez Paragios, Nikos Niyoteka, Stephane Sun, Roger Robert, Charlotte Battistella, Enzo Vakalopoulou, Maria |
| Author_xml | – sequence: 1 givenname: Enzo orcidid: 0000-0001-7053-5666 surname: Battistella fullname: Battistella, Enzo email: en.battistella@gmail.com organization: CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systémes, Université Paris-Saclay, Gif-sur-Yvette, France – sequence: 2 givenname: Maria orcidid: 0000-0003-0791-1264 surname: Vakalopoulou fullname: Vakalopoulou, Maria email: maria.vakalopoulou@centralesupelec.fr organization: CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systémes, Université Paris-Saclay, Gif-sur-Yvette, France – sequence: 3 givenname: Roger orcidid: 0000-0001-9866-6449 surname: Sun fullname: Sun, Roger email: roger.sun@gustaveroussy.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 4 givenname: Theo orcidid: 0000-0002-7569-5033 surname: Estienne fullname: Estienne, Theo email: theo.estienne@centralesupelec.fr organization: CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systémes, Université Paris-Saclay, Gif-sur-Yvette, France – sequence: 5 givenname: Marvin orcidid: 0000-0001-6421-708X surname: Lerousseau fullname: Lerousseau, Marvin email: marvin.lerousseau@gmail.com organization: CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systémes, Université Paris-Saclay, Gif-sur-Yvette, France – sequence: 6 givenname: Sergey orcidid: 0000-0001-8587-2307 surname: Nikolaev fullname: Nikolaev, Sergey email: sergey.nikolaev@gustaveroussy.fr organization: Institut Gustave Roussy, Inserm U1030 Molecular Radiotherapy and Innovative Therapeutics, Université Paris-Saclay, Villejuif, France – sequence: 7 givenname: Emilie Alvarez orcidid: 0000-0002-2441-1766 surname: Andres fullname: Andres, Emilie Alvarez email: emilie.alvarez-andres@u-psud.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 8 givenname: Alexandre orcidid: 0000-0002-4793-835X surname: Carre fullname: Carre, Alexandre email: alexandre.carre@gustaveroussy.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 9 givenname: Stephane orcidid: 0000-0001-6360-7086 surname: Niyoteka fullname: Niyoteka, Stephane email: Stephane.NIYOTEKA@gustaveroussy.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 10 givenname: Charlotte orcidid: 0000-0001-8838-1343 surname: Robert fullname: Robert, Charlotte email: ch.robert@gustaveroussy.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 11 givenname: Nikos orcidid: 0000-0002-9668-4763 surname: Paragios fullname: Paragios, Nikos email: nikos.paragios@ecp.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France – sequence: 12 givenname: Eric orcidid: 0000-0002-8223-3697 surname: Deutsch fullname: Deutsch, Eric email: eric.deutsch@gustaveroussy.fr organization: Gustave Roussy-CentraleSupélec-TheraPanacea, Noesia Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34714749$$D View this record in MEDLINE/PubMed https://centralesupelec.hal.science/hal-03530265$$DView record in HAL |
| BookMark | eNp9kl1v0zAUhi00xD7gByAkZIkbuEixHX9yt0ZbV6lbLxjXlpM4nafULrEz1H9PspQhFYkrH9vPe47Pe3wOTnzwFoD3GM0wRurrfTGfzwgieJZjkiuMXoEzzJjIlOL0ZIwpy5ji-Sk4j_ERIUIVom_AaU4FpoKqM7Ap1rfz5d3iGyzaPibbOb-BzsO1r0IbNnvYhA7emvRgtya5yrTQ-BrO3Xj5vF3W1ifXDHFywcPQwLvwZFu4sN7C727jTeo7G9-C141po313WC_Aj-ur--ImW60Xy-JylVWU8JSVtME8F5QIIrEgFPOGc0kkE4bJplJcyJoghjk3lSS0JE2JLMJSIkpqyUh-AciUt_c7s_9l2lbvOrc13V5jpEfXdKrKUo-u6YNrg-jLJHowf_FgnL65XOnxDOUsR4SzJzywnyd214WfvY1Jb12sbNsab0MfNWEKIckJ5QP66Qh9DH3nh_Y1EVQynksyFv94oPpya-uX-n9mNAB4AqouxNjZ5p-Oxn9w3JE40lQuPU8odca1_1V-mJTOWvtSSTE1PAflvwGYprlB |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btae341 crossref_primary_10_1038_s41746_025_01471_y crossref_primary_10_3390_diagnostics14141472 |
| Cites_doi | 10.1080/21541264.2016.1268245 10.1158/1055-9965.EPI-10-1224 10.18632/oncotarget.17606 10.18632/oncotarget.12818 10.1200/JCO.2013.53.6607 10.1016/j.cell.2011.02.013 10.1007/BF01908075 10.1186/1878-5085-4-7 10.3390/biom9050201 10.1155/2017/7687851 10.1530/ERC-18-0068 10.1038/s41467-017-00289-x 10.1186/s13059-017-1215-1 10.3389/fgene.2019.00236 10.1186/1471-2105-12-323 10.1038/s41598-017-06368-9 10.1038/nrg.2017.38 10.1038/sj.onc.1206472 10.1016/S1470-2045(18)30413-3 10.4172/1747-0862.1000183 10.1093/nar/gky1131 10.1073/pnas.211566398 10.1073/pnas.091062498 10.1038/modpathol.2016.64 10.1038/ncomms15657 10.1016/j.immuni.2018.03.023 10.1023/A:1012801612483 10.1371/journal.pone.0143196 10.1172/JCI91190 10.5430/air.v7n1p15 10.1183/09031936.00179813 10.1007/978-3-030-17938-0_41 10.18632/oncotarget.27215 10.1038/s41540-017-0038-8 10.1056/NEJMp1607591 10.4137/BBI.S38316 10.1016/j.cell.2018.02.060 10.1186/s12920-017-0245-6 10.1371/journal.pone.0184385 10.1016/j.patcog.2021.108108 10.1016/j.asoc.2016.11.026 10.1186/1755-8794-3-39 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC VOOES ADTOC UNPAY |
| DOI | 10.1109/TCBB.2021.3123910 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1557-9964 |
| EndPage | 3331 |
| ExternalDocumentID | oai:HAL:hal-03530265v1 34714749 10_1109_TCBB_2021_3123910 9594710 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ARC grantid: SIGNIT201801286 – fundername: Fondation pour la Recherche Médicale grantid: DIC20161236437 funderid: 10.13039/501100002915 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION AAYOK ADPZR CGR CUY CVF ECM EIF NPM RIG W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c426t-b4f163742728172416f6682857a58fc9678d205166ac824b2fb0e0188042d8523 |
| IEDL.DBID | UNPAY |
| ISSN | 1545-5963 1557-9964 2374-0043 |
| IngestDate | Sun Oct 26 03:58:07 EDT 2025 Tue Oct 28 06:37:03 EDT 2025 Mon Sep 29 03:47:20 EDT 2025 Mon Jun 30 06:14:50 EDT 2025 Thu Apr 03 07:05:58 EDT 2025 Sat Oct 25 04:05:13 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:34:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Biomarkers Multi-tumor association Clustering Predictive Signature Genomics |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-b4f163742728172416f6682857a58fc9678d205166ac824b2fb0e0188042d8523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8587-2307 0000-0001-6360-7086 0000-0002-8223-3697 0000-0001-9866-6449 0000-0001-6421-708X 0000-0002-9668-4763 0000-0002-2441-1766 0000-0003-0791-1264 0000-0001-7053-5666 0000-0002-7569-5033 0000-0001-8838-1343 0000-0002-4793-835X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://centralesupelec.hal.science/hal-03530265 |
| PMID | 34714749 |
| PQID | 2748563820 |
| PQPubID | 85499 |
| PageCount | 15 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03530265v1 proquest_journals_2748563820 proquest_miscellaneous_2590086246 pubmed_primary_34714749 crossref_primary_10_1109_TCBB_2021_3123910 crossref_citationtrail_10_1109_TCBB_2021_3123910 ieee_primary_9594710 unpaywall_primary_10_1109_tcbb_2021_3123910 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref15 ref14 wan (ref7) 2010; 24 ref11 ref10 ver steeg (ref23) 2014 ref17 ref16 ref19 ref18 chassagnon (ref31) 2020 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 macqueen (ref22) 1967 ref9 ref4 ref3 ref6 ref5 ref40 ref35 komodakis (ref24) 2009 ref34 ref37 ref36 ref30 ref33 kaufmann (ref12) 1987 ref2 ref1 ref39 ref38 kovács (ref13) 2005 ref26 ref25 ref21 ref28 ref27 ref29 van dam (ref20) 2018; 19 chassagnon (ref32) 2020 |
| References_xml | – start-page: 405 year: 1987 ident: ref12 article-title: Clustering by means of medoids publication-title: Data Analysis based on the L1-Norm and Related Methods – year: 1967 ident: ref22 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Statist Probability – ident: ref50 doi: 10.1080/21541264.2016.1268245 – ident: ref40 doi: 10.1158/1055-9965.EPI-10-1224 – ident: ref36 doi: 10.18632/oncotarget.17606 – ident: ref38 doi: 10.18632/oncotarget.12818 – ident: ref1 doi: 10.1200/JCO.2013.53.6607 – ident: ref2 doi: 10.1016/j.cell.2011.02.013 – ident: ref15 doi: 10.1007/BF01908075 – ident: ref10 doi: 10.1186/1878-5085-4-7 – ident: ref45 doi: 10.3390/biom9050201 – ident: ref42 doi: 10.1155/2017/7687851 – ident: ref46 doi: 10.1530/ERC-18-0068 – ident: ref4 doi: 10.1038/s41467-017-00289-x – year: 2020 ident: ref32 article-title: AI-driven CT-based quantification, staging and short-term outcome prediction of COVID-19 pneumonia – ident: ref6 doi: 10.1186/s13059-017-1215-1 – ident: ref5 doi: 10.3389/fgene.2019.00236 – ident: ref34 doi: 10.1186/1471-2105-12-323 – ident: ref37 doi: 10.1038/s41598-017-06368-9 – ident: ref18 doi: 10.1038/nrg.2017.38 – volume: 19 start-page: 575 year: 2018 ident: ref20 article-title: Gene co-expression analysis for functional classification and gene-disease predictions publication-title: Brief Bioinf – ident: ref43 doi: 10.1038/sj.onc.1206472 – ident: ref8 doi: 10.1016/S1470-2045(18)30413-3 – ident: ref39 doi: 10.4172/1747-0862.1000183 – ident: ref30 doi: 10.1093/nar/gky1131 – start-page: 577 year: 2014 ident: ref23 article-title: Discovering structure in high-dimensional data through correlation explanation publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref3 doi: 10.1073/pnas.211566398 – ident: ref29 doi: 10.1073/pnas.091062498 – start-page: 865 year: 2009 ident: ref24 article-title: Clustering via LP-based stabilities publication-title: Proc 21st Int Conf Neural Inf Process Syst – ident: ref47 doi: 10.1038/modpathol.2016.64 – ident: ref9 doi: 10.1038/ncomms15657 – ident: ref26 doi: 10.1016/j.immuni.2018.03.023 – ident: ref11 doi: 10.1023/A:1012801612483 – ident: ref16 doi: 10.1371/journal.pone.0143196 – ident: ref48 doi: 10.1172/JCI91190 – year: 2020 ident: ref31 article-title: Holistic AI-driven quantification, staging and prognosis of COVID-19 pneumonia publication-title: medRxiv 2020 04 17 20069187 – ident: ref14 doi: 10.5430/air.v7n1p15 – ident: ref41 doi: 10.1183/09031936.00179813 – ident: ref28 doi: 10.1007/978-3-030-17938-0_41 – year: 2005 ident: ref13 article-title: Cluster validity measurement techniques publication-title: Proc 6th Int Symp Hung Researchers Comput Intell – ident: ref49 doi: 10.18632/oncotarget.27215 – ident: ref21 doi: 10.1038/s41540-017-0038-8 – ident: ref33 doi: 10.1056/NEJMp1607591 – ident: ref27 doi: 10.4137/BBI.S38316 – volume: 24 start-page: 489 year: 2010 ident: ref7 article-title: A breast cancer prognostic signature predicts clinical outcomes in multiple tumor types publication-title: Oncol Rep – ident: ref25 doi: 10.1016/j.cell.2018.02.060 – ident: ref17 doi: 10.1186/s12920-017-0245-6 – ident: ref51 doi: 10.1371/journal.pone.0184385 – ident: ref19 doi: 10.1016/j.patcog.2021.108108 – ident: ref35 doi: 10.1016/j.asoc.2016.11.026 – ident: ref44 doi: 10.1186/1755-8794-3-39 |
| SSID | ssj0024904 |
| Score | 2.3379087 |
| Snippet | Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of... |
| SourceID | unpaywall hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3317 |
| SubjectTerms | Accuracy Algorithms Bioinformatics Biology Biomarkers Classification Cluster Analysis Clustering Clustering algorithms Computer Science Gene Expression Profiling - methods Genes Genomics Humans Indexes Inflammation Mathematical analysis Measurement Modularity multi-tumor association Neoplasms - genetics Pattern Recognition, Automated - methods Precision medicine predictive signature Protein interaction Proteins Tumors |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21lYByKB-lJaUggzgB2SZO4sTcuivKgtjtgVbqLbITp60aJRVNipZfz4yTDRQqxC2JHcvWjD3zbM8bgNeB9rnxRe5SpKMbKj9zlTQFLoZa8yLkYWyzN8zmYnocfj6JTlbg3RALY4yxl8_MiB7tWX5eZy1tle3JSOJaigB9NU5EF6v1i1dP2lSB5BG4EWpVf4Lpe3LvaDIeIxLkPgJUHqB9XIe7ATaE_ZA3zNHqGV2GtFlWbnM478O9trpUi--qLH8zQgcPYLbsfnf35GLUNnqU_fiD2fF_x_cQNnpvlO136vMIVkz1GO50-SkXm3A6OZyNP80_vmeTsiVGBbRz7Lxih5Xlul4w9HjZbCB-xZZUlbPud_vahQEX_b4gqws2r69NyYjsmn09P-1oRa-ewPHBh6PJ1O0zM7gZWvTG1WGBfhyi6pgn6AGhU1cIQVx4sYqSIpNoAXOO010IlSU8RKlrz3hE_RbyPEHsuwVrVV2Zp8AKERH_jFFGExsgwi802yqIpM45wtHYAW8poDTracspe0aZWvjiyZTEm5J40168DrwZfrnsODv-VfkVSn2oR2zb0_0vKX3zAkqpJKJr34FNktZQqxeUA7tLJUn7qX-VIsxPIlzVOBa_HIpx0tJJjKpM3WIdytVKoTnCge1OuYa2l5rpwNtB2_4aRpNpfWMYO7f38Bmsc4rXsMGTu7DWfGvNc_SiGv3CTp-fkDgPzA priority: 102 providerName: IEEE |
| Title | COMBING: Clustering in Oncology for Mathematical and Biological Identification of Novel Gene Signatures |
| URI | https://ieeexplore.ieee.org/document/9594710 https://www.ncbi.nlm.nih.gov/pubmed/34714749 https://www.proquest.com/docview/2748563820 https://www.proquest.com/docview/2590086246 https://centralesupelec.hal.science/hal-03530265 |
| UnpaywallVersion | submittedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED9tnRDwgdd4BMZkEJ9A6RLHefGtrRgF0Q7EKm2fIjtxtokorWgyVP567hInGg8h7VseZ0funX2_q32_A3jlKZdrN8hsynS0hXRTW8Y6x8VQKZ4LLsKmesNsHkwX4uOJf7IFTpcLY44k6nW9ojoww3NEoMYXHOC17XhU5ibwt2En8BF9D2BnMf88Om1oUYVv47PmTL2PX0YoL5racqGwacfLbGq6TnxQpUphcMhdjFm5F1P-7BW3tH1OhyKbaiv_Ap634WZdruTmhyyKK87o8C586YbRnkH5NqwrNUx__sHweJ1x3oM7BpmyUWtK92FLlw_gRlurcrMLZ5Oj2fjD_P1bNilqYldAn8cuSnZUNrzXG4bol816EljsSZYZa5s3t21KcG7-I2TLnM2Xl7pgRHzNvl6ctRSj64ewOHx3PJnapkqDnaJ3r2wlcsR0GGGHPEI0hAAvDwLixQulH-VpjN4w4zj1g0CmERdoAcrRDtHACZ5FGAc_gkG5LPUTYDmp1I-01IqYAVF_6MKl58cq4xiahhY4nZKS1FCYUyWNImlCGSdOjifjcUJ6TYxeLXjdN1m1_B3_E36Jv30vR8zb09GnhJ51-rh0Ldglw-ilYj9GB49t9zpDScwysE4w5I98XOE4vn7Rv8YJTLsystTLGmWobiul6QQWPG4NrO_bw55xtsQWvOkt7q9hkC3_Noyn15J-Brc4pXQ0-ZV7MKi-1_o5Aq1K7TfZkPtmhv0C7qEcGg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VImg58CqPQAGDOBWyTRw7m3Drrihb2N0e2Eq9RXbilIooqWhStPx6ZpxsoFAhbknsWLZm7JnP9nwD8DrQPjd-mLkU6egK5aeuik2Oi6HWPBdcDG32htk8nByJj8fyeA3e9rEwxhh7-cwM6NGe5WdV2tBW2W4sY1xLEaBfl0II2UZr_WLWi22yQPIJXIl61Z1h-l68uxiPRogFuY8QlQdoITfhZoBNYU_iSwbp2he6DmnzrFzlct6CjaY8U8vvqih-M0P7d2C2GkB7--TroKn1IP3xB7fj_47wLtzu_FG21yrQPVgz5X240WaoXG7ByfhwNjqYf3jHxkVDnApo6dhpyQ5Ly3a9ZOjzsllP_YotqTJj7e_2tQ0EzrudQVblbF5dmIIR3TX7fHrSEoueP4Cj_feL8cTtcjO4Kdr02tUiR08OcfWQR-gDoVuXhyGx4Q2VjPI0RhuYcZzwYajSiAuUu_aMR-RvgmcRot-HsF5WpXkMLA8lMdAYZTTxASIAQ8OtAhnrjCMgHTrgrQSUpB1xOeXPKBILYLw4IfEmJN6kE68DO_0vZy1rx78qv0Kp9_WIb3uyN03omxdQUqVQXvgObJG0-lqdoBzYXilJ0k3-8wSBfiRxXeNY_LIvxmlLZzGqNFWDdShbKwXnhA48apWrb3ulmQ686bXtr2HUqdaXhvHk6h6-gI3JYjZNpgfzT09hk1P0hg2l3Ib1-ltjnqFPVevndir9BPCeExk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnRDwwNdgBAYyiCdQusRxvnhrK0ZBtAOxSuMpshNnmxalFU2Gyl_PXeJE40NIe8vH2ZF7Z9_vat_vAF55yuXaDTKbMh1tId3UlrHOcTFUiueCi7Cp3jCbB9OF-Hjin2yB0-XCmCOJel2vqA7M8AwRqPEFB3htOx6VuQn8bdgJfETfA9hZzD-PvjW0qMK38Vlzpt7HLyOUF01tuVDYtONlNjVdJz6oUqUwOOQuxqzciyl_9opb2j6jQ5FNtZV_Ac_bcLMuV3LzQxbFFWd0eBe-dMNoz6BcDOtKDdOffzA8Xmec9-COQaZs1JrSfdjS5QO40daq3OzC6eRoNv4wf_-WTYqa2BXQ57Hzkh2VDe_1hiH6ZbOeBBZ7kmXG2ubNbZsSnJv_CNkyZ_PlpS4YEV-zr-enLcXo-iEsDt8dT6a2qdJgp-jdK1uJHDEdRtghjxANIcDLg4B48ULpR3kaozfMOE79IJBpxAVagHK0QzRwgmcRxsGPYFAuS_0YWE4q9SMttSJmQNQfunDp-bHKOIamoQVOp6QkNRTmVEmjSJpQxomT48l4nJBeE6NXC173TVYtf8f_hF_ib9_LEfP2dPQpoWedPi5dC3bJMHqp2I_RwWPb_c5QErMMrBMM-SMfVziOr1_0r3EC066MLPWyRhmq20ppOoEFe62B9X172DPOltiCN73F_TUMsuXfhvHkWtJP4RanlI4mv3IfBtX3Wj9DoFWp52Zu_QJLlhsZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMBING%3A+Clustering+in+Oncology+for+Mathematical+and+Biological+Identification+of+Novel+Gene+Signatures&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Battistella%2C+Enzo&rft.au=Vakalopoulou%2C+Maria&rft.au=Sun%2C+Roger&rft.au=Estienne%2C+Theo&rft.date=2022-11-01&rft.eissn=1557-9964&rft.volume=19&rft.issue=6&rft.spage=3317&rft_id=info:doi/10.1109%2FTCBB.2021.3123910&rft_id=info%3Apmid%2F34714749&rft.externalDocID=34714749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |