Gliomas: Diffusion Kurtosis MR Imaging in Grading
To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA...
        Saved in:
      
    
          | Published in | Radiology Vol. 263; no. 2; pp. 492 - 501 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oak Brook, IL
          Radiological Society of North America
    
        01.05.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0033-8419 1527-1315 1527-1315  | 
| DOI | 10.1148/radiol.12110927 | 
Cover
| Abstract | To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.
The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.
Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.
There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters. | 
    
|---|---|
| AbstractList | PURPOSE: To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. MATERIALS AND METHODS: The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades. RESULTS: Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively. CONCLUSION: There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters. [copy] RSNA, 2012 To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.PURPOSETo assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.MATERIALS AND METHODSThe institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.RESULTSMean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.CONCLUSIONThere were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters. To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades. Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively. There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.  | 
    
| Author | Van Gool, Stefaan W. Peeters, Ronald R. De Vleeschouwer, Steven Himmelreich, Uwe Van Calenbergh, Frank Sunaert, Stefan De Keyzer, Frederik Veraart, Jelle Van Hecke, Wim Sijbers, Jan Van Cauter, Sofie  | 
    
| Author_xml | – sequence: 1 givenname: Sofie surname: Van Cauter fullname: Van Cauter, Sofie – sequence: 2 givenname: Jelle surname: Veraart fullname: Veraart, Jelle – sequence: 3 givenname: Jan surname: Sijbers fullname: Sijbers, Jan – sequence: 4 givenname: Ronald R. surname: Peeters fullname: Peeters, Ronald R. – sequence: 5 givenname: Uwe surname: Himmelreich fullname: Himmelreich, Uwe – sequence: 6 givenname: Frederik surname: De Keyzer fullname: De Keyzer, Frederik – sequence: 7 givenname: Stefaan W. surname: Van Gool fullname: Van Gool, Stefaan W. – sequence: 8 givenname: Frank surname: Van Calenbergh fullname: Van Calenbergh, Frank – sequence: 9 givenname: Steven surname: De Vleeschouwer fullname: De Vleeschouwer, Steven – sequence: 10 givenname: Wim surname: Van Hecke fullname: Van Hecke, Wim – sequence: 11 givenname: Stefan surname: Sunaert fullname: Sunaert, Stefan  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25785020$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22403168$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqN0U1LAzEQBuAgirbq2ZvsRfCy7Uw-NllvUrWKiiB6XtJsUiL7UZPdg__eLa0KguApl-edIfOOyW7TNpaQE4QJIlfToEvfVhOkiJBTuUNGKKhMkaHYJSMAxlLFMT8g4xjfAJALJffJAaUcGGZqRHBe-bbW8SK58s710bdNct-Hro0-Jo_PyV2tl75ZJr5J5utlzfKI7DldRXu8fQ_J6831y-w2fXia380uH1LDadaleVlmRktFjRMIggHLy4V1GUpAa3nm0Am5AKTcLJgqlcoAnM1LRYVAKTk7JOebuavQvvc2dkXto7FVpRvb9rFARpkafs3-QQGUolzmMNDTLe0XtS2LVfC1Dh_F10UGcLYFOhpduaAb4-OPE1IJoOtB040zoY0xWPdNEIp1N8Wmm-KrmyEhfiWM73Q3XLwL2ld_5j4BUHWQWg | 
    
| CODEN | RADLAX | 
    
| CitedBy_id | crossref_primary_10_1007_s11940_017_0445_6 crossref_primary_10_1016_j_ejrad_2015_10_007 crossref_primary_10_1186_s12885_022_09205_z crossref_primary_10_1002_jmri_25696 crossref_primary_10_1016_j_ejro_2018_01_002 crossref_primary_10_1016_j_ejrad_2020_109149 crossref_primary_10_1136_bmjopen_2018_025123 crossref_primary_10_1097_RCT_0000000000000621 crossref_primary_10_1177_1756284819885052 crossref_primary_10_1371_journal_pone_0225093 crossref_primary_10_1002_mrm_28741 crossref_primary_10_1097_MD_0000000000013068 crossref_primary_10_1177_0284185114550020 crossref_primary_10_3389_fonc_2021_690036 crossref_primary_10_1002_mrm_27419 crossref_primary_10_3390_brainsci9050123 crossref_primary_10_1007_s00062_017_0606_8 crossref_primary_10_1016_j_mri_2020_08_001 crossref_primary_10_1016_j_ejrad_2020_108985 crossref_primary_10_1016_j_mri_2019_08_001 crossref_primary_10_1088_1361_6560_acd6d2 crossref_primary_10_24835_1607_0763_2018_4_108_126 crossref_primary_10_1016_j_rxeng_2017_04_001 crossref_primary_10_18632_oncotarget_17491 crossref_primary_10_1016_j_zemedi_2017_04_005 crossref_primary_10_1007_s40134_014_0062_z crossref_primary_10_1016_j_jmr_2018_03_001 crossref_primary_10_1016_j_semradonc_2014_02_004 crossref_primary_10_1007_s11060_018_03025_7 crossref_primary_10_1097_RCT_0000000000000974 crossref_primary_10_1007_s00234_020_02425_9 crossref_primary_10_1007_s00330_015_4038_z crossref_primary_10_1002_mrm_28730 crossref_primary_10_1007_s11060_016_2272_0 crossref_primary_10_3390_jcm9103122 crossref_primary_10_3348_kjr_2020_0178 crossref_primary_10_1148_radiol_2015142173 crossref_primary_10_1371_journal_pone_0094531 crossref_primary_10_1016_j_neuroimage_2014_04_013 crossref_primary_10_3390_jcm10112325 crossref_primary_10_1016_j_nic_2016_08_007 crossref_primary_10_1038_s41598_018_24438_4 crossref_primary_10_3174_ajnr_A4097 crossref_primary_10_1371_journal_pone_0141825 crossref_primary_10_1016_j_ejrad_2019_06_008 crossref_primary_10_1016_j_neurad_2017_07_005 crossref_primary_10_1002_mrm_26581 crossref_primary_10_1148_radiol_2018180054 crossref_primary_10_1259_dmfr_20170388 crossref_primary_10_1371_journal_pone_0136151 crossref_primary_10_3389_fnins_2014_00427 crossref_primary_10_1016_j_ejrad_2021_109522 crossref_primary_10_3390_diagnostics15050532 crossref_primary_10_1002_mp_16059 crossref_primary_10_1002_jmri_23857 crossref_primary_10_2214_AJR_17_19249 crossref_primary_10_6009_jjrt_2022_1214 crossref_primary_10_1007_s00330_019_06544_7 crossref_primary_10_1007_s00330_017_5094_3 crossref_primary_10_1002_jmri_23840 crossref_primary_10_1177_1971400916643337 crossref_primary_10_3389_fphy_2017_00040 crossref_primary_10_1007_s11060_018_2910_9 crossref_primary_10_1097_RCT_0000000000000197 crossref_primary_10_1186_s43055_024_01315_x crossref_primary_10_1097_RCT_0000000000001042 crossref_primary_10_3389_fonc_2021_554205 crossref_primary_10_3389_fnins_2021_783361 crossref_primary_10_24835_1607_0763_2017_4_97_112 crossref_primary_10_1155_2017_7019803 crossref_primary_10_1177_1971400919861409 crossref_primary_10_1038_sdata_2016_72 crossref_primary_10_1007_s00330_018_5495_y crossref_primary_10_1007_s00330_023_10325_8 crossref_primary_10_1007_s11912_021_01020_2 crossref_primary_10_4103_0028_3886_310109 crossref_primary_10_4236_ojrad_2020_102009 crossref_primary_10_1016_j_nicl_2016_09_021 crossref_primary_10_1177_19714009221114446 crossref_primary_10_1016_j_mri_2017_12_012 crossref_primary_10_1002_jmri_25137 crossref_primary_10_6009_jjrt_2017_JSRT_73_1_20 crossref_primary_10_1002_hbm_24542 crossref_primary_10_1177_0300060517712654 crossref_primary_10_1148_radiol_15141625 crossref_primary_10_3892_mmr_2019_10523 crossref_primary_10_3174_ajnr_A4714 crossref_primary_10_1155_2013_970586 crossref_primary_10_1016_j_neuroimage_2014_11_015 crossref_primary_10_1038_s41598_021_87857_w crossref_primary_10_1002_mrm_24743 crossref_primary_10_1016_j_neuroimage_2015_10_052 crossref_primary_10_3389_fneur_2023_1089067 crossref_primary_10_3233_JAD_150253 crossref_primary_10_1016_j_mri_2014_12_008 crossref_primary_10_1371_journal_pone_0245844 crossref_primary_10_1186_s13244_024_01859_6 crossref_primary_10_1016_j_ejrad_2022_110329 crossref_primary_10_1016_j_mri_2015_04_006 crossref_primary_10_1016_j_acra_2023_10_002 crossref_primary_10_1002_nbm_4485 crossref_primary_10_1002_jmri_25924 crossref_primary_10_1016_j_ejrad_2013_05_027 crossref_primary_10_1177_02841851241299086 crossref_primary_10_1097_RCT_0000000000000537 crossref_primary_10_3174_ajnr_A6235 crossref_primary_10_1093_noajnl_vdab044 crossref_primary_10_1007_s00115_015_4313_x crossref_primary_10_1038_s41598_018_32457_4 crossref_primary_10_3174_ajnr_A4050 crossref_primary_10_3390_cancers17050876 crossref_primary_10_1002_nbm_3140 crossref_primary_10_1016_j_mri_2021_10_001 crossref_primary_10_1177_0300060519827168 crossref_primary_10_1016_j_ejrad_2021_109842 crossref_primary_10_1158_1078_0432_CCR_17_3445 crossref_primary_10_17116_neiro20157965_14 crossref_primary_10_1016_j_acra_2017_10_016 crossref_primary_10_3174_ajnr_A6201 crossref_primary_10_1007_s00234_021_02780_1 crossref_primary_10_3390_jcm11092310 crossref_primary_10_1016_j_ijrobp_2019_07_011 crossref_primary_10_1186_s12880_021_00549_9 crossref_primary_10_1016_j_ejca_2016_10_037 crossref_primary_10_1007_s00261_020_02903_x crossref_primary_10_18632_oncotarget_19820 crossref_primary_10_3390_cancers14194778 crossref_primary_10_1016_j_neulet_2016_04_021 crossref_primary_10_1007_s10334_021_00985_2 crossref_primary_10_1016_j_wneu_2019_07_121 crossref_primary_10_1007_s00234_024_03332_z crossref_primary_10_1016_j_rx_2017_04_009 crossref_primary_10_1371_journal_pone_0113240 crossref_primary_10_1002_mrm_27101 crossref_primary_10_1002_mrm_25165 crossref_primary_10_3390_diagnostics13020173 crossref_primary_10_1016_j_mri_2018_04_014 crossref_primary_10_1016_j_neuro_2018_07_001 crossref_primary_10_1177_0284185117706608 crossref_primary_10_1007_s00429_013_0590_y crossref_primary_10_1177_0284185119898656 crossref_primary_10_1002_nbm_3938 crossref_primary_10_1016_j_neuroimage_2018_04_075 crossref_primary_10_19052_sv_2322 crossref_primary_10_37174_2587_7593_2023_6_1_26_40 crossref_primary_10_1109_ACCESS_2019_2919241 crossref_primary_10_1103_PhysRevE_92_012707 crossref_primary_10_3389_fonc_2020_575272 crossref_primary_10_1016_j_mric_2021_06_001 crossref_primary_10_1371_journal_pone_0214238 crossref_primary_10_2214_AJR_12_10397 crossref_primary_10_1097_RCT_0000000000001314 crossref_primary_10_3390_bioengineering10030331 crossref_primary_10_1371_journal_pone_0089225 crossref_primary_10_1016_j_nic_2016_06_006 crossref_primary_10_1158_0008_5472_CAN_14_0383 crossref_primary_10_1177_1352458514556295 crossref_primary_10_1007_s00261_020_02776_0 crossref_primary_10_6009_jjrt_2022_2128 crossref_primary_10_3389_fneur_2019_01285 crossref_primary_10_1002_hbm_22317 crossref_primary_10_17116_neiro2019830315 crossref_primary_10_18632_oncotarget_23413 crossref_primary_10_1007_s00234_022_03000_0 crossref_primary_10_1148_radiol_14140130 crossref_primary_10_1259_bjro_20200009 crossref_primary_10_1007_s00234_018_2139_5 crossref_primary_10_1055_a_2083_8717 crossref_primary_10_1007_s00330_021_07959_x crossref_primary_10_1002_mrm_29429 crossref_primary_10_1016_j_ejrad_2019_04_020 crossref_primary_10_1097_RMR_0000000000000234 crossref_primary_10_2463_jjmrm_2020_1710 crossref_primary_10_1097_RMR_0000000000000232 crossref_primary_10_3390_cancers15102760 crossref_primary_10_1002_mrm_28216 crossref_primary_10_1002_jmri_26012 crossref_primary_10_3174_ajnr_A3721 crossref_primary_10_1148_radiol_2016160094 crossref_primary_10_1007_s12640_019_00100_3 crossref_primary_10_1016_j_clineuro_2016_10_018 crossref_primary_10_1007_s00330_017_5108_1 crossref_primary_10_1016_j_ejrad_2019_108785 crossref_primary_10_1002_nbm_3188 crossref_primary_10_1016_j_clineuro_2022_107373 crossref_primary_10_1371_journal_pone_0087024 crossref_primary_10_1111_hae_13159 crossref_primary_10_3390_jcm11092599 crossref_primary_10_1002_nbm_3506 crossref_primary_10_20965_jaciii_2016_p0554 crossref_primary_10_2463_mrms_2013_0084 crossref_primary_10_1007_s00330_016_4529_6 crossref_primary_10_3390_metabo14060337 crossref_primary_10_1002_mrm_27959 crossref_primary_10_1016_j_ejrad_2017_08_019 crossref_primary_10_1097_RCT_0000000000000352 crossref_primary_10_1016_j_pnpbp_2016_07_011 crossref_primary_10_1111_jon_13113 crossref_primary_10_1002_mrm_26055 crossref_primary_10_1002_nbm_4386 crossref_primary_10_1016_j_ejrad_2013_12_023 crossref_primary_10_1002_nbm_3053 crossref_primary_10_7887_jcns_25_402 crossref_primary_10_1016_j_ymeth_2017_07_025 crossref_primary_10_1073_pnas_1812156116 crossref_primary_10_1016_j_jneumeth_2020_108908 crossref_primary_10_3390_cancers15030618 crossref_primary_10_1016_j_mri_2016_04_016 crossref_primary_10_1016_j_mri_2013_02_008 crossref_primary_10_1016_j_mri_2015_12_013 crossref_primary_10_1016_j_nicl_2018_04_011 crossref_primary_10_1016_j_nicl_2014_12_008 crossref_primary_10_1109_ACCESS_2021_3100546 crossref_primary_10_1016_j_ejrad_2020_109466 crossref_primary_10_1002_jmri_25090 crossref_primary_10_1002_mp_17718 crossref_primary_10_1002_mrm_25311 crossref_primary_10_1007_s00330_018_5977_y crossref_primary_10_1016_j_ejrad_2018_11_003 crossref_primary_10_3174_ajnr_A7270 crossref_primary_10_1016_j_bbadis_2014_08_002 crossref_primary_10_1118_1_4946819 crossref_primary_10_1016_j_mri_2018_12_009 crossref_primary_10_3390_cancers15112992 crossref_primary_10_3390_cancers16152644 crossref_primary_10_5114_pjr_195521 crossref_primary_10_3174_ajnr_A5662 crossref_primary_10_3390_jcm10092030 crossref_primary_10_1016_j_neuroimage_2016_07_038 crossref_primary_10_1002_jmri_29202 crossref_primary_10_1016_j_cpet_2013_04_002 crossref_primary_10_1002_mrm_25308 crossref_primary_10_1002_mrm_28938 crossref_primary_10_1016_j_ejrad_2017_08_008 crossref_primary_10_1016_j_acra_2020_03_035 crossref_primary_10_3389_fnins_2023_1234049 crossref_primary_10_1002_jmri_26523 crossref_primary_10_3390_biomedicines12040871 crossref_primary_10_1021_acsomega_3c06328 crossref_primary_10_1002_mrm_27075 crossref_primary_10_3348_kjr_2016_17_5_598 crossref_primary_10_3174_ajnr_A5992 crossref_primary_10_1016_j_mri_2016_07_010 crossref_primary_10_1093_neuonc_not304 crossref_primary_10_1155_2015_842923 crossref_primary_10_1016_j_neuroimage_2020_117368 crossref_primary_10_1177_19714009221122204 crossref_primary_10_1007_s00234_015_1500_1 crossref_primary_10_1016_j_msard_2022_104070 crossref_primary_10_1016_j_neuroimage_2013_02_078 crossref_primary_10_1177_0271678X15622464 crossref_primary_10_1007_s00062_015_0469_9 crossref_primary_10_2463_mrms_2014_0139 crossref_primary_10_1097_MAO_0000000000002000 crossref_primary_10_3389_fnins_2016_00615 crossref_primary_10_1002_nbm_3094 crossref_primary_10_1016_j_jmr_2013_01_014 crossref_primary_10_1097_RLI_0000000000000796 crossref_primary_10_18632_oncotarget_5675 crossref_primary_10_1515_raon_2017_0010 crossref_primary_10_1007_s00234_016_1758_y crossref_primary_10_1016_j_nicl_2019_101953 crossref_primary_10_1002_mp_12711 crossref_primary_10_1002_mrm_26656 crossref_primary_10_1016_j_ejrad_2022_110392 crossref_primary_10_3174_ajnr_A4311 crossref_primary_10_1016_j_ejmp_2017_07_002 crossref_primary_10_1002_nbm_3413 crossref_primary_10_1002_nbm_3535 crossref_primary_10_1002_nbm_3777 crossref_primary_10_2214_AJR_13_11365  | 
    
| Cites_doi | 10.1016/j.mri.2009.05.003 10.1002/glia.440150303 10.1016/j.neuroimage.2011.03.016 10.1007/s00234-008-0488-1 10.1007/s11307-007-0115-2 10.1016/j.neuroimage.2008.06.041 10.1007/s00401-007-0243-4 10.1212/WNL.59.6.947 10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T 10.1002/mrm.22835 10.1002/mrm.22603 10.1002/mrm.21890 10.1007/BF00598951 10.1002/mrm.20508 10.1148/radiol.2383050059 10.1053/crad.2001.0741 10.3174/ajnr.A1254 10.1002/nbm.1544 10.1002/jmri.20217 10.1002/nbm.1506 10.1023/A:1023977520909 10.1016/j.neuroimage.2008.04.237 10.1148/radiol.09090819 10.1002/jmri.1076 10.2214/ajr.159.3.1503032 10.1148/radiology.174.2.2153310 10.1007/s00234-007-0253-x 10.1109/TMI.2009.2037915 10.1002/nbm.1543 10.1002/jmri.21604 10.1016/j.neuroimage.2011.06.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK  | 
    
| DOI | 10.1148/radiol.12110927 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1527-1315 | 
    
| EndPage | 501 | 
    
| ExternalDocumentID | 22403168 25785020 10_1148_radiol_12110927  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP AFOSN IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK  | 
    
| ID | FETCH-LOGICAL-c426t-9dd6ca782cf51053039dbef61701ee46f1f57b0124cb38d88600fe9d825517743 | 
    
| ISSN | 0033-8419 1527-1315  | 
    
| IngestDate | Thu Oct 02 10:18:05 EDT 2025 Fri Sep 05 06:10:04 EDT 2025 Mon Jul 21 06:02:18 EDT 2025 Mon Jul 21 09:13:20 EDT 2025 Thu Apr 24 22:53:53 EDT 2025 Wed Oct 01 02:58:35 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Nuclear medicine Nervous system diseases Glioma Central nervous system disease Radiology Diffusion imaging Medical imagery Tumor Nuclear magnetic resonance imaging  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c426t-9dd6ca782cf51053039dbef61701ee46f1f57b0124cb38d88600fe9d825517743 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 22403168 | 
    
| PQID | 1008824790 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_1323810934 proquest_miscellaneous_1008824790 pubmed_primary_22403168 pascalfrancis_primary_25785020 crossref_primary_10_1148_radiol_12110927 crossref_citationtrail_10_1148_radiol_12110927  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-05-01 | 
    
| PublicationDateYYYYMMDD | 2012-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oak Brook, IL | 
    
| PublicationPlace_xml | – name: Oak Brook, IL – name: United States  | 
    
| PublicationTitle | Radiology | 
    
| PublicationTitleAlternate | Radiology | 
    
| PublicationYear | 2012 | 
    
| Publisher | Radiological Society of North America | 
    
| Publisher_xml | – name: Radiological Society of North America | 
    
| References | r2 r3 r4 r5 r6 r7 r8 r9 Stadnik TW (r31) 2001; 22 r30 r10 r12 r11 r33 r14 r13 r16 r15 r18 r17 r19 r21 r20 r23 r22 r25 Castillo M (r32) 2001; 22 r24 r27 r26 r29 Cha S (r34) 2006; 27 r28 r1  | 
    
| References_xml | – ident: r24 doi: 10.1016/j.mri.2009.05.003 – ident: r25 doi: 10.1002/glia.440150303 – ident: r28 doi: 10.1016/j.neuroimage.2011.03.016 – ident: r27 doi: 10.1007/s00234-008-0488-1 – ident: r13 doi: 10.1007/s11307-007-0115-2 – ident: r30 doi: 10.1016/j.neuroimage.2008.06.041 – volume: 22 start-page: 969 issue: 5 year: 2001 ident: r31 publication-title: AJNR Am J Neuroradiol – ident: r1 doi: 10.1007/s00401-007-0243-4 – volume: 22 start-page: 60 issue: 1 year: 2001 ident: r32 publication-title: AJNR Am J Neuroradiol – ident: r21 doi: 10.1212/WNL.59.6.947 – ident: r12 doi: 10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T – ident: r17 doi: 10.1002/mrm.22835 – ident: r16 doi: 10.1002/mrm.22603 – volume: 27 start-page: 475 issue: 3 year: 2006 ident: r34 publication-title: AJNR Am J Neuroradiol – ident: r15 doi: 10.1002/mrm.21890 – ident: r22 doi: 10.1007/BF00598951 – ident: r10 doi: 10.1002/mrm.20508 – ident: r4 doi: 10.1148/radiol.2383050059 – ident: r5 doi: 10.1053/crad.2001.0741 – ident: r33 doi: 10.3174/ajnr.A1254 – ident: r26 doi: 10.1002/nbm.1544 – ident: r3 doi: 10.1002/jmri.20217 – ident: r8 doi: 10.1002/nbm.1506 – ident: r29 doi: 10.1023/A:1023977520909 – ident: r9 doi: 10.1016/j.neuroimage.2008.04.237 – ident: r23 doi: 10.1148/radiol.09090819 – ident: r18 doi: 10.1002/jmri.1076 – ident: r6 doi: 10.2214/ajr.159.3.1503032 – ident: r20 doi: 10.1148/radiology.174.2.2153310 – ident: r2 doi: 10.1007/s00234-007-0253-x – ident: r7 doi: 10.1109/TMI.2009.2037915 – ident: r14 doi: 10.1002/nbm.1543 – ident: r19 doi: 10.1002/jmri.21604 – ident: r11 doi: 10.1016/j.neuroimage.2011.06.006  | 
    
| SSID | ssj0014587 | 
    
| Score | 2.530972 | 
    
| Snippet | To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.
The institutional review board approved this... To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.PURPOSETo assess the diagnostic accuracy of... PURPOSE: To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. MATERIALS AND METHODS: The...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 492 | 
    
| SubjectTerms | Adult Aged Anisotropy Area Under Curve Biological and medical sciences Brain Neoplasms - pathology Contrast Media Diffusion Magnetic Resonance Imaging - methods Female Glioma - pathology Humans Image Interpretation, Computer-Assisted Imaging, Three-Dimensional Investigative techniques, diagnostic techniques (general aspects) Male Medical sciences Meglumine Middle Aged Neoplasm Grading Neurology Organometallic Compounds Prospective Studies ROC Curve Sensitivity and Specificity Statistics, Nonparametric Tumors of the nervous system. Phacomatoses  | 
    
| Title | Gliomas: Diffusion Kurtosis MR Imaging in Grading | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22403168 https://www.proquest.com/docview/1008824790 https://www.proquest.com/docview/1323810934  | 
    
| Volume | 263 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-1315 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddB2Mwxr6XdSse9GEQlNmRbMt9G-3WNiWlZO3oW5BkCTw2p7j2y_763Vmy0_SLbi8mKMrF1p1Od-e73xGyBS6JtoZlVKc8pFzljEqmFZU6VJFJ9NhKDOhPj5L9Uz45i8-WSextdUmtRvrPjXUl_8NVGAO-YpXsP3C2JwoD8Bn4C1fgMFzvxeO9XwWm96BXv1tY22Dka3jYVPUCYUams-HBb9eEqCiHe5Xsj6kOkBtGVqLqP2Cz78jG9-r4vnCIxe4rU0npynsmGOvvIzPFT-XbrE2WgnZsMMvGBXHa4PNwNrocX8BEjS6br9OZjFHBvWIzXk2OUxoxV4jZ6dGx11TFJX_WaUXu2t35AzZ21K_rbo71CFX76Ah6EYWZgw1YRcm-cnr1OYWuwlrMHYF5R-ABeTgGhY9dPXYPDvsXTDwWDk7VP5xHfQICn6_cwYrB8uRcXsDesa7pye1eSWudnDwjT71bEXxxMvKcrJnyBXk09YkTL0nkRWU76AUl6AQlmM4CLyhBUQZeUF6R029fT3b2qe-WQTVYWTXN8jzREgw-bdFoBtMky5WxLeC-MTyxkY1TBQzmWjGRCwGmrjVZLsCpjMAJYK_JerkozVsSJCoDN1QJprTkaR6qWPNUh6HMUyFjng7IqFuSufZQ8tjRBFb9ZiYMyKf-B-cOReX2qZsra9zPx7MlBudmQD52iz4HVYjvt2RpFs0Fwm-Dv8jT7K45DG3UMGN8QN44ji3_AbEpo0S8u__dbpDHyz3znqzXVWM-gJVaq81W3v4CDfWN7Q | 
    
| linkProvider | Flying Publisher | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gliomas%3A+Diffusion+Kurtosis+MR+Imaging+in+Grading&rft.jtitle=Radiology&rft.au=Van+Cauter%2C+Sofie&rft.au=Veraart%2C+Jelle&rft.au=Sijbers%2C+Jan&rft.au=Peeters%2C+Ronald+R.&rft.date=2012-05-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=263&rft.issue=2&rft.spage=492&rft.epage=501&rft_id=info:doi/10.1148%2Fradiol.12110927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_12110927 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |