Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to...
Saved in:
Published in | Metabolic engineering Vol. 32; pp. 82 - 94 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Belgium
Elsevier Inc
01.11.2015
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1096-7176 1096-7184 1096-7184 |
DOI | 10.1016/j.ymben.2015.09.004 |
Cover
Abstract | Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.
•First de novo terpenoid production in an engineered methylotrophic bacterium.
•Introduction of the mevalonate pathway from Myxococcus xanthus.•Flux balancing by ribosome binding site optimizations.•Up to 75mg/L α-humulene in shake flask cultivations.•Up to 1.65g/L α-humulene in methanol limited fed-batch fermentation. |
---|---|
AbstractList | Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. •First de novo terpenoid production in an engineered methylotrophic bacterium. •Introduction of the mevalonate pathway from Myxococcus xanthus.•Flux balancing by ribosome binding site optimizations.•Up to 75mg/L α-humulene in shake flask cultivations.•Up to 1.65g/L α-humulene in methanol limited fed-batch fermentation. Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid alpha-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of alpha-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L alpha-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of alpha-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized alpha-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. (C) 2015 International Metabolic Engineering Society. |
Author | Schrader, Jens Peyraud, Rémi Lubuta, Patrice Kroner, Cora Sonntag, Frank Horst, Angelika Buchhaupt, Markus |
Author_xml | – sequence: 1 givenname: Frank surname: Sonntag fullname: Sonntag, Frank organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany – sequence: 2 givenname: Cora surname: Kroner fullname: Kroner, Cora organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany – sequence: 3 givenname: Patrice surname: Lubuta fullname: Lubuta, Patrice organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany – sequence: 4 givenname: Rémi surname: Peyraud fullname: Peyraud, Rémi organization: INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France – sequence: 5 givenname: Angelika surname: Horst fullname: Horst, Angelika organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany – sequence: 6 givenname: Markus surname: Buchhaupt fullname: Buchhaupt, Markus organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany – sequence: 7 givenname: Jens surname: Schrader fullname: Schrader, Jens email: schrader@dechema.de organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26369439$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02639651$$DView record in HAL |
BookMark | eNqFkc1u1DAUhS1URH_gCZCQl7CYcB07znjBoqoKRRrEBtaW49x0PErsqe2MOo_Fi_BMeJi2CxZl5aur7xz5nnNOTnzwSMhbBhUDJj9uqv3Uoa9qYE0FqgIQL8gZAyUXLVuKk6e5lafkPKUNAGONYq_IaS25VIKrM-Kv_a3ziNH5W_oN83o_hs7YXBbzRPE-h3g3o090CJH2SH3YBZr2Pq8xuUTDQMtEE6a72RXRFn1wPf39a7Gep3lEj3SIYaJTcTY-jK_Jy8GMCd88vBfk5-frH1c3i9X3L1-vLlcLK2qZF0umRN82HfRC8sbwYZC9YvUALQxStJ1oFYquB9NaxcEWrEbOlrxrOUjeMX5BPhx912bU2-gmE_c6GKdvLlf6sIMSgZIN2x3Y90d2G0O5NWU9uWRxHI3HMCddQwlONEzW_0VZyzlTzbLmBX33gM7dhP3TJx6jL4A6AjaGlCIO2rpssgs-R-NGzUAfatYb_bdmfahZg9Kl5qLl_2gf7Z9XfTqqsCS_cxh1sg69xd5FtFn3wT2r_wOz6MMM |
CitedBy_id | crossref_primary_10_3390_microorganisms9061236 crossref_primary_10_1016_j_ymben_2022_03_008 crossref_primary_10_1186_s13068_021_02063_0 crossref_primary_10_1002_mbo3_1325 crossref_primary_10_1186_s12934_024_02583_y crossref_primary_10_1186_s12864_024_10923_w crossref_primary_10_1002_biot_202200402 crossref_primary_10_1016_j_ymben_2020_11_005 crossref_primary_10_1371_journal_pone_0154043 crossref_primary_10_3390_catal9110883 crossref_primary_10_1039_D1GC02866A crossref_primary_10_1186_s13068_020_01846_1 crossref_primary_10_1002_biot_201900356 crossref_primary_10_1186_s12934_018_0949_0 crossref_primary_10_1002_bbb_1773 crossref_primary_10_1007_s11274_021_02995_7 crossref_primary_10_3389_fbioe_2022_1050740 crossref_primary_10_1039_C9NP00016J crossref_primary_10_1093_femsle_fny241 crossref_primary_10_1016_j_ymben_2020_04_011 crossref_primary_10_3389_fmicb_2018_01773 crossref_primary_10_1021_acssynbio_9b00220 crossref_primary_10_1002_biot_201700679 crossref_primary_10_1111_jam_15159 crossref_primary_10_1039_C9GC03950C crossref_primary_10_1016_j_copbio_2019_10_002 crossref_primary_10_1016_j_resconrec_2024_107827 crossref_primary_10_3389_fmicb_2021_791089 crossref_primary_10_1016_j_gce_2022_10_005 crossref_primary_10_1016_j_synbio_2023_06_001 crossref_primary_10_1002_bit_27788 crossref_primary_10_1016_j_jbiotec_2016_07_022 crossref_primary_10_1016_j_biortech_2019_122337 crossref_primary_10_1126_science_aag0804 crossref_primary_10_1186_s12934_019_1054_8 crossref_primary_10_1016_j_bej_2024_109617 crossref_primary_10_1016_j_cub_2017_07_025 crossref_primary_10_1016_j_foodres_2019_108851 crossref_primary_10_1021_acs_jafc_7b00473 crossref_primary_10_1016_j_copbio_2018_01_012 crossref_primary_10_1021_acssynbio_6b00052 crossref_primary_10_1186_s12934_023_02275_z crossref_primary_10_1021_acs_jafc_1c05897 crossref_primary_10_1360_SSC_2024_0161 crossref_primary_10_1007_s00253_020_10455_9 crossref_primary_10_1038_ncomms15188 crossref_primary_10_1016_j_copbio_2019_07_001 crossref_primary_10_1016_j_tibtech_2022_10_005 crossref_primary_10_1016_j_ymben_2018_04_003 crossref_primary_10_1016_j_ymben_2019_10_004 crossref_primary_10_1016_j_ymben_2018_04_010 crossref_primary_10_3390_molecules27248684 crossref_primary_10_1016_j_procbio_2024_01_027 crossref_primary_10_1007_s10482_023_01880_7 crossref_primary_10_1016_j_cofs_2018_03_005 crossref_primary_10_1002_ange_201711302 crossref_primary_10_1038_s41467_018_03937_y crossref_primary_10_1021_acs_jafc_9b07290 crossref_primary_10_1021_acssynbio_7b00229 crossref_primary_10_1186_s12934_017_0798_2 crossref_primary_10_3389_fbioe_2022_874612 crossref_primary_10_1007_s12257_022_0154_1 crossref_primary_10_1002_bit_28176 crossref_primary_10_1111_jam_14521 crossref_primary_10_1016_j_ymben_2018_07_010 crossref_primary_10_55544_jrasb_1_2_8 crossref_primary_10_1016_j_copbio_2021_12_001 crossref_primary_10_1016_j_biotechadv_2020_107628 crossref_primary_10_1039_D2CS00309K crossref_primary_10_1186_s13068_018_1265_y crossref_primary_10_1007_s12010_017_2673_3 crossref_primary_10_1002_cite_202000108 crossref_primary_10_1111_1751_7915_14239 crossref_primary_10_1016_j_bej_2016_12_001 crossref_primary_10_1038_s41560_018_0197_x crossref_primary_10_1186_s13068_022_02160_8 crossref_primary_10_3390_microorganisms12030500 crossref_primary_10_1002_anie_201711302 crossref_primary_10_1016_j_ymben_2016_11_010 crossref_primary_10_1016_j_biortech_2023_130104 |
Cites_doi | 10.1016/j.orggeochem.2010.07.003 10.1016/j.tibtech.2008.10.009 10.1128/JB.00460-09 10.1007/s00253-013-5456-y 10.1021/mp700151b 10.1128/JB.62.3.293-300.1951 10.1073/pnas.0810932106 10.1128/AEM.69.12.7563-7566.2003 10.1111/j.1574-6968.1998.tb13175.x 10.1016/0734-9750(95)00004-A 10.1007/s00253-008-1724-7 10.1002/bit.10470 10.1016/j.ejphar.2007.04.059 10.1128/MMBR.60.2.439-471.1996 10.1038/nbt.1568 10.1038/ncomms1494 10.1186/1752-0509-4-45 10.1099/00221287-147-8-2065 10.1016/j.ymben.2012.01.007 10.1038/nbt.2689 10.1186/1471-2105-9-65 10.1016/j.ymben.2011.07.001 10.1126/science.1191652 10.1111/j.1574-6968.2000.tb09423.x 10.1186/s13068-014-0156-0 10.1515/znc-1979-3-404 10.1128/AEM.71.6.3294-3301.2005 10.1016/j.celrep.2011.12.003 10.1016/j.ymben.2008.07.007 10.1016/j.procbio.2011.05.012 10.1021/sb4001382 10.1128/AAC.49.6.2474-2478.2005 10.1021/ol026205p 10.1007/s00425-008-0700-x 10.1074/jbc.M505070200 10.1039/c3np70047j 10.1016/j.tetlet.2015.04.042 10.1126/science.1155165 10.1007/BF00169931 10.1271/bbb.100532 10.1016/j.jep.2006.09.032 10.1055/s-2006-962205 10.1186/s12934-014-0170-8 10.1371/journal.pone.0007831 10.1016/j.ymben.2006.11.002 10.1016/j.bcp.2012.07.015 10.1146/annurev-biochem-052010-100934 10.1128/AEM.02296-13 10.1002/bit.21581 10.1042/bj0810465 10.1016/0378-1119(83)90040-9 10.1186/1752-0509-5-189 10.1038/nbt833 10.1007/s00253-013-5361-4 10.1186/1475-2859-9-70 10.1093/nar/15.3.1281 10.1038/nature11478 10.1016/j.ymben.2015.03.010 10.1007/s00253-013-5490-9 10.1371/journal.pone.0005584 10.1016/S0378-1097(03)00956-X 10.1271/bbb.66.1619 10.1016/j.ymben.2014.12.008 10.1002/biot.200900220 |
ContentType | Journal Article |
Copyright | 2015 International Metabolic Engineering Society Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 International Metabolic Engineering Society – notice: Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.ymben.2015.09.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1096-7184 |
EndPage | 94 |
ExternalDocumentID | oai_HAL_hal_02639651v1 26369439 10_1016_j_ymben_2015_09_004 S1096717615001081 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LG5 LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K UHS XPP ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c426t-8194d75b0d4635a3ff6d912f070f647b479e4bd0a7c930c0d42e3183b73063b13 |
IEDL.DBID | .~1 |
ISSN | 1096-7176 1096-7184 |
IngestDate | Fri Sep 12 12:51:22 EDT 2025 Sun Sep 28 03:15:59 EDT 2025 Sat Sep 27 23:30:31 EDT 2025 Wed Feb 19 02:40:55 EST 2025 Tue Jul 01 00:51:23 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 Fri Feb 23 02:37:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Terpenoids Alpha-humulene Methylobacterium extorquens Mevalonate pathway Diapocarotenoids Methanol HETEROLOGOUS MEVALONATE PATHWAY ESCHERICHIA-COLI BIOSYNTHETIC-PATHWAY METHANOTROPHIC BACTERIA CODON ADAPTATION INDEX CORDIA-VERBENACEA SACCHAROMYCES-CEREVISIAE ETHYLMALONYL-COA PATHWAY GENE-EXPRESSION MICROBIAL-PRODUCTION |
Language | English |
License | Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-8194d75b0d4635a3ff6d912f070f647b479e4bd0a7c930c0d42e3183b73063b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26369439 |
PQID | 1733195823 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02639651v1 proquest_miscellaneous_2000145162 proquest_miscellaneous_1733195823 pubmed_primary_26369439 crossref_citationtrail_10_1016_j_ymben_2015_09_004 crossref_primary_10_1016_j_ymben_2015_09_004 elsevier_sciencedirect_doi_10_1016_j_ymben_2015_09_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Belgium |
PublicationPlace_xml | – name: Belgium |
PublicationTitle | Metabolic engineering |
PublicationTitleAlternate | Metab Eng |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Harada, Yu, Okamoto, Kuzuyama, Utsumi, Misawa (bib21) 2009; 81 Peyraud, Kiefer, Christen, Massou, Portais, Vorholt (bib47) 2009; 106 Bélanger, Figueira, Bourque, Morel, Béland, Laramée, Groleau, Mı́guez (bib5) 2004; 231 Kiefer, Buchhaupt, Christen, Kaup, Schrader, Vorholt (bib28) 2009; 4 Chou, Marx (bib12) 2012; 1 Pelz, Wieland, Putzbach, Hentschel, Albert, Gotz (bib43) 2005; 280 Pitera, Paddon, Newman, Keasling (bib49) 2007; 9 Nowroozi, Baidoo, Ermakov, Redding-Johanson, Batth, Petzold, Keasling (bib37) 2014; 98 Sonntag, Müller, Kiefer, Vorholt, Schrader, Buchhaupt (bib63) 2015 Renninger, N.S., McPhee, D.J., 2008. Fuel Compositions Comprising Farnesane and Farnesane Derivatives and Method of Making and Using Same. US Patent 7399323. Rocha, Maia, Evangelista, Vilaca, Soares, Pinto, Nielsen, Patil, Ferreira, Rocha (bib54) 2010; 4 Hanson, Hanson (bib20) 1996; 60 Entian, Koetter (bib14) 1998 Figueira, Laramee, Murrell, Groleau, Miguez (bib16) 2000; 193 Müller, Meyer, Litsanov, Kiefer, Potthoff, Heux, Quax, Wendisch, Brautaset, Portais, Vorholt (bib35) 2015; 28 Prasannan, Kalesh, Shanmugam, Nachiyappan, Ramachandran, Nguyen, Kumar, Lakshmanan, Ahn, Sethi (bib50) 2012; 84 Sharp, Li (bib61) 1987; 15 Bourque, Pomerleau, Groleau (bib8) 1995; 44 Kitayama (bib29) 2011; 75 Kleinig, Schmitt, Meister, Englert, Thommen (bib1001) 1979; 34c Fernandes, Passos, Medeiros, da Cunha, Ferreira, Campos, Pianowski, Calixto (bib15) 2007; 569 Fitzgerald, Lidstrom (bib17) 2003; 81 Sarria, Wong, Martín, Keasling, Peralta-Yahya (bib58) 2014; 3 Schrader, Schilling, Holtmann, Sell, Filho, Marx, Vorholt (bib60) 2009; 27 Hu, Corey (bib24) 2002; 4 Bradley, Pearson, Sáenz, Marx (bib9) 2010; 41 Peyraud, Schneider, Kiefer, Massou, Vorholt, Portais (bib48) 2011; 5 Peralta-Yahya, Ouellet, Chan, Mukhopadhyay, Keasling, Lee (bib45) 2011; 2 Peralta-Yahya, Zhang, del Cardayre, Keasling (bib46) 2012; 488 White (bib71) 2008; 320 Scalcinati, Knuf, Partow, Chen, Maury, Schalk, Daviet, Nielsen, Siewers (bib59) 2012; 14 Van Dien, Marx, O׳Brien, Lidstrom (bib68) 2003; 69 Hofer, Choi, Osborne, Miguez, Vermette, Groleau (bib22) 2010; 9 Puigbo, Bravo, Garcia-Vallve (bib51) 2008; 9 Chandran, Kealey, Reeves (bib11) 2011; 46 Katsiotis, Langezaal, Scheffer (bib27) 1989; 55 Ajikumar, Xiao, Tyo, Wang, Simeon, Leonard, Mucha, Phon, Pfeifer, Stephanopoulos (bib2) 2010; 330 Ochsner, Sonntag, Buchhaupt, Schrader, Vorholt (bib38) 2014; 99 Kalyuzhnaya, Puri, Lidstrom (bib26) 2015; 29 Kaczmarczyk, Vorholt, Francez-Charlot (bib25) 2013; 79 Hu, Lidstrom (bib23) 2014; 7 Trombetta, Castelli, Sarpietro, Venuti, Cristani, Daniele, Saija, Mazzanti, Bisignano (bib67) 2005; 49 Stevens (bib64) 1992; vol. 7 Dahl, Zhang, Alonso-Gutierrez, Baidoo, Batth, Redding-Johanson, Petzold, Mukhopadhyay, Lee, Adams, Keasling (bib13) 2013; 31 Osawa, Kaseya, Koue, Schrader, Knief, Vorholt, Sandmann, Shindo (bib40) 2015; 56 Glick (bib19) 1995; 13 Zhao, Chang, Xiao, Liu, Liu (bib73) 2013; 82 Tao, Schenzle, Odom, Cheng (bib65) 2005; 71 Vuilleumier, Chistoserdova, Lee, Bringel, Lajus, Zhou, Gourion, Barbe, Chang, Cruveiller, Dossat, Gillett, Gruffaz, Haugen, Hourcade, Levy, Mangenot, Muller, Nadalig, Pagni, Penny, Peyraud, Robinson, Roche, Rouy, Saenampechek, Salvignol, Vallenet, Wu, Marx, Vorholt, Olson, Kaul, Weissenbach, Médigue, Lidstrom (bib69) 2009; 4 Bertau, Offermanns, Plass, Schmidt, Wernicke (bib7) 2014 Kuzuyama (bib30) 2002; 66 Sambrook (bib57) 2001 Ajikumar, Tyo, Carlsen, Mucha, Phon, Stephanopoulos (bib1) 2008; 5 Asadollahi, Maury, Møller, Nielsen, Schalk, Clark, Nielsen (bib4) 2008; 99 Mi, Becher, Lubuta, Dany, Tusch, Schewe, Buchhaupt, Schrader (bib34) 2014; 13 Orita, Nishikawa, Nakamura, Fukui (bib39) 2014; 98 Bertani (bib6) 1951; 62 Peralta-Yahya, Keasling (bib44) 2010; 5 Salis (bib55) 2011; vol. 498 Toyama, Anthony, Lidstrom (bib66) 1998; 166 Passos, Fernandes, da Cunha, Ferreira, Pianowski, Campos, Calixto (bib41) 2007; 110 Sonntag, Buchhaupt, Schrader (bib62) 2014; 98 Ma, Garcia, Redding-Johanson, Friedland, Chan, Batth, Haliburton, Chivian, Keasling, Petzold, Lee, Chhabra (bib31) 2011; 13 Salis, Mirsky, Voigt (bib56) 2009; 27 Norrander, Kempe, Messing (bib36) 1983; 26 Yu, Okamto, Nakasone, Adachi, Matsuda, Harada, Misawa, Utsumi (bib72) 2008; 227 Breitmaier (bib10) 2006 Peel, Quayle (bib42) 1961; 81 Anthony, Anthony, Nowroozi, Kwon, Newman, Keasling (bib3) 2009; 11 Fraga (bib18) 2013; 30 Marx, Lidstrom (bib33) 2001; 147 Martin, Pitera, Withers, Newman, Keasling (bib32) 2003; 21 Renninger, N.S., Newman, J., Reiling, K.K., Regentin, R., Paddon, C.J., 2010. Production of Isoprenoids. US Patent 7659097 B2. Welander, Hunter, Zhang, Sessions, Summons, Newman (bib70) 2009; 191 Vuilleumier (10.1016/j.ymben.2015.09.004_bib69) 2009; 4 10.1016/j.ymben.2015.09.004_bib53 Hanson (10.1016/j.ymben.2015.09.004_bib20) 1996; 60 Norrander (10.1016/j.ymben.2015.09.004_bib36) 1983; 26 10.1016/j.ymben.2015.09.004_bib52 Osawa (10.1016/j.ymben.2015.09.004_bib40) 2015; 56 Hu (10.1016/j.ymben.2015.09.004_bib24) 2002; 4 Marx (10.1016/j.ymben.2015.09.004_bib33) 2001; 147 Chou (10.1016/j.ymben.2015.09.004_bib12) 2012; 1 Kaczmarczyk (10.1016/j.ymben.2015.09.004_bib25) 2013; 79 Salis (10.1016/j.ymben.2015.09.004_bib56) 2009; 27 Van Dien (10.1016/j.ymben.2015.09.004_bib68) 2003; 69 Orita (10.1016/j.ymben.2015.09.004_bib39) 2014; 98 Schrader (10.1016/j.ymben.2015.09.004_bib60) 2009; 27 Hofer (10.1016/j.ymben.2015.09.004_bib22) 2010; 9 Pitera (10.1016/j.ymben.2015.09.004_bib49) 2007; 9 Figueira (10.1016/j.ymben.2015.09.004_bib16) 2000; 193 Ajikumar (10.1016/j.ymben.2015.09.004_bib2) 2010; 330 Sonntag (10.1016/j.ymben.2015.09.004_bib63) 2015 Nowroozi (10.1016/j.ymben.2015.09.004_bib37) 2014; 98 Peel (10.1016/j.ymben.2015.09.004_bib42) 1961; 81 Entian (10.1016/j.ymben.2015.09.004_bib14) 1998 Sambrook (10.1016/j.ymben.2015.09.004_bib57) 2001 Trombetta (10.1016/j.ymben.2015.09.004_bib67) 2005; 49 Stevens (10.1016/j.ymben.2015.09.004_bib64) 1992; vol. 7 Tao (10.1016/j.ymben.2015.09.004_bib65) 2005; 71 Sharp (10.1016/j.ymben.2015.09.004_bib61) 1987; 15 Kleinig (10.1016/j.ymben.2015.09.004_bib1001) 1979; 34c Ma (10.1016/j.ymben.2015.09.004_bib31) 2011; 13 Ochsner (10.1016/j.ymben.2015.09.004_bib38) 2014; 99 Sarria (10.1016/j.ymben.2015.09.004_bib58) 2014; 3 Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib45) 2011; 2 Passos (10.1016/j.ymben.2015.09.004_bib41) 2007; 110 Kalyuzhnaya (10.1016/j.ymben.2015.09.004_bib26) 2015; 29 Fitzgerald (10.1016/j.ymben.2015.09.004_bib17) 2003; 81 Pelz (10.1016/j.ymben.2015.09.004_bib43) 2005; 280 Chandran (10.1016/j.ymben.2015.09.004_bib11) 2011; 46 Bélanger (10.1016/j.ymben.2015.09.004_bib5) 2004; 231 Müller (10.1016/j.ymben.2015.09.004_bib35) 2015; 28 Ajikumar (10.1016/j.ymben.2015.09.004_bib1) 2008; 5 Kitayama (10.1016/j.ymben.2015.09.004_bib29) 2011; 75 Katsiotis (10.1016/j.ymben.2015.09.004_bib27) 1989; 55 Zhao (10.1016/j.ymben.2015.09.004_bib73) 2013; 82 Asadollahi (10.1016/j.ymben.2015.09.004_bib4) 2008; 99 Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib46) 2012; 488 Peyraud (10.1016/j.ymben.2015.09.004_bib48) 2011; 5 Yu (10.1016/j.ymben.2015.09.004_bib72) 2008; 227 Breitmaier (10.1016/j.ymben.2015.09.004_bib10) 2006 Dahl (10.1016/j.ymben.2015.09.004_bib13) 2013; 31 Rocha (10.1016/j.ymben.2015.09.004_bib54) 2010; 4 Anthony (10.1016/j.ymben.2015.09.004_bib3) 2009; 11 Kiefer (10.1016/j.ymben.2015.09.004_bib28) 2009; 4 Mi (10.1016/j.ymben.2015.09.004_bib34) 2014; 13 Sonntag (10.1016/j.ymben.2015.09.004_bib62) 2014; 98 Bertau (10.1016/j.ymben.2015.09.004_bib7) 2014 Toyama (10.1016/j.ymben.2015.09.004_bib66) 1998; 166 Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib44) 2010; 5 Bradley (10.1016/j.ymben.2015.09.004_bib9) 2010; 41 Fraga (10.1016/j.ymben.2015.09.004_bib18) 2013; 30 Harada (10.1016/j.ymben.2015.09.004_bib21) 2009; 81 Prasannan (10.1016/j.ymben.2015.09.004_bib50) 2012; 84 Kuzuyama (10.1016/j.ymben.2015.09.004_bib30) 2002; 66 Peyraud (10.1016/j.ymben.2015.09.004_bib47) 2009; 106 Scalcinati (10.1016/j.ymben.2015.09.004_bib59) 2012; 14 Glick (10.1016/j.ymben.2015.09.004_bib19) 1995; 13 White (10.1016/j.ymben.2015.09.004_bib71) 2008; 320 Bourque (10.1016/j.ymben.2015.09.004_bib8) 1995; 44 Martin (10.1016/j.ymben.2015.09.004_bib32) 2003; 21 Hu (10.1016/j.ymben.2015.09.004_bib23) 2014; 7 Salis (10.1016/j.ymben.2015.09.004_bib55) 2011; vol. 498 Fernandes (10.1016/j.ymben.2015.09.004_bib15) 2007; 569 Welander (10.1016/j.ymben.2015.09.004_bib70) 2009; 191 Bertani (10.1016/j.ymben.2015.09.004_bib6) 1951; 62 Puigbo (10.1016/j.ymben.2015.09.004_bib51) 2008; 9 |
References_xml | – volume: 41 start-page: 1075 year: 2010 end-page: 1081 ident: bib9 article-title: Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis publication-title: Org. Geochem. – volume: 81 start-page: 263 year: 2003 end-page: 268 ident: bib17 article-title: Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-β-hydroxybutyrate-deficient strain of the facultative methylotroph publication-title: Biotechnol. Bioeng. – volume: 28 start-page: 190 year: 2015 end-page: 201 ident: bib35 article-title: Engineering publication-title: Metab. Eng. – volume: 46 start-page: 1703 year: 2011 end-page: 1710 ident: bib11 article-title: Microbial production of isoprenoids publication-title: Process. Biochem. – volume: 13 start-page: 588 year: 2011 end-page: 597 ident: bib31 article-title: Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases publication-title: Metab. Eng. – volume: 9 start-page: 193 year: 2007 end-page: 207 ident: bib49 article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in publication-title: Metab. Eng. – volume: 9 start-page: 70 year: 2010 ident: bib22 article-title: Production of functionalized polyhydroxyalkanoates by genetically modified publication-title: Microb. Cell Fact. – volume: 98 start-page: 3715 year: 2014 end-page: 3725 ident: bib39 article-title: Biosynthesis of polyhydroxyalkanoate copolymers from methanol by publication-title: Appl. Microbiol. Biotechnol. – volume: vol. 498 start-page: 19 year: 2011 end-page: 42 ident: bib55 article-title: The ribosome binding site calculator publication-title: Methods of Enzymology – volume: 62 start-page: 293 year: 1951 end-page: 300 ident: bib6 article-title: Studies on lysogenesis I: the mode of phage liberation by lysogenic publication-title: J. Bacteriol. – volume: 66 start-page: 1619 year: 2002 end-page: 1627 ident: bib30 article-title: Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units publication-title: Biosci. Biotechnol. Biochem. – volume: 166 start-page: 1 year: 1998 end-page: 7 ident: bib66 article-title: Construction of insertion and deletion mxa mutants of publication-title: FEMS Microbiol. Lett. – volume: 488 start-page: 320 year: 2012 end-page: 328 ident: bib46 article-title: Microbial engineering for the production of advanced biofuels publication-title: Nature – volume: 4 start-page: e5584 year: 2009 ident: bib69 article-title: genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources publication-title: PLoS One – volume: 13 start-page: 247 year: 1995 end-page: 261 ident: bib19 article-title: Metabolic load and heterologous gene expression publication-title: Biotechnol. Adv. – volume: 5 start-page: 167 year: 2008 end-page: 190 ident: bib1 article-title: Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms publication-title: Mol. Pharm. – volume: 13 start-page: 170 year: 2014 ident: bib34 article-title: De novo production of the monoterpenoid geranic acid by metabolically engineered publication-title: Microb. Cell Fact. – volume: 21 start-page: 796 year: 2003 end-page: 802 ident: bib32 article-title: Engineering a mevalonate pathway in publication-title: Nat. Biotechnol – volume: 4 start-page: 45 year: 2010 ident: bib54 article-title: OptFlux: an open-source software platform for in silico metabolic engineering publication-title: BMC Syst. Biol. – volume: 98 start-page: 4533 year: 2014 end-page: 4544 ident: bib62 article-title: Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in publication-title: Appl. Microbiol. Biotechnol. – volume: 30 start-page: 1226 year: 2013 end-page: 1264 ident: bib18 article-title: Natural sesquiterpenoids publication-title: Nat. Prod. Rep. – volume: 84 start-page: 1268 year: 2012 end-page: 1276 ident: bib50 article-title: Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer publication-title: Biochem. Pharmacol. – volume: 110 start-page: 323 year: 2007 end-page: 333 ident: bib41 article-title: Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from publication-title: J Ethnopharmacol. – volume: 99 start-page: 514 year: 2014 end-page: 534 ident: bib38 article-title: : methylotrophy and biotechnological applications publication-title: Appl. Microbiol. Biotechnol. – reference: Renninger, N.S., Newman, J., Reiling, K.K., Regentin, R., Paddon, C.J., 2010. Production of Isoprenoids. US Patent 7659097 B2. – volume: 11 start-page: 13 year: 2009 end-page: 19 ident: bib3 article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in publication-title: Metab. Eng. – volume: 147 start-page: 2065 year: 2001 end-page: 2075 ident: bib33 article-title: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria publication-title: Microbiology – volume: 191 start-page: 6145 year: 2009 end-page: 6156 ident: bib70 article-title: Hopanoids play a role in membrane integrity and ph homeostasis in publication-title: J. Bacteriol. – volume: 5 start-page: 189 year: 2011 ident: bib48 article-title: Genome-scale reconstruction and system level investigation of the metabolic network of publication-title: BMC Syst. Biol. – start-page: 119 year: 2006 end-page: 159 ident: bib10 article-title: Selected Syntheses of Terpenes. Terpenes – volume: 71 start-page: 3294 year: 2005 end-page: 3301 ident: bib65 article-title: Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde publication-title: Appl. Environ. Microbiol – volume: 9 start-page: 65 year: 2008 ident: bib51 article-title: E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI) publication-title: BMC Bioinform. – volume: 60 start-page: 439 year: 1996 end-page: 471 ident: bib20 article-title: Methanotrophic bacteria publication-title: Microbiol. Rev. – volume: 81 start-page: 915 year: 2009 end-page: 925 ident: bib21 article-title: Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered publication-title: Appl. Microbiol. Biotechnol. – volume: 98 start-page: 1567 year: 2014 end-page: 1581 ident: bib37 article-title: Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly publication-title: Appl. Microbiol. Biotechnol. – volume: 27 start-page: 946 year: 2009 end-page: 950 ident: bib56 article-title: Automated design of synthetic ribosome binding sites to control protein expression publication-title: Nat. Biotechnol. – volume: vol. 7 start-page: 242 year: 1992 end-page: 243 ident: bib64 article-title: Dictionary of terpenoids publication-title: Flavour and Fragrance Journal – volume: 320 start-page: 330 year: 2008 end-page: 334 ident: bib71 article-title: Qinghaosu (Artemisinin): the price of success publication-title: Science – volume: 5 start-page: 147 year: 2010 end-page: 162 ident: bib44 article-title: Advanced biofuel production in microbes publication-title: Biotechnol. J. – volume: 7 start-page: 156 year: 2014 ident: bib23 article-title: Metabolic engineering of publication-title: Biotechnol. Biofuels – volume: 79 start-page: 6795 year: 2013 end-page: 6802 ident: bib25 article-title: Cumate-inducible gene expression system for sphingomonads and other alphaproteobacteria publication-title: Appl. Environ. Microbiol. – volume: 56 start-page: 2791 year: 2015 end-page: 2794 ident: bib40 article-title: 4-[2- publication-title: Tetrahedron Lett. – volume: 49 start-page: 2474 year: 2005 end-page: 2478 ident: bib67 article-title: Mechanisms of antibacterial action of three monoterpenes publication-title: Antimicrob. Agents Chemother. – volume: 82 start-page: 497 year: 2013 end-page: 530 ident: bib73 article-title: Methylerythritol phosphate pathway of isoprenoid biosynthesis publication-title: Annu. Rev. Biochem. – volume: 569 start-page: 228 year: 2007 end-page: 236 ident: bib15 article-title: Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of publication-title: Eur. J. Pharmacol. – volume: 4 start-page: e7831 year: 2009 ident: bib28 article-title: Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions publication-title: PLoS One – volume: 106 start-page: 4846 year: 2009 end-page: 4851 ident: bib47 article-title: Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics publication-title: Proc. Natl. Acad. Sci. USA – year: 2001 ident: bib57 article-title: Molecular Cloning: A Laboratory Manual. In: Joseph Sambrook, David W. Russell (Eds.) – volume: 330 start-page: 70 year: 2010 end-page: 74 ident: bib2 article-title: Isoprenoid pathway optimization for Taxol precursor overproduction in publication-title: Science – volume: 75 start-page: 199 year: 2011 end-page: 207 ident: bib29 article-title: Attractive reactivity of a natural product, zerumbone publication-title: Biosci. Biotechnol. Biochem. – volume: 231 start-page: 197 year: 2004 end-page: 204 ident: bib5 article-title: Production of heterologous protein by publication-title: FEMS Microbiol. Lett. – volume: 227 start-page: 1291 year: 2008 end-page: 1299 ident: bib72 article-title: Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger ( publication-title: Planta – volume: 55 start-page: 634 year: 1989 ident: bib27 article-title: Analysis of the volatile compounds from cones of ten publication-title: Planta Medica – volume: 14 start-page: 91 year: 2012 end-page: 103 ident: bib59 article-title: Dynamic control of gene expression in publication-title: Metab. Eng. – volume: 26 start-page: 101 year: 1983 end-page: 106 ident: bib36 article-title: Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis publication-title: Gene – volume: 34c start-page: 181 year: 1979 end-page: 185 ident: bib1001 article-title: New C – volume: 193 start-page: 195 year: 2000 end-page: 200 ident: bib16 article-title: Production of green fluorescent protein by the methylotrophic bacterium publication-title: FEMS Microbiol. Lett. – year: 2014 ident: bib7 article-title: Methanol: The Basic Chemical and Energy Feedstock of the Future – volume: 15 start-page: 1281 year: 1987 end-page: 1295 ident: bib61 article-title: The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications publication-title: Nucleic Acids Res. – reference: Renninger, N.S., McPhee, D.J., 2008. Fuel Compositions Comprising Farnesane and Farnesane Derivatives and Method of Making and Using Same. US Patent 7399323. – volume: 1 start-page: 133 year: 2012 end-page: 140 ident: bib12 article-title: Optimization of gene expression through divergent mutational paths publication-title: Cell Rep. – volume: 27 start-page: 107 year: 2009 end-page: 115 ident: bib60 article-title: Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria publication-title: Trends Biotechnol. – volume: 280 start-page: 32493 year: 2005 end-page: 32498 ident: bib43 article-title: Structure and biosynthesis of staphyloxanthin from publication-title: J. Biol. Chem. – volume: 2 start-page: 483 year: 2011 ident: bib45 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat. Commun. – volume: 4 start-page: 2441 year: 2002 end-page: 2443 ident: bib24 article-title: Short syntheses of (±)-δ-araneosene and humulene utilizing a combination of four-component assembly and palladium-mediated cyclization publication-title: Org. Lett. – volume: 29 start-page: 142 year: 2015 end-page: 152 ident: bib26 article-title: Metabolic engineering in methanotrophic bacteria publication-title: Metabol. Eng. – start-page: 1 year: 2015 end-page: 13 ident: bib63 article-title: High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by publication-title: Appl. Microbiol. Biotechnol. – volume: 99 start-page: 666 year: 2008 end-page: 677 ident: bib4 article-title: Production of plant sesquiterpenes in publication-title: Biotechnol. Bioeng. – volume: 31 start-page: 1039 year: 2013 end-page: 1046 ident: bib13 article-title: Engineering dynamic pathway regulation using stress-response promoters publication-title: Nat. Biotechnol. – volume: 81 start-page: 465 year: 1961 end-page: 469 ident: bib42 article-title: Microbial growth on C1 compounds. I. Isolation and characterization of publication-title: Biochem. J. – volume: 3 start-page: 466 year: 2014 end-page: 475 ident: bib58 article-title: Microbial synthesis of pinene publication-title: ACS Synth. Biol. – volume: 69 start-page: 7563 year: 2003 end-page: 7566 ident: bib68 article-title: Genetic characterization of the carotenoid biosynthetic pathway in publication-title: Appl. Environ. Microbiol. – start-page: 431 year: 1998 end-page: 449 ident: bib14 article-title: Yeast Mutant and Plasmid Collections publication-title: Yeast Mutant and Plasmid Collections – volume: 44 start-page: 367 year: 1995 end-page: 376 ident: bib8 article-title: High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by publication-title: Appl. Microbiol. Biotechnol. – volume: 41 start-page: 1075 year: 2010 ident: 10.1016/j.ymben.2015.09.004_bib9 article-title: Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2010.07.003 – volume: 27 start-page: 107 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib60 article-title: Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2008.10.009 – volume: 191 start-page: 6145 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib70 article-title: Hopanoids play a role in membrane integrity and ph homeostasis in Rhodopseudomonas palustris TIE-1 publication-title: J. Bacteriol. doi: 10.1128/JB.00460-09 – volume: 98 start-page: 4533 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib62 article-title: Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5456-y – volume: 5 start-page: 167 year: 2008 ident: 10.1016/j.ymben.2015.09.004_bib1 article-title: Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms publication-title: Mol. Pharm. doi: 10.1021/mp700151b – volume: 62 start-page: 293 year: 1951 ident: 10.1016/j.ymben.2015.09.004_bib6 article-title: Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.62.3.293-300.1951 – volume: 106 start-page: 4846 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib47 article-title: Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810932106 – volume: 69 start-page: 7563 year: 2003 ident: 10.1016/j.ymben.2015.09.004_bib68 article-title: Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.12.7563-7566.2003 – volume: vol. 498 start-page: 19 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib55 article-title: The ribosome binding site calculator – volume: 166 start-page: 1 year: 1998 ident: 10.1016/j.ymben.2015.09.004_bib66 article-title: Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1998.tb13175.x – volume: 13 start-page: 247 year: 1995 ident: 10.1016/j.ymben.2015.09.004_bib19 article-title: Metabolic load and heterologous gene expression publication-title: Biotechnol. Adv. doi: 10.1016/0734-9750(95)00004-A – year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib7 – volume: 81 start-page: 915 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib21 article-title: Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1724-7 – volume: 81 start-page: 263 year: 2003 ident: 10.1016/j.ymben.2015.09.004_bib17 article-title: Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-β-hydroxybutyrate-deficient strain of the facultative methylotroph Methylobacterium extorquens AM1 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10470 – volume: 569 start-page: 228 year: 2007 ident: 10.1016/j.ymben.2015.09.004_bib15 article-title: Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2007.04.059 – volume: 60 start-page: 439 year: 1996 ident: 10.1016/j.ymben.2015.09.004_bib20 article-title: Methanotrophic bacteria publication-title: Microbiol. Rev. doi: 10.1128/MMBR.60.2.439-471.1996 – volume: 27 start-page: 946 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib56 article-title: Automated design of synthetic ribosome binding sites to control protein expression publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1568 – volume: 2 start-page: 483 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib45 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat. Commun. doi: 10.1038/ncomms1494 – volume: 4 start-page: 45 year: 2010 ident: 10.1016/j.ymben.2015.09.004_bib54 article-title: OptFlux: an open-source software platform for in silico metabolic engineering publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-45 – volume: 147 start-page: 2065 year: 2001 ident: 10.1016/j.ymben.2015.09.004_bib33 article-title: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria publication-title: Microbiology doi: 10.1099/00221287-147-8-2065 – volume: 14 start-page: 91 year: 2012 ident: 10.1016/j.ymben.2015.09.004_bib59 article-title: Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.01.007 – volume: 31 start-page: 1039 year: 2013 ident: 10.1016/j.ymben.2015.09.004_bib13 article-title: Engineering dynamic pathway regulation using stress-response promoters publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2689 – volume: 9 start-page: 65 year: 2008 ident: 10.1016/j.ymben.2015.09.004_bib51 article-title: E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI) publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-65 – start-page: 119 year: 2006 ident: 10.1016/j.ymben.2015.09.004_bib10 – volume: 13 start-page: 588 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib31 article-title: Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases publication-title: Metab. Eng. doi: 10.1016/j.ymben.2011.07.001 – volume: 330 start-page: 70 year: 2010 ident: 10.1016/j.ymben.2015.09.004_bib2 article-title: Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli publication-title: Science doi: 10.1126/science.1191652 – volume: 193 start-page: 195 year: 2000 ident: 10.1016/j.ymben.2015.09.004_bib16 article-title: Production of green fluorescent protein by the methylotrophic bacterium Methylobacterium extorquens publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2000.tb09423.x – volume: 7 start-page: 156 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib23 article-title: Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0156-0 – volume: 34c start-page: 181 year: 1979 ident: 10.1016/j.ymben.2015.09.004_bib1001 article-title: New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos publication-title: Z. Naturforsch. doi: 10.1515/znc-1979-3-404 – volume: 71 start-page: 3294 year: 2005 ident: 10.1016/j.ymben.2015.09.004_bib65 article-title: Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde publication-title: Appl. Environ. Microbiol doi: 10.1128/AEM.71.6.3294-3301.2005 – volume: 1 start-page: 133 year: 2012 ident: 10.1016/j.ymben.2015.09.004_bib12 article-title: Optimization of gene expression through divergent mutational paths publication-title: Cell Rep. doi: 10.1016/j.celrep.2011.12.003 – volume: 11 start-page: 13 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib3 article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene publication-title: Metab. Eng. doi: 10.1016/j.ymben.2008.07.007 – volume: 46 start-page: 1703 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib11 article-title: Microbial production of isoprenoids publication-title: Process. Biochem. doi: 10.1016/j.procbio.2011.05.012 – volume: 99 start-page: 514 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib38 article-title: Methylobacterium extorquens: methylotrophy and biotechnological applications publication-title: Appl. Microbiol. Biotechnol. – volume: 3 start-page: 466 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib58 article-title: Microbial synthesis of pinene publication-title: ACS Synth. Biol. doi: 10.1021/sb4001382 – volume: 49 start-page: 2474 year: 2005 ident: 10.1016/j.ymben.2015.09.004_bib67 article-title: Mechanisms of antibacterial action of three monoterpenes publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.6.2474-2478.2005 – volume: 4 start-page: 2441 year: 2002 ident: 10.1016/j.ymben.2015.09.004_bib24 article-title: Short syntheses of (±)-δ-araneosene and humulene utilizing a combination of four-component assembly and palladium-mediated cyclization publication-title: Org. Lett. doi: 10.1021/ol026205p – volume: 227 start-page: 1291 year: 2008 ident: 10.1016/j.ymben.2015.09.004_bib72 article-title: Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith) publication-title: Planta doi: 10.1007/s00425-008-0700-x – volume: 280 start-page: 32493 year: 2005 ident: 10.1016/j.ymben.2015.09.004_bib43 article-title: Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505070200 – volume: 30 start-page: 1226 year: 2013 ident: 10.1016/j.ymben.2015.09.004_bib18 article-title: Natural sesquiterpenoids publication-title: Nat. Prod. Rep. doi: 10.1039/c3np70047j – volume: 56 start-page: 2791 year: 2015 ident: 10.1016/j.ymben.2015.09.004_bib40 article-title: 4-[2-O-11Z-Octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid and 4-[2-O-9Z-hexadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid: new C30-carotenoids produced by Methylobacterium publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.04.042 – volume: 320 start-page: 330 year: 2008 ident: 10.1016/j.ymben.2015.09.004_bib71 article-title: Qinghaosu (Artemisinin): the price of success publication-title: Science doi: 10.1126/science.1155165 – volume: 44 start-page: 367 year: 1995 ident: 10.1016/j.ymben.2015.09.004_bib8 article-title: High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00169931 – volume: 75 start-page: 199 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib29 article-title: Attractive reactivity of a natural product, zerumbone publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100532 – volume: 110 start-page: 323 year: 2007 ident: 10.1016/j.ymben.2015.09.004_bib41 article-title: Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea publication-title: J Ethnopharmacol. doi: 10.1016/j.jep.2006.09.032 – volume: 55 start-page: 634 year: 1989 ident: 10.1016/j.ymben.2015.09.004_bib27 article-title: Analysis of the volatile compounds from cones of ten Humulus lupulus cultivars publication-title: Planta Medica doi: 10.1055/s-2006-962205 – ident: 10.1016/j.ymben.2015.09.004_bib52 – volume: 13 start-page: 170 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib34 article-title: De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida publication-title: Microb. Cell Fact. doi: 10.1186/s12934-014-0170-8 – volume: vol. 7 start-page: 242 year: 1992 ident: 10.1016/j.ymben.2015.09.004_bib64 article-title: Dictionary of terpenoids – volume: 4 start-page: e7831 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib28 article-title: Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions publication-title: PLoS One doi: 10.1371/journal.pone.0007831 – year: 2001 ident: 10.1016/j.ymben.2015.09.004_bib57 – start-page: 431 year: 1998 ident: 10.1016/j.ymben.2015.09.004_bib14 article-title: Yeast Mutant and Plasmid Collections – volume: 9 start-page: 193 year: 2007 ident: 10.1016/j.ymben.2015.09.004_bib49 article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli publication-title: Metab. Eng. doi: 10.1016/j.ymben.2006.11.002 – volume: 84 start-page: 1268 year: 2012 ident: 10.1016/j.ymben.2015.09.004_bib50 article-title: Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2012.07.015 – start-page: 1 year: 2015 ident: 10.1016/j.ymben.2015.09.004_bib63 article-title: High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains publication-title: Appl. Microbiol. Biotechnol. – volume: 82 start-page: 497 year: 2013 ident: 10.1016/j.ymben.2015.09.004_bib73 article-title: Methylerythritol phosphate pathway of isoprenoid biosynthesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-052010-100934 – volume: 79 start-page: 6795 year: 2013 ident: 10.1016/j.ymben.2015.09.004_bib25 article-title: Cumate-inducible gene expression system for sphingomonads and other alphaproteobacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02296-13 – volume: 99 start-page: 666 year: 2008 ident: 10.1016/j.ymben.2015.09.004_bib4 article-title: Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21581 – volume: 81 start-page: 465 year: 1961 ident: 10.1016/j.ymben.2015.09.004_bib42 article-title: Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM 1 publication-title: Biochem. J. doi: 10.1042/bj0810465 – volume: 26 start-page: 101 year: 1983 ident: 10.1016/j.ymben.2015.09.004_bib36 article-title: Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis publication-title: Gene doi: 10.1016/0378-1119(83)90040-9 – volume: 5 start-page: 189 year: 2011 ident: 10.1016/j.ymben.2015.09.004_bib48 article-title: Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-5-189 – volume: 21 start-page: 796 year: 2003 ident: 10.1016/j.ymben.2015.09.004_bib32 article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids publication-title: Nat. Biotechnol doi: 10.1038/nbt833 – ident: 10.1016/j.ymben.2015.09.004_bib53 – volume: 98 start-page: 1567 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib37 article-title: Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5361-4 – volume: 9 start-page: 70 year: 2010 ident: 10.1016/j.ymben.2015.09.004_bib22 article-title: Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-9-70 – volume: 15 start-page: 1281 year: 1987 ident: 10.1016/j.ymben.2015.09.004_bib61 article-title: The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications publication-title: Nucleic Acids Res. doi: 10.1093/nar/15.3.1281 – volume: 488 start-page: 320 year: 2012 ident: 10.1016/j.ymben.2015.09.004_bib46 article-title: Microbial engineering for the production of advanced biofuels publication-title: Nature doi: 10.1038/nature11478 – volume: 29 start-page: 142 year: 2015 ident: 10.1016/j.ymben.2015.09.004_bib26 article-title: Metabolic engineering in methanotrophic bacteria publication-title: Metabol. Eng. doi: 10.1016/j.ymben.2015.03.010 – volume: 98 start-page: 3715 year: 2014 ident: 10.1016/j.ymben.2015.09.004_bib39 article-title: Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5490-9 – volume: 4 start-page: e5584 year: 2009 ident: 10.1016/j.ymben.2015.09.004_bib69 article-title: Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources publication-title: PLoS One doi: 10.1371/journal.pone.0005584 – volume: 231 start-page: 197 year: 2004 ident: 10.1016/j.ymben.2015.09.004_bib5 article-title: Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation publication-title: FEMS Microbiol. Lett. doi: 10.1016/S0378-1097(03)00956-X – volume: 66 start-page: 1619 year: 2002 ident: 10.1016/j.ymben.2015.09.004_bib30 article-title: Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.66.1619 – volume: 28 start-page: 190 year: 2015 ident: 10.1016/j.ymben.2015.09.004_bib35 article-title: Engineering Escherichia coli for methanol conversion publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.12.008 – volume: 5 start-page: 147 year: 2010 ident: 10.1016/j.ymben.2015.09.004_bib44 article-title: Advanced biofuel production in microbes publication-title: Biotechnol. J. doi: 10.1002/biot.200900220 |
SSID | ssj0011591 |
Score | 2.4382262 |
Snippet | Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 82 |
SubjectTerms | Alpha-humulene binding sites Bioreactors Biotechnology carbon carotenoids Carotenoids - biosynthesis Computer Simulation Culture Media Diapocarotenoids farnesene Fermentation Life Sciences metabolic engineering Metabolic Engineering - methods Metabolic Networks and Pathways - genetics Methanol Methanol - metabolism Methylobacterium extorquens Methylobacterium extorquens - genetics Methylobacterium extorquens - metabolism Mevalonate pathway Mevalonic Acid - metabolism microorganisms mutants Myxococcus xanthus Plasmids prices raw materials ribosomes Saccharomyces cerevisiae Sesquiterpenes - metabolism sugars Terpenoids Zingiber zerumbet |
Title | Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol |
URI | https://dx.doi.org/10.1016/j.ymben.2015.09.004 https://www.ncbi.nlm.nih.gov/pubmed/26369439 https://www.proquest.com/docview/1733195823 https://www.proquest.com/docview/2000145162 https://hal.inrae.fr/hal-02639651 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQ4oFJeC6UyiCNh48RONsdV1Wp5tBeo1JsVv9RF3WRpNpX2wn_ij_CbmHGSVSvRHrgl0Vi2PM7MN8nMNwDvpTa85NxGJaKFSMiSR9oIEQnDJxN02IWVVOB8fJLNTsXnM3m2BQdDLQylVfa2v7PpwVr3T8b9bo6X8_n4G0f0jcEIMZpjUBHKr4XI6ax__LVJ80DAE7rmkXBE0gPzUMjxWi-0IxJULgPZad-t7R_e6d45pUnehkGDLzragcc9iGTTbp1PYMtVu_Cgayu53oVH10gGn0J17Y4dO1QMcYAEjuZ2wdA215eUTd0whK_MOlbVVzVr1hUiw2besNozvGKNa362VK68dFU9t-zP7-i8XbTosxyjEhVGrajLqr54BqdHh98PZlHfZSEy6J1XEUICYXOpYysQfJSp95kteOLRFvhM5FrkhRPaxmVuijQ2KJbQd9NUo23IUs3T57Bd1ZV7CQyDN228sUnspfAu1gUV3hovdVnGiZmMIBl2V5megpw6YVyoIdfshwoqUaQSFRcKVTKCD5tBy46B427xbFCbunGQFPqIuwe-QyVvpiDa7dn0q6JnGKemRSb5FR_B2-EMKHwP6edKWbm6bRSn5peFnCTp7TJJiEglz5IRvOgO0GY-nCIrcLde_e_6X8NDuuvqJPdge3XZujcImFZ6P7wR-3B_-unL7OQvpF0Vlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIgQcEJSfht8FcWQbr73rxMeqogqQ9EIr9bbaXa_VoMZO67hSLrwTL8IzMbO2oyLRHrjZzlhr7YxnvnFmvgH4qKwTRoicG0QLXCojuHVScunEeIwBO8sVNTjPjtLJifx6qk634KDvhaGyys73tz49eOvuyrDbzeFyPh9-F4i-MRkhRnNMKqj9-q4ki0Kj3vu5qfNAxBPG5pE0J_GeeigUea0X1hMLqlCB7bQb1_aP8HTnjOokbwKhIRgdPoZHHYpk--2DPoEtX-7AvXau5HoHHl5jGXwK5bUzNvOoGSIBCSTNzYKhc64uqZy6ZohfWe5ZWV1VrF6XCA3rec2qguERq3190VC_8tKX1Txnv3_xs2bRYNDyjHpUGM2iNmV1_gxODj8fH0x4N2aBOwzPK46YQOYjZaNcIvowSVGkeSbiAp1BkcqRlaPMS5tHZuSyJHIoFtOH08Sic0gTK5LnsF1Wpd8FhtmbdYXL46hQsvCRzajz1hXKGhPFbjyAuN9d7ToOchqFca77YrMfOqhEk0p0lGlUyQA-bW5athQct4unvdr0X5akMUjcfuMHVPJmCeLdnuxPNV3DRDXJUiWuxADe9zag8UWkf1dM6aum1oKmX2ZqHCc3y8QhJVUijQfwojWgzXq4RJrhbr383-d_B_cnx7Opnn45-vYKHtAvbdPka9heXTb-DaKnlX0b3o4_2sAXJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Methylobacterium+extorquens+for+de+novo+synthesis+of+the+sesquiterpenoid+%CE%B1-humulene+from+methanol&rft.jtitle=Metabolic+engineering&rft.au=Sonntag%2C+Frank&rft.au=Kroner%2C+Cora&rft.au=Lubuta%2C+Patrice&rft.au=Peyraud%2C+R%C3%A9mi&rft.date=2015-11-01&rft.issn=1096-7176&rft.volume=32+p.82-94&rft.spage=82&rft.epage=94&rft_id=info:doi/10.1016%2Fj.ymben.2015.09.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon |