Gliomas: Diffusion Kurtosis MR Imaging in Grading

To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 263; no. 2; pp. 492 - 501
Main Authors Van Cauter, Sofie, Veraart, Jelle, Sijbers, Jan, Peeters, Ronald R., Himmelreich, Uwe, De Keyzer, Frederik, Van Gool, Stefaan W., Van Calenbergh, Frank, De Vleeschouwer, Steven, Van Hecke, Wim, Sunaert, Stefan
Format Journal Article
LanguageEnglish
Published Oak Brook, IL Radiological Society of North America 01.05.2012
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.12110927

Cover

Abstract To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades. Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively. There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.
AbstractList PURPOSE: To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. MATERIALS AND METHODS: The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades. RESULTS: Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively. CONCLUSION: There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters. [copy] RSNA, 2012
To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.PURPOSETo assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.MATERIALS AND METHODSThe institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.RESULTSMean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.CONCLUSIONThere were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.
To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades. Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively. There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.
Author Van Gool, Stefaan W.
Peeters, Ronald R.
De Vleeschouwer, Steven
Himmelreich, Uwe
Van Calenbergh, Frank
Sunaert, Stefan
De Keyzer, Frederik
Veraart, Jelle
Van Hecke, Wim
Sijbers, Jan
Van Cauter, Sofie
Author_xml – sequence: 1
  givenname: Sofie
  surname: Van Cauter
  fullname: Van Cauter, Sofie
– sequence: 2
  givenname: Jelle
  surname: Veraart
  fullname: Veraart, Jelle
– sequence: 3
  givenname: Jan
  surname: Sijbers
  fullname: Sijbers, Jan
– sequence: 4
  givenname: Ronald R.
  surname: Peeters
  fullname: Peeters, Ronald R.
– sequence: 5
  givenname: Uwe
  surname: Himmelreich
  fullname: Himmelreich, Uwe
– sequence: 6
  givenname: Frederik
  surname: De Keyzer
  fullname: De Keyzer, Frederik
– sequence: 7
  givenname: Stefaan W.
  surname: Van Gool
  fullname: Van Gool, Stefaan W.
– sequence: 8
  givenname: Frank
  surname: Van Calenbergh
  fullname: Van Calenbergh, Frank
– sequence: 9
  givenname: Steven
  surname: De Vleeschouwer
  fullname: De Vleeschouwer, Steven
– sequence: 10
  givenname: Wim
  surname: Van Hecke
  fullname: Van Hecke, Wim
– sequence: 11
  givenname: Stefan
  surname: Sunaert
  fullname: Sunaert, Stefan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25785020$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22403168$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1LAzEQBuAgirbq2ZvsRfCy7Uw-NllvUrWKiiB6XtJsUiL7UZPdg__eLa0KguApl-edIfOOyW7TNpaQE4QJIlfToEvfVhOkiJBTuUNGKKhMkaHYJSMAxlLFMT8g4xjfAJALJffJAaUcGGZqRHBe-bbW8SK58s710bdNct-Hro0-Jo_PyV2tl75ZJr5J5utlzfKI7DldRXu8fQ_J6831y-w2fXia380uH1LDadaleVlmRktFjRMIggHLy4V1GUpAa3nm0Am5AKTcLJgqlcoAnM1LRYVAKTk7JOebuavQvvc2dkXto7FVpRvb9rFARpkafs3-QQGUolzmMNDTLe0XtS2LVfC1Dh_F10UGcLYFOhpduaAb4-OPE1IJoOtB040zoY0xWPdNEIp1N8Wmm-KrmyEhfiWM73Q3XLwL2ld_5j4BUHWQWg
CODEN RADLAX
CitedBy_id crossref_primary_10_1007_s11940_017_0445_6
crossref_primary_10_1016_j_ejrad_2015_10_007
crossref_primary_10_1186_s12885_022_09205_z
crossref_primary_10_1002_jmri_25696
crossref_primary_10_1016_j_ejro_2018_01_002
crossref_primary_10_1016_j_ejrad_2020_109149
crossref_primary_10_1136_bmjopen_2018_025123
crossref_primary_10_1097_RCT_0000000000000621
crossref_primary_10_1177_1756284819885052
crossref_primary_10_1371_journal_pone_0225093
crossref_primary_10_1002_mrm_28741
crossref_primary_10_1097_MD_0000000000013068
crossref_primary_10_1177_0284185114550020
crossref_primary_10_3389_fonc_2021_690036
crossref_primary_10_1002_mrm_27419
crossref_primary_10_3390_brainsci9050123
crossref_primary_10_1007_s00062_017_0606_8
crossref_primary_10_1016_j_mri_2020_08_001
crossref_primary_10_1016_j_ejrad_2020_108985
crossref_primary_10_1016_j_mri_2019_08_001
crossref_primary_10_1088_1361_6560_acd6d2
crossref_primary_10_24835_1607_0763_2018_4_108_126
crossref_primary_10_1016_j_rxeng_2017_04_001
crossref_primary_10_18632_oncotarget_17491
crossref_primary_10_1016_j_zemedi_2017_04_005
crossref_primary_10_1007_s40134_014_0062_z
crossref_primary_10_1016_j_jmr_2018_03_001
crossref_primary_10_1016_j_semradonc_2014_02_004
crossref_primary_10_1007_s11060_018_03025_7
crossref_primary_10_1097_RCT_0000000000000974
crossref_primary_10_1007_s00234_020_02425_9
crossref_primary_10_1007_s00330_015_4038_z
crossref_primary_10_1002_mrm_28730
crossref_primary_10_1007_s11060_016_2272_0
crossref_primary_10_3390_jcm9103122
crossref_primary_10_3348_kjr_2020_0178
crossref_primary_10_1148_radiol_2015142173
crossref_primary_10_1371_journal_pone_0094531
crossref_primary_10_1016_j_neuroimage_2014_04_013
crossref_primary_10_3390_jcm10112325
crossref_primary_10_1016_j_nic_2016_08_007
crossref_primary_10_1038_s41598_018_24438_4
crossref_primary_10_3174_ajnr_A4097
crossref_primary_10_1371_journal_pone_0141825
crossref_primary_10_1016_j_ejrad_2019_06_008
crossref_primary_10_1016_j_neurad_2017_07_005
crossref_primary_10_1002_mrm_26581
crossref_primary_10_1148_radiol_2018180054
crossref_primary_10_1259_dmfr_20170388
crossref_primary_10_1371_journal_pone_0136151
crossref_primary_10_3389_fnins_2014_00427
crossref_primary_10_1016_j_ejrad_2021_109522
crossref_primary_10_3390_diagnostics15050532
crossref_primary_10_1002_mp_16059
crossref_primary_10_1002_jmri_23857
crossref_primary_10_2214_AJR_17_19249
crossref_primary_10_6009_jjrt_2022_1214
crossref_primary_10_1007_s00330_019_06544_7
crossref_primary_10_1007_s00330_017_5094_3
crossref_primary_10_1002_jmri_23840
crossref_primary_10_1177_1971400916643337
crossref_primary_10_3389_fphy_2017_00040
crossref_primary_10_1007_s11060_018_2910_9
crossref_primary_10_1097_RCT_0000000000000197
crossref_primary_10_1186_s43055_024_01315_x
crossref_primary_10_1097_RCT_0000000000001042
crossref_primary_10_3389_fonc_2021_554205
crossref_primary_10_3389_fnins_2021_783361
crossref_primary_10_24835_1607_0763_2017_4_97_112
crossref_primary_10_1155_2017_7019803
crossref_primary_10_1177_1971400919861409
crossref_primary_10_1038_sdata_2016_72
crossref_primary_10_1007_s00330_018_5495_y
crossref_primary_10_1007_s00330_023_10325_8
crossref_primary_10_1007_s11912_021_01020_2
crossref_primary_10_4103_0028_3886_310109
crossref_primary_10_4236_ojrad_2020_102009
crossref_primary_10_1016_j_nicl_2016_09_021
crossref_primary_10_1177_19714009221114446
crossref_primary_10_1016_j_mri_2017_12_012
crossref_primary_10_1002_jmri_25137
crossref_primary_10_6009_jjrt_2017_JSRT_73_1_20
crossref_primary_10_1002_hbm_24542
crossref_primary_10_1177_0300060517712654
crossref_primary_10_1148_radiol_15141625
crossref_primary_10_3892_mmr_2019_10523
crossref_primary_10_3174_ajnr_A4714
crossref_primary_10_1155_2013_970586
crossref_primary_10_1016_j_neuroimage_2014_11_015
crossref_primary_10_1038_s41598_021_87857_w
crossref_primary_10_1002_mrm_24743
crossref_primary_10_1016_j_neuroimage_2015_10_052
crossref_primary_10_3389_fneur_2023_1089067
crossref_primary_10_3233_JAD_150253
crossref_primary_10_1016_j_mri_2014_12_008
crossref_primary_10_1371_journal_pone_0245844
crossref_primary_10_1186_s13244_024_01859_6
crossref_primary_10_1016_j_ejrad_2022_110329
crossref_primary_10_1016_j_mri_2015_04_006
crossref_primary_10_1016_j_acra_2023_10_002
crossref_primary_10_1002_nbm_4485
crossref_primary_10_1002_jmri_25924
crossref_primary_10_1016_j_ejrad_2013_05_027
crossref_primary_10_1177_02841851241299086
crossref_primary_10_1097_RCT_0000000000000537
crossref_primary_10_3174_ajnr_A6235
crossref_primary_10_1093_noajnl_vdab044
crossref_primary_10_1007_s00115_015_4313_x
crossref_primary_10_1038_s41598_018_32457_4
crossref_primary_10_3174_ajnr_A4050
crossref_primary_10_3390_cancers17050876
crossref_primary_10_1002_nbm_3140
crossref_primary_10_1016_j_mri_2021_10_001
crossref_primary_10_1177_0300060519827168
crossref_primary_10_1016_j_ejrad_2021_109842
crossref_primary_10_1158_1078_0432_CCR_17_3445
crossref_primary_10_17116_neiro20157965_14
crossref_primary_10_1016_j_acra_2017_10_016
crossref_primary_10_3174_ajnr_A6201
crossref_primary_10_1007_s00234_021_02780_1
crossref_primary_10_3390_jcm11092310
crossref_primary_10_1016_j_ijrobp_2019_07_011
crossref_primary_10_1186_s12880_021_00549_9
crossref_primary_10_1016_j_ejca_2016_10_037
crossref_primary_10_1007_s00261_020_02903_x
crossref_primary_10_18632_oncotarget_19820
crossref_primary_10_3390_cancers14194778
crossref_primary_10_1016_j_neulet_2016_04_021
crossref_primary_10_1007_s10334_021_00985_2
crossref_primary_10_1016_j_wneu_2019_07_121
crossref_primary_10_1007_s00234_024_03332_z
crossref_primary_10_1016_j_rx_2017_04_009
crossref_primary_10_1371_journal_pone_0113240
crossref_primary_10_1002_mrm_27101
crossref_primary_10_1002_mrm_25165
crossref_primary_10_3390_diagnostics13020173
crossref_primary_10_1016_j_mri_2018_04_014
crossref_primary_10_1016_j_neuro_2018_07_001
crossref_primary_10_1177_0284185117706608
crossref_primary_10_1007_s00429_013_0590_y
crossref_primary_10_1177_0284185119898656
crossref_primary_10_1002_nbm_3938
crossref_primary_10_1016_j_neuroimage_2018_04_075
crossref_primary_10_19052_sv_2322
crossref_primary_10_37174_2587_7593_2023_6_1_26_40
crossref_primary_10_1109_ACCESS_2019_2919241
crossref_primary_10_1103_PhysRevE_92_012707
crossref_primary_10_3389_fonc_2020_575272
crossref_primary_10_1016_j_mric_2021_06_001
crossref_primary_10_1371_journal_pone_0214238
crossref_primary_10_2214_AJR_12_10397
crossref_primary_10_1097_RCT_0000000000001314
crossref_primary_10_3390_bioengineering10030331
crossref_primary_10_1371_journal_pone_0089225
crossref_primary_10_1016_j_nic_2016_06_006
crossref_primary_10_1158_0008_5472_CAN_14_0383
crossref_primary_10_1177_1352458514556295
crossref_primary_10_1007_s00261_020_02776_0
crossref_primary_10_6009_jjrt_2022_2128
crossref_primary_10_3389_fneur_2019_01285
crossref_primary_10_1002_hbm_22317
crossref_primary_10_17116_neiro2019830315
crossref_primary_10_18632_oncotarget_23413
crossref_primary_10_1007_s00234_022_03000_0
crossref_primary_10_1148_radiol_14140130
crossref_primary_10_1259_bjro_20200009
crossref_primary_10_1007_s00234_018_2139_5
crossref_primary_10_1055_a_2083_8717
crossref_primary_10_1007_s00330_021_07959_x
crossref_primary_10_1002_mrm_29429
crossref_primary_10_1016_j_ejrad_2019_04_020
crossref_primary_10_1097_RMR_0000000000000234
crossref_primary_10_2463_jjmrm_2020_1710
crossref_primary_10_1097_RMR_0000000000000232
crossref_primary_10_3390_cancers15102760
crossref_primary_10_1002_mrm_28216
crossref_primary_10_1002_jmri_26012
crossref_primary_10_3174_ajnr_A3721
crossref_primary_10_1148_radiol_2016160094
crossref_primary_10_1007_s12640_019_00100_3
crossref_primary_10_1016_j_clineuro_2016_10_018
crossref_primary_10_1007_s00330_017_5108_1
crossref_primary_10_1016_j_ejrad_2019_108785
crossref_primary_10_1002_nbm_3188
crossref_primary_10_1016_j_clineuro_2022_107373
crossref_primary_10_1371_journal_pone_0087024
crossref_primary_10_1111_hae_13159
crossref_primary_10_3390_jcm11092599
crossref_primary_10_1002_nbm_3506
crossref_primary_10_20965_jaciii_2016_p0554
crossref_primary_10_2463_mrms_2013_0084
crossref_primary_10_1007_s00330_016_4529_6
crossref_primary_10_3390_metabo14060337
crossref_primary_10_1002_mrm_27959
crossref_primary_10_1016_j_ejrad_2017_08_019
crossref_primary_10_1097_RCT_0000000000000352
crossref_primary_10_1016_j_pnpbp_2016_07_011
crossref_primary_10_1111_jon_13113
crossref_primary_10_1002_mrm_26055
crossref_primary_10_1002_nbm_4386
crossref_primary_10_1016_j_ejrad_2013_12_023
crossref_primary_10_1002_nbm_3053
crossref_primary_10_7887_jcns_25_402
crossref_primary_10_1016_j_ymeth_2017_07_025
crossref_primary_10_1073_pnas_1812156116
crossref_primary_10_1016_j_jneumeth_2020_108908
crossref_primary_10_3390_cancers15030618
crossref_primary_10_1016_j_mri_2016_04_016
crossref_primary_10_1016_j_mri_2013_02_008
crossref_primary_10_1016_j_mri_2015_12_013
crossref_primary_10_1016_j_nicl_2018_04_011
crossref_primary_10_1016_j_nicl_2014_12_008
crossref_primary_10_1109_ACCESS_2021_3100546
crossref_primary_10_1016_j_ejrad_2020_109466
crossref_primary_10_1002_jmri_25090
crossref_primary_10_1002_mp_17718
crossref_primary_10_1002_mrm_25311
crossref_primary_10_1007_s00330_018_5977_y
crossref_primary_10_1016_j_ejrad_2018_11_003
crossref_primary_10_3174_ajnr_A7270
crossref_primary_10_1016_j_bbadis_2014_08_002
crossref_primary_10_1118_1_4946819
crossref_primary_10_1016_j_mri_2018_12_009
crossref_primary_10_3390_cancers15112992
crossref_primary_10_3390_cancers16152644
crossref_primary_10_5114_pjr_195521
crossref_primary_10_3174_ajnr_A5662
crossref_primary_10_3390_jcm10092030
crossref_primary_10_1016_j_neuroimage_2016_07_038
crossref_primary_10_1002_jmri_29202
crossref_primary_10_1016_j_cpet_2013_04_002
crossref_primary_10_1002_mrm_25308
crossref_primary_10_1002_mrm_28938
crossref_primary_10_1016_j_ejrad_2017_08_008
crossref_primary_10_1016_j_acra_2020_03_035
crossref_primary_10_3389_fnins_2023_1234049
crossref_primary_10_1002_jmri_26523
crossref_primary_10_3390_biomedicines12040871
crossref_primary_10_1021_acsomega_3c06328
crossref_primary_10_1002_mrm_27075
crossref_primary_10_3348_kjr_2016_17_5_598
crossref_primary_10_3174_ajnr_A5992
crossref_primary_10_1016_j_mri_2016_07_010
crossref_primary_10_1093_neuonc_not304
crossref_primary_10_1155_2015_842923
crossref_primary_10_1016_j_neuroimage_2020_117368
crossref_primary_10_1177_19714009221122204
crossref_primary_10_1007_s00234_015_1500_1
crossref_primary_10_1016_j_msard_2022_104070
crossref_primary_10_1016_j_neuroimage_2013_02_078
crossref_primary_10_1177_0271678X15622464
crossref_primary_10_1007_s00062_015_0469_9
crossref_primary_10_2463_mrms_2014_0139
crossref_primary_10_1097_MAO_0000000000002000
crossref_primary_10_3389_fnins_2016_00615
crossref_primary_10_1002_nbm_3094
crossref_primary_10_1016_j_jmr_2013_01_014
crossref_primary_10_1097_RLI_0000000000000796
crossref_primary_10_18632_oncotarget_5675
crossref_primary_10_1515_raon_2017_0010
crossref_primary_10_1007_s00234_016_1758_y
crossref_primary_10_1016_j_nicl_2019_101953
crossref_primary_10_1002_mp_12711
crossref_primary_10_1002_mrm_26656
crossref_primary_10_1016_j_ejrad_2022_110392
crossref_primary_10_3174_ajnr_A4311
crossref_primary_10_1016_j_ejmp_2017_07_002
crossref_primary_10_1002_nbm_3413
crossref_primary_10_1002_nbm_3535
crossref_primary_10_1002_nbm_3777
crossref_primary_10_2214_AJR_13_11365
Cites_doi 10.1016/j.mri.2009.05.003
10.1002/glia.440150303
10.1016/j.neuroimage.2011.03.016
10.1007/s00234-008-0488-1
10.1007/s11307-007-0115-2
10.1016/j.neuroimage.2008.06.041
10.1007/s00401-007-0243-4
10.1212/WNL.59.6.947
10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T
10.1002/mrm.22835
10.1002/mrm.22603
10.1002/mrm.21890
10.1007/BF00598951
10.1002/mrm.20508
10.1148/radiol.2383050059
10.1053/crad.2001.0741
10.3174/ajnr.A1254
10.1002/nbm.1544
10.1002/jmri.20217
10.1002/nbm.1506
10.1023/A:1023977520909
10.1016/j.neuroimage.2008.04.237
10.1148/radiol.09090819
10.1002/jmri.1076
10.2214/ajr.159.3.1503032
10.1148/radiology.174.2.2153310
10.1007/s00234-007-0253-x
10.1109/TMI.2009.2037915
10.1002/nbm.1543
10.1002/jmri.21604
10.1016/j.neuroimage.2011.06.006
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1148/radiol.12110927
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 501
ExternalDocumentID 22403168
25785020
10_1148_radiol_12110927
Genre Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
AFOSN
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c426t-9dd6ca782cf51053039dbef61701ee46f1f57b0124cb38d88600fe9d825517743
ISSN 0033-8419
1527-1315
IngestDate Thu Oct 02 10:18:05 EDT 2025
Fri Sep 05 06:10:04 EDT 2025
Mon Jul 21 06:02:18 EDT 2025
Mon Jul 21 09:13:20 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Wed Oct 01 02:58:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nuclear medicine
Nervous system diseases
Glioma
Central nervous system disease
Radiology
Diffusion imaging
Medical imagery
Tumor
Nuclear magnetic resonance imaging
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-9dd6ca782cf51053039dbef61701ee46f1f57b0124cb38d88600fe9d825517743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22403168
PQID 1008824790
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1323810934
proquest_miscellaneous_1008824790
pubmed_primary_22403168
pascalfrancis_primary_25785020
crossref_primary_10_1148_radiol_12110927
crossref_citationtrail_10_1148_radiol_12110927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oak Brook, IL
PublicationPlace_xml – name: Oak Brook, IL
– name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2012
Publisher Radiological Society of North America
Publisher_xml – name: Radiological Society of North America
References r2
r3
r4
r5
r6
r7
r8
r9
Stadnik TW (r31) 2001; 22
r30
r10
r12
r11
r33
r14
r13
r16
r15
r18
r17
r19
r21
r20
r23
r22
r25
Castillo M (r32) 2001; 22
r24
r27
r26
r29
Cha S (r34) 2006; 27
r28
r1
References_xml – ident: r24
  doi: 10.1016/j.mri.2009.05.003
– ident: r25
  doi: 10.1002/glia.440150303
– ident: r28
  doi: 10.1016/j.neuroimage.2011.03.016
– ident: r27
  doi: 10.1007/s00234-008-0488-1
– ident: r13
  doi: 10.1007/s11307-007-0115-2
– ident: r30
  doi: 10.1016/j.neuroimage.2008.06.041
– volume: 22
  start-page: 969
  issue: 5
  year: 2001
  ident: r31
  publication-title: AJNR Am J Neuroradiol
– ident: r1
  doi: 10.1007/s00401-007-0243-4
– volume: 22
  start-page: 60
  issue: 1
  year: 2001
  ident: r32
  publication-title: AJNR Am J Neuroradiol
– ident: r21
  doi: 10.1212/WNL.59.6.947
– ident: r12
  doi: 10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T
– ident: r17
  doi: 10.1002/mrm.22835
– ident: r16
  doi: 10.1002/mrm.22603
– volume: 27
  start-page: 475
  issue: 3
  year: 2006
  ident: r34
  publication-title: AJNR Am J Neuroradiol
– ident: r15
  doi: 10.1002/mrm.21890
– ident: r22
  doi: 10.1007/BF00598951
– ident: r10
  doi: 10.1002/mrm.20508
– ident: r4
  doi: 10.1148/radiol.2383050059
– ident: r5
  doi: 10.1053/crad.2001.0741
– ident: r33
  doi: 10.3174/ajnr.A1254
– ident: r26
  doi: 10.1002/nbm.1544
– ident: r3
  doi: 10.1002/jmri.20217
– ident: r8
  doi: 10.1002/nbm.1506
– ident: r29
  doi: 10.1023/A:1023977520909
– ident: r9
  doi: 10.1016/j.neuroimage.2008.04.237
– ident: r23
  doi: 10.1148/radiol.09090819
– ident: r18
  doi: 10.1002/jmri.1076
– ident: r6
  doi: 10.2214/ajr.159.3.1503032
– ident: r20
  doi: 10.1148/radiology.174.2.2153310
– ident: r2
  doi: 10.1007/s00234-007-0253-x
– ident: r7
  doi: 10.1109/TMI.2009.2037915
– ident: r14
  doi: 10.1002/nbm.1543
– ident: r19
  doi: 10.1002/jmri.21604
– ident: r11
  doi: 10.1016/j.neuroimage.2011.06.006
SSID ssj0014587
Score 2.530972
Snippet To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. The institutional review board approved this...
To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.PURPOSETo assess the diagnostic accuracy of...
PURPOSE: To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas. MATERIALS AND METHODS: The...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 492
SubjectTerms Adult
Aged
Anisotropy
Area Under Curve
Biological and medical sciences
Brain Neoplasms - pathology
Contrast Media
Diffusion Magnetic Resonance Imaging - methods
Female
Glioma - pathology
Humans
Image Interpretation, Computer-Assisted
Imaging, Three-Dimensional
Investigative techniques, diagnostic techniques (general aspects)
Male
Medical sciences
Meglumine
Middle Aged
Neoplasm Grading
Neurology
Organometallic Compounds
Prospective Studies
ROC Curve
Sensitivity and Specificity
Statistics, Nonparametric
Tumors of the nervous system. Phacomatoses
Title Gliomas: Diffusion Kurtosis MR Imaging in Grading
URI https://www.ncbi.nlm.nih.gov/pubmed/22403168
https://www.proquest.com/docview/1008824790
https://www.proquest.com/docview/1323810934
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddB2Mwxr6XdSse9GEQlNmRbMt9G-3WNiWlZO3oW5BkCTw2p7j2y_763Vmy0_SLbi8mKMrF1p1Od-e73xGyBS6JtoZlVKc8pFzljEqmFZU6VJFJ9NhKDOhPj5L9Uz45i8-WSextdUmtRvrPjXUl_8NVGAO-YpXsP3C2JwoD8Bn4C1fgMFzvxeO9XwWm96BXv1tY22Dka3jYVPUCYUams-HBb9eEqCiHe5Xsj6kOkBtGVqLqP2Cz78jG9-r4vnCIxe4rU0npynsmGOvvIzPFT-XbrE2WgnZsMMvGBXHa4PNwNrocX8BEjS6br9OZjFHBvWIzXk2OUxoxV4jZ6dGx11TFJX_WaUXu2t35AzZ21K_rbo71CFX76Ah6EYWZgw1YRcm-cnr1OYWuwlrMHYF5R-ABeTgGhY9dPXYPDvsXTDwWDk7VP5xHfQICn6_cwYrB8uRcXsDesa7pye1eSWudnDwjT71bEXxxMvKcrJnyBXk09YkTL0nkRWU76AUl6AQlmM4CLyhBUQZeUF6R029fT3b2qe-WQTVYWTXN8jzREgw-bdFoBtMky5WxLeC-MTyxkY1TBQzmWjGRCwGmrjVZLsCpjMAJYK_JerkozVsSJCoDN1QJprTkaR6qWPNUh6HMUyFjng7IqFuSufZQ8tjRBFb9ZiYMyKf-B-cOReX2qZsra9zPx7MlBudmQD52iz4HVYjvt2RpFs0Fwm-Dv8jT7K45DG3UMGN8QN44ji3_AbEpo0S8u__dbpDHyz3znqzXVWM-gJVaq81W3v4CDfWN7Q
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gliomas%3A+Diffusion+Kurtosis+MR+Imaging+in+Grading&rft.jtitle=Radiology&rft.au=Van+Cauter%2C+Sofie&rft.au=Veraart%2C+Jelle&rft.au=Sijbers%2C+Jan&rft.au=Peeters%2C+Ronald+R.&rft.date=2012-05-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=263&rft.issue=2&rft.spage=492&rft.epage=501&rft_id=info:doi/10.1148%2Fradiol.12110927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_12110927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon