Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol

Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering Vol. 32; pp. 82 - 94
Main Authors Sonntag, Frank, Kroner, Cora, Lubuta, Patrice, Peyraud, Rémi, Horst, Angelika, Buchhaupt, Markus, Schrader, Jens
Format Journal Article
LanguageEnglish
Published Belgium Elsevier Inc 01.11.2015
Elsevier
Subjects
Online AccessGet full text
ISSN1096-7176
1096-7184
1096-7184
DOI10.1016/j.ymben.2015.09.004

Cover

Abstract Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. •First de novo terpenoid production in an engineered methylotrophic bacterium. •Introduction of the mevalonate pathway from Myxococcus xanthus.•Flux balancing by ribosome binding site optimizations.•Up to 75mg/L α-humulene in shake flask cultivations.•Up to 1.65g/L α-humulene in methanol limited fed-batch fermentation.
AbstractList Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. •First de novo terpenoid production in an engineered methylotrophic bacterium. •Introduction of the mevalonate pathway from Myxococcus xanthus.•Flux balancing by ribosome binding site optimizations.•Up to 75mg/L α-humulene in shake flask cultivations.•Up to 1.65g/L α-humulene in methanol limited fed-batch fermentation.
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid alpha-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of alpha-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L alpha-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of alpha-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized alpha-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol. (C) 2015 International Metabolic Engineering Society.
Author Schrader, Jens
Peyraud, Rémi
Lubuta, Patrice
Kroner, Cora
Sonntag, Frank
Horst, Angelika
Buchhaupt, Markus
Author_xml – sequence: 1
  givenname: Frank
  surname: Sonntag
  fullname: Sonntag, Frank
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
– sequence: 2
  givenname: Cora
  surname: Kroner
  fullname: Kroner, Cora
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
– sequence: 3
  givenname: Patrice
  surname: Lubuta
  fullname: Lubuta, Patrice
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
– sequence: 4
  givenname: Rémi
  surname: Peyraud
  fullname: Peyraud, Rémi
  organization: INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
– sequence: 5
  givenname: Angelika
  surname: Horst
  fullname: Horst, Angelika
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
– sequence: 6
  givenname: Markus
  surname: Buchhaupt
  fullname: Buchhaupt, Markus
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
– sequence: 7
  givenname: Jens
  surname: Schrader
  fullname: Schrader, Jens
  email: schrader@dechema.de
  organization: DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26369439$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02639651$$DView record in HAL
BookMark eNqFkc1u1DAUhS1URH_gCZCQl7CYcB07znjBoqoKRRrEBtaW49x0PErsqe2MOo_Fi_BMeJi2CxZl5aur7xz5nnNOTnzwSMhbBhUDJj9uqv3Uoa9qYE0FqgIQL8gZAyUXLVuKk6e5lafkPKUNAGONYq_IaS25VIKrM-Kv_a3ziNH5W_oN83o_hs7YXBbzRPE-h3g3o090CJH2SH3YBZr2Pq8xuUTDQMtEE6a72RXRFn1wPf39a7Gep3lEj3SIYaJTcTY-jK_Jy8GMCd88vBfk5-frH1c3i9X3L1-vLlcLK2qZF0umRN82HfRC8sbwYZC9YvUALQxStJ1oFYquB9NaxcEWrEbOlrxrOUjeMX5BPhx912bU2-gmE_c6GKdvLlf6sIMSgZIN2x3Y90d2G0O5NWU9uWRxHI3HMCddQwlONEzW_0VZyzlTzbLmBX33gM7dhP3TJx6jL4A6AjaGlCIO2rpssgs-R-NGzUAfatYb_bdmfahZg9Kl5qLl_2gf7Z9XfTqqsCS_cxh1sg69xd5FtFn3wT2r_wOz6MMM
CitedBy_id crossref_primary_10_3390_microorganisms9061236
crossref_primary_10_1016_j_ymben_2022_03_008
crossref_primary_10_1186_s13068_021_02063_0
crossref_primary_10_1002_mbo3_1325
crossref_primary_10_1186_s12934_024_02583_y
crossref_primary_10_1186_s12864_024_10923_w
crossref_primary_10_1002_biot_202200402
crossref_primary_10_1016_j_ymben_2020_11_005
crossref_primary_10_1371_journal_pone_0154043
crossref_primary_10_3390_catal9110883
crossref_primary_10_1039_D1GC02866A
crossref_primary_10_1186_s13068_020_01846_1
crossref_primary_10_1002_biot_201900356
crossref_primary_10_1186_s12934_018_0949_0
crossref_primary_10_1002_bbb_1773
crossref_primary_10_1007_s11274_021_02995_7
crossref_primary_10_3389_fbioe_2022_1050740
crossref_primary_10_1039_C9NP00016J
crossref_primary_10_1093_femsle_fny241
crossref_primary_10_1016_j_ymben_2020_04_011
crossref_primary_10_3389_fmicb_2018_01773
crossref_primary_10_1021_acssynbio_9b00220
crossref_primary_10_1002_biot_201700679
crossref_primary_10_1111_jam_15159
crossref_primary_10_1039_C9GC03950C
crossref_primary_10_1016_j_copbio_2019_10_002
crossref_primary_10_1016_j_resconrec_2024_107827
crossref_primary_10_3389_fmicb_2021_791089
crossref_primary_10_1016_j_gce_2022_10_005
crossref_primary_10_1016_j_synbio_2023_06_001
crossref_primary_10_1002_bit_27788
crossref_primary_10_1016_j_jbiotec_2016_07_022
crossref_primary_10_1016_j_biortech_2019_122337
crossref_primary_10_1126_science_aag0804
crossref_primary_10_1186_s12934_019_1054_8
crossref_primary_10_1016_j_bej_2024_109617
crossref_primary_10_1016_j_cub_2017_07_025
crossref_primary_10_1016_j_foodres_2019_108851
crossref_primary_10_1021_acs_jafc_7b00473
crossref_primary_10_1016_j_copbio_2018_01_012
crossref_primary_10_1021_acssynbio_6b00052
crossref_primary_10_1186_s12934_023_02275_z
crossref_primary_10_1021_acs_jafc_1c05897
crossref_primary_10_1360_SSC_2024_0161
crossref_primary_10_1007_s00253_020_10455_9
crossref_primary_10_1038_ncomms15188
crossref_primary_10_1016_j_copbio_2019_07_001
crossref_primary_10_1016_j_tibtech_2022_10_005
crossref_primary_10_1016_j_ymben_2018_04_003
crossref_primary_10_1016_j_ymben_2019_10_004
crossref_primary_10_1016_j_ymben_2018_04_010
crossref_primary_10_3390_molecules27248684
crossref_primary_10_1016_j_procbio_2024_01_027
crossref_primary_10_1007_s10482_023_01880_7
crossref_primary_10_1016_j_cofs_2018_03_005
crossref_primary_10_1002_ange_201711302
crossref_primary_10_1038_s41467_018_03937_y
crossref_primary_10_1021_acs_jafc_9b07290
crossref_primary_10_1021_acssynbio_7b00229
crossref_primary_10_1186_s12934_017_0798_2
crossref_primary_10_3389_fbioe_2022_874612
crossref_primary_10_1007_s12257_022_0154_1
crossref_primary_10_1002_bit_28176
crossref_primary_10_1111_jam_14521
crossref_primary_10_1016_j_ymben_2018_07_010
crossref_primary_10_55544_jrasb_1_2_8
crossref_primary_10_1016_j_copbio_2021_12_001
crossref_primary_10_1016_j_biotechadv_2020_107628
crossref_primary_10_1039_D2CS00309K
crossref_primary_10_1186_s13068_018_1265_y
crossref_primary_10_1007_s12010_017_2673_3
crossref_primary_10_1002_cite_202000108
crossref_primary_10_1111_1751_7915_14239
crossref_primary_10_1016_j_bej_2016_12_001
crossref_primary_10_1038_s41560_018_0197_x
crossref_primary_10_1186_s13068_022_02160_8
crossref_primary_10_3390_microorganisms12030500
crossref_primary_10_1002_anie_201711302
crossref_primary_10_1016_j_ymben_2016_11_010
crossref_primary_10_1016_j_biortech_2023_130104
Cites_doi 10.1016/j.orggeochem.2010.07.003
10.1016/j.tibtech.2008.10.009
10.1128/JB.00460-09
10.1007/s00253-013-5456-y
10.1021/mp700151b
10.1128/JB.62.3.293-300.1951
10.1073/pnas.0810932106
10.1128/AEM.69.12.7563-7566.2003
10.1111/j.1574-6968.1998.tb13175.x
10.1016/0734-9750(95)00004-A
10.1007/s00253-008-1724-7
10.1002/bit.10470
10.1016/j.ejphar.2007.04.059
10.1128/MMBR.60.2.439-471.1996
10.1038/nbt.1568
10.1038/ncomms1494
10.1186/1752-0509-4-45
10.1099/00221287-147-8-2065
10.1016/j.ymben.2012.01.007
10.1038/nbt.2689
10.1186/1471-2105-9-65
10.1016/j.ymben.2011.07.001
10.1126/science.1191652
10.1111/j.1574-6968.2000.tb09423.x
10.1186/s13068-014-0156-0
10.1515/znc-1979-3-404
10.1128/AEM.71.6.3294-3301.2005
10.1016/j.celrep.2011.12.003
10.1016/j.ymben.2008.07.007
10.1016/j.procbio.2011.05.012
10.1021/sb4001382
10.1128/AAC.49.6.2474-2478.2005
10.1021/ol026205p
10.1007/s00425-008-0700-x
10.1074/jbc.M505070200
10.1039/c3np70047j
10.1016/j.tetlet.2015.04.042
10.1126/science.1155165
10.1007/BF00169931
10.1271/bbb.100532
10.1016/j.jep.2006.09.032
10.1055/s-2006-962205
10.1186/s12934-014-0170-8
10.1371/journal.pone.0007831
10.1016/j.ymben.2006.11.002
10.1016/j.bcp.2012.07.015
10.1146/annurev-biochem-052010-100934
10.1128/AEM.02296-13
10.1002/bit.21581
10.1042/bj0810465
10.1016/0378-1119(83)90040-9
10.1186/1752-0509-5-189
10.1038/nbt833
10.1007/s00253-013-5361-4
10.1186/1475-2859-9-70
10.1093/nar/15.3.1281
10.1038/nature11478
10.1016/j.ymben.2015.03.010
10.1007/s00253-013-5490-9
10.1371/journal.pone.0005584
10.1016/S0378-1097(03)00956-X
10.1271/bbb.66.1619
10.1016/j.ymben.2014.12.008
10.1002/biot.200900220
ContentType Journal Article
Copyright 2015 International Metabolic Engineering Society
Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 International Metabolic Engineering Society
– notice: Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.ymben.2015.09.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1096-7184
EndPage 94
ExternalDocumentID oai_HAL_hal_02639651v1
26369439
10_1016_j_ymben_2015_09_004
S1096717615001081
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
UHS
XPP
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
1XC
ID FETCH-LOGICAL-c426t-8194d75b0d4635a3ff6d912f070f647b479e4bd0a7c930c0d42e3183b73063b13
IEDL.DBID .~1
ISSN 1096-7176
1096-7184
IngestDate Fri Sep 12 12:51:22 EDT 2025
Sun Sep 28 03:15:59 EDT 2025
Sat Sep 27 23:30:31 EDT 2025
Wed Feb 19 02:40:55 EST 2025
Tue Jul 01 00:51:23 EDT 2025
Thu Apr 24 23:06:45 EDT 2025
Fri Feb 23 02:37:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Terpenoids
Alpha-humulene
Methylobacterium extorquens
Mevalonate pathway
Diapocarotenoids
Methanol
HETEROLOGOUS MEVALONATE PATHWAY
ESCHERICHIA-COLI
BIOSYNTHETIC-PATHWAY
METHANOTROPHIC BACTERIA
CODON ADAPTATION INDEX
CORDIA-VERBENACEA
SACCHAROMYCES-CEREVISIAE
ETHYLMALONYL-COA PATHWAY
GENE-EXPRESSION
MICROBIAL-PRODUCTION
Language English
License Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-8194d75b0d4635a3ff6d912f070f647b479e4bd0a7c930c0d42e3183b73063b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26369439
PQID 1733195823
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_02639651v1
proquest_miscellaneous_2000145162
proquest_miscellaneous_1733195823
pubmed_primary_26369439
crossref_citationtrail_10_1016_j_ymben_2015_09_004
crossref_primary_10_1016_j_ymben_2015_09_004
elsevier_sciencedirect_doi_10_1016_j_ymben_2015_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Belgium
PublicationPlace_xml – name: Belgium
PublicationTitle Metabolic engineering
PublicationTitleAlternate Metab Eng
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Harada, Yu, Okamoto, Kuzuyama, Utsumi, Misawa (bib21) 2009; 81
Peyraud, Kiefer, Christen, Massou, Portais, Vorholt (bib47) 2009; 106
Bélanger, Figueira, Bourque, Morel, Béland, Laramée, Groleau, Mı́guez (bib5) 2004; 231
Kiefer, Buchhaupt, Christen, Kaup, Schrader, Vorholt (bib28) 2009; 4
Chou, Marx (bib12) 2012; 1
Pelz, Wieland, Putzbach, Hentschel, Albert, Gotz (bib43) 2005; 280
Pitera, Paddon, Newman, Keasling (bib49) 2007; 9
Nowroozi, Baidoo, Ermakov, Redding-Johanson, Batth, Petzold, Keasling (bib37) 2014; 98
Sonntag, Müller, Kiefer, Vorholt, Schrader, Buchhaupt (bib63) 2015
Renninger, N.S., McPhee, D.J., 2008. Fuel Compositions Comprising Farnesane and Farnesane Derivatives and Method of Making and Using Same. US Patent 7399323.
Rocha, Maia, Evangelista, Vilaca, Soares, Pinto, Nielsen, Patil, Ferreira, Rocha (bib54) 2010; 4
Hanson, Hanson (bib20) 1996; 60
Entian, Koetter (bib14) 1998
Figueira, Laramee, Murrell, Groleau, Miguez (bib16) 2000; 193
Müller, Meyer, Litsanov, Kiefer, Potthoff, Heux, Quax, Wendisch, Brautaset, Portais, Vorholt (bib35) 2015; 28
Prasannan, Kalesh, Shanmugam, Nachiyappan, Ramachandran, Nguyen, Kumar, Lakshmanan, Ahn, Sethi (bib50) 2012; 84
Sharp, Li (bib61) 1987; 15
Bourque, Pomerleau, Groleau (bib8) 1995; 44
Kitayama (bib29) 2011; 75
Kleinig, Schmitt, Meister, Englert, Thommen (bib1001) 1979; 34c
Fernandes, Passos, Medeiros, da Cunha, Ferreira, Campos, Pianowski, Calixto (bib15) 2007; 569
Fitzgerald, Lidstrom (bib17) 2003; 81
Sarria, Wong, Martín, Keasling, Peralta-Yahya (bib58) 2014; 3
Schrader, Schilling, Holtmann, Sell, Filho, Marx, Vorholt (bib60) 2009; 27
Hu, Corey (bib24) 2002; 4
Bradley, Pearson, Sáenz, Marx (bib9) 2010; 41
Peyraud, Schneider, Kiefer, Massou, Vorholt, Portais (bib48) 2011; 5
Peralta-Yahya, Ouellet, Chan, Mukhopadhyay, Keasling, Lee (bib45) 2011; 2
Peralta-Yahya, Zhang, del Cardayre, Keasling (bib46) 2012; 488
White (bib71) 2008; 320
Scalcinati, Knuf, Partow, Chen, Maury, Schalk, Daviet, Nielsen, Siewers (bib59) 2012; 14
Van Dien, Marx, O׳Brien, Lidstrom (bib68) 2003; 69
Hofer, Choi, Osborne, Miguez, Vermette, Groleau (bib22) 2010; 9
Puigbo, Bravo, Garcia-Vallve (bib51) 2008; 9
Chandran, Kealey, Reeves (bib11) 2011; 46
Katsiotis, Langezaal, Scheffer (bib27) 1989; 55
Ajikumar, Xiao, Tyo, Wang, Simeon, Leonard, Mucha, Phon, Pfeifer, Stephanopoulos (bib2) 2010; 330
Ochsner, Sonntag, Buchhaupt, Schrader, Vorholt (bib38) 2014; 99
Kalyuzhnaya, Puri, Lidstrom (bib26) 2015; 29
Kaczmarczyk, Vorholt, Francez-Charlot (bib25) 2013; 79
Hu, Lidstrom (bib23) 2014; 7
Trombetta, Castelli, Sarpietro, Venuti, Cristani, Daniele, Saija, Mazzanti, Bisignano (bib67) 2005; 49
Stevens (bib64) 1992; vol. 7
Dahl, Zhang, Alonso-Gutierrez, Baidoo, Batth, Redding-Johanson, Petzold, Mukhopadhyay, Lee, Adams, Keasling (bib13) 2013; 31
Osawa, Kaseya, Koue, Schrader, Knief, Vorholt, Sandmann, Shindo (bib40) 2015; 56
Glick (bib19) 1995; 13
Zhao, Chang, Xiao, Liu, Liu (bib73) 2013; 82
Tao, Schenzle, Odom, Cheng (bib65) 2005; 71
Vuilleumier, Chistoserdova, Lee, Bringel, Lajus, Zhou, Gourion, Barbe, Chang, Cruveiller, Dossat, Gillett, Gruffaz, Haugen, Hourcade, Levy, Mangenot, Muller, Nadalig, Pagni, Penny, Peyraud, Robinson, Roche, Rouy, Saenampechek, Salvignol, Vallenet, Wu, Marx, Vorholt, Olson, Kaul, Weissenbach, Médigue, Lidstrom (bib69) 2009; 4
Bertau, Offermanns, Plass, Schmidt, Wernicke (bib7) 2014
Kuzuyama (bib30) 2002; 66
Sambrook (bib57) 2001
Ajikumar, Tyo, Carlsen, Mucha, Phon, Stephanopoulos (bib1) 2008; 5
Asadollahi, Maury, Møller, Nielsen, Schalk, Clark, Nielsen (bib4) 2008; 99
Mi, Becher, Lubuta, Dany, Tusch, Schewe, Buchhaupt, Schrader (bib34) 2014; 13
Orita, Nishikawa, Nakamura, Fukui (bib39) 2014; 98
Bertani (bib6) 1951; 62
Peralta-Yahya, Keasling (bib44) 2010; 5
Salis (bib55) 2011; vol. 498
Toyama, Anthony, Lidstrom (bib66) 1998; 166
Passos, Fernandes, da Cunha, Ferreira, Pianowski, Campos, Calixto (bib41) 2007; 110
Sonntag, Buchhaupt, Schrader (bib62) 2014; 98
Ma, Garcia, Redding-Johanson, Friedland, Chan, Batth, Haliburton, Chivian, Keasling, Petzold, Lee, Chhabra (bib31) 2011; 13
Salis, Mirsky, Voigt (bib56) 2009; 27
Norrander, Kempe, Messing (bib36) 1983; 26
Yu, Okamto, Nakasone, Adachi, Matsuda, Harada, Misawa, Utsumi (bib72) 2008; 227
Breitmaier (bib10) 2006
Peel, Quayle (bib42) 1961; 81
Anthony, Anthony, Nowroozi, Kwon, Newman, Keasling (bib3) 2009; 11
Fraga (bib18) 2013; 30
Marx, Lidstrom (bib33) 2001; 147
Martin, Pitera, Withers, Newman, Keasling (bib32) 2003; 21
Renninger, N.S., Newman, J., Reiling, K.K., Regentin, R., Paddon, C.J., 2010. Production of Isoprenoids. US Patent 7659097 B2.
Welander, Hunter, Zhang, Sessions, Summons, Newman (bib70) 2009; 191
Vuilleumier (10.1016/j.ymben.2015.09.004_bib69) 2009; 4
10.1016/j.ymben.2015.09.004_bib53
Hanson (10.1016/j.ymben.2015.09.004_bib20) 1996; 60
Norrander (10.1016/j.ymben.2015.09.004_bib36) 1983; 26
10.1016/j.ymben.2015.09.004_bib52
Osawa (10.1016/j.ymben.2015.09.004_bib40) 2015; 56
Hu (10.1016/j.ymben.2015.09.004_bib24) 2002; 4
Marx (10.1016/j.ymben.2015.09.004_bib33) 2001; 147
Chou (10.1016/j.ymben.2015.09.004_bib12) 2012; 1
Kaczmarczyk (10.1016/j.ymben.2015.09.004_bib25) 2013; 79
Salis (10.1016/j.ymben.2015.09.004_bib56) 2009; 27
Van Dien (10.1016/j.ymben.2015.09.004_bib68) 2003; 69
Orita (10.1016/j.ymben.2015.09.004_bib39) 2014; 98
Schrader (10.1016/j.ymben.2015.09.004_bib60) 2009; 27
Hofer (10.1016/j.ymben.2015.09.004_bib22) 2010; 9
Pitera (10.1016/j.ymben.2015.09.004_bib49) 2007; 9
Figueira (10.1016/j.ymben.2015.09.004_bib16) 2000; 193
Ajikumar (10.1016/j.ymben.2015.09.004_bib2) 2010; 330
Sonntag (10.1016/j.ymben.2015.09.004_bib63) 2015
Nowroozi (10.1016/j.ymben.2015.09.004_bib37) 2014; 98
Peel (10.1016/j.ymben.2015.09.004_bib42) 1961; 81
Entian (10.1016/j.ymben.2015.09.004_bib14) 1998
Sambrook (10.1016/j.ymben.2015.09.004_bib57) 2001
Trombetta (10.1016/j.ymben.2015.09.004_bib67) 2005; 49
Stevens (10.1016/j.ymben.2015.09.004_bib64) 1992; vol. 7
Tao (10.1016/j.ymben.2015.09.004_bib65) 2005; 71
Sharp (10.1016/j.ymben.2015.09.004_bib61) 1987; 15
Kleinig (10.1016/j.ymben.2015.09.004_bib1001) 1979; 34c
Ma (10.1016/j.ymben.2015.09.004_bib31) 2011; 13
Ochsner (10.1016/j.ymben.2015.09.004_bib38) 2014; 99
Sarria (10.1016/j.ymben.2015.09.004_bib58) 2014; 3
Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib45) 2011; 2
Passos (10.1016/j.ymben.2015.09.004_bib41) 2007; 110
Kalyuzhnaya (10.1016/j.ymben.2015.09.004_bib26) 2015; 29
Fitzgerald (10.1016/j.ymben.2015.09.004_bib17) 2003; 81
Pelz (10.1016/j.ymben.2015.09.004_bib43) 2005; 280
Chandran (10.1016/j.ymben.2015.09.004_bib11) 2011; 46
Bélanger (10.1016/j.ymben.2015.09.004_bib5) 2004; 231
Müller (10.1016/j.ymben.2015.09.004_bib35) 2015; 28
Ajikumar (10.1016/j.ymben.2015.09.004_bib1) 2008; 5
Kitayama (10.1016/j.ymben.2015.09.004_bib29) 2011; 75
Katsiotis (10.1016/j.ymben.2015.09.004_bib27) 1989; 55
Zhao (10.1016/j.ymben.2015.09.004_bib73) 2013; 82
Asadollahi (10.1016/j.ymben.2015.09.004_bib4) 2008; 99
Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib46) 2012; 488
Peyraud (10.1016/j.ymben.2015.09.004_bib48) 2011; 5
Yu (10.1016/j.ymben.2015.09.004_bib72) 2008; 227
Breitmaier (10.1016/j.ymben.2015.09.004_bib10) 2006
Dahl (10.1016/j.ymben.2015.09.004_bib13) 2013; 31
Rocha (10.1016/j.ymben.2015.09.004_bib54) 2010; 4
Anthony (10.1016/j.ymben.2015.09.004_bib3) 2009; 11
Kiefer (10.1016/j.ymben.2015.09.004_bib28) 2009; 4
Mi (10.1016/j.ymben.2015.09.004_bib34) 2014; 13
Sonntag (10.1016/j.ymben.2015.09.004_bib62) 2014; 98
Bertau (10.1016/j.ymben.2015.09.004_bib7) 2014
Toyama (10.1016/j.ymben.2015.09.004_bib66) 1998; 166
Peralta-Yahya (10.1016/j.ymben.2015.09.004_bib44) 2010; 5
Bradley (10.1016/j.ymben.2015.09.004_bib9) 2010; 41
Fraga (10.1016/j.ymben.2015.09.004_bib18) 2013; 30
Harada (10.1016/j.ymben.2015.09.004_bib21) 2009; 81
Prasannan (10.1016/j.ymben.2015.09.004_bib50) 2012; 84
Kuzuyama (10.1016/j.ymben.2015.09.004_bib30) 2002; 66
Peyraud (10.1016/j.ymben.2015.09.004_bib47) 2009; 106
Scalcinati (10.1016/j.ymben.2015.09.004_bib59) 2012; 14
Glick (10.1016/j.ymben.2015.09.004_bib19) 1995; 13
White (10.1016/j.ymben.2015.09.004_bib71) 2008; 320
Bourque (10.1016/j.ymben.2015.09.004_bib8) 1995; 44
Martin (10.1016/j.ymben.2015.09.004_bib32) 2003; 21
Hu (10.1016/j.ymben.2015.09.004_bib23) 2014; 7
Salis (10.1016/j.ymben.2015.09.004_bib55) 2011; vol. 498
Fernandes (10.1016/j.ymben.2015.09.004_bib15) 2007; 569
Welander (10.1016/j.ymben.2015.09.004_bib70) 2009; 191
Bertani (10.1016/j.ymben.2015.09.004_bib6) 1951; 62
Puigbo (10.1016/j.ymben.2015.09.004_bib51) 2008; 9
References_xml – volume: 41
  start-page: 1075
  year: 2010
  end-page: 1081
  ident: bib9
  article-title: Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis
  publication-title: Org. Geochem.
– volume: 81
  start-page: 263
  year: 2003
  end-page: 268
  ident: bib17
  article-title: Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-β-hydroxybutyrate-deficient strain of the facultative methylotroph
  publication-title: Biotechnol. Bioeng.
– volume: 28
  start-page: 190
  year: 2015
  end-page: 201
  ident: bib35
  article-title: Engineering
  publication-title: Metab. Eng.
– volume: 46
  start-page: 1703
  year: 2011
  end-page: 1710
  ident: bib11
  article-title: Microbial production of isoprenoids
  publication-title: Process. Biochem.
– volume: 13
  start-page: 588
  year: 2011
  end-page: 597
  ident: bib31
  article-title: Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases
  publication-title: Metab. Eng.
– volume: 9
  start-page: 193
  year: 2007
  end-page: 207
  ident: bib49
  article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in
  publication-title: Metab. Eng.
– volume: 9
  start-page: 70
  year: 2010
  ident: bib22
  article-title: Production of functionalized polyhydroxyalkanoates by genetically modified
  publication-title: Microb. Cell Fact.
– volume: 98
  start-page: 3715
  year: 2014
  end-page: 3725
  ident: bib39
  article-title: Biosynthesis of polyhydroxyalkanoate copolymers from methanol by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: vol. 498
  start-page: 19
  year: 2011
  end-page: 42
  ident: bib55
  article-title: The ribosome binding site calculator
  publication-title: Methods of Enzymology
– volume: 62
  start-page: 293
  year: 1951
  end-page: 300
  ident: bib6
  article-title: Studies on lysogenesis I: the mode of phage liberation by lysogenic
  publication-title: J. Bacteriol.
– volume: 66
  start-page: 1619
  year: 2002
  end-page: 1627
  ident: bib30
  article-title: Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 166
  start-page: 1
  year: 1998
  end-page: 7
  ident: bib66
  article-title: Construction of insertion and deletion mxa mutants of
  publication-title: FEMS Microbiol. Lett.
– volume: 488
  start-page: 320
  year: 2012
  end-page: 328
  ident: bib46
  article-title: Microbial engineering for the production of advanced biofuels
  publication-title: Nature
– volume: 4
  start-page: e5584
  year: 2009
  ident: bib69
  article-title: genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources
  publication-title: PLoS One
– volume: 13
  start-page: 247
  year: 1995
  end-page: 261
  ident: bib19
  article-title: Metabolic load and heterologous gene expression
  publication-title: Biotechnol. Adv.
– volume: 5
  start-page: 167
  year: 2008
  end-page: 190
  ident: bib1
  article-title: Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms
  publication-title: Mol. Pharm.
– volume: 13
  start-page: 170
  year: 2014
  ident: bib34
  article-title: De novo production of the monoterpenoid geranic acid by metabolically engineered
  publication-title: Microb. Cell Fact.
– volume: 21
  start-page: 796
  year: 2003
  end-page: 802
  ident: bib32
  article-title: Engineering a mevalonate pathway in
  publication-title: Nat. Biotechnol
– volume: 4
  start-page: 45
  year: 2010
  ident: bib54
  article-title: OptFlux: an open-source software platform for in silico metabolic engineering
  publication-title: BMC Syst. Biol.
– volume: 98
  start-page: 4533
  year: 2014
  end-page: 4544
  ident: bib62
  article-title: Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 30
  start-page: 1226
  year: 2013
  end-page: 1264
  ident: bib18
  article-title: Natural sesquiterpenoids
  publication-title: Nat. Prod. Rep.
– volume: 84
  start-page: 1268
  year: 2012
  end-page: 1276
  ident: bib50
  article-title: Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer
  publication-title: Biochem. Pharmacol.
– volume: 110
  start-page: 323
  year: 2007
  end-page: 333
  ident: bib41
  article-title: Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from
  publication-title: J Ethnopharmacol.
– volume: 99
  start-page: 514
  year: 2014
  end-page: 534
  ident: bib38
  article-title: : methylotrophy and biotechnological applications
  publication-title: Appl. Microbiol. Biotechnol.
– reference: Renninger, N.S., Newman, J., Reiling, K.K., Regentin, R., Paddon, C.J., 2010. Production of Isoprenoids. US Patent 7659097 B2.
– volume: 11
  start-page: 13
  year: 2009
  end-page: 19
  ident: bib3
  article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in
  publication-title: Metab. Eng.
– volume: 147
  start-page: 2065
  year: 2001
  end-page: 2075
  ident: bib33
  article-title: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria
  publication-title: Microbiology
– volume: 191
  start-page: 6145
  year: 2009
  end-page: 6156
  ident: bib70
  article-title: Hopanoids play a role in membrane integrity and ph homeostasis in
  publication-title: J. Bacteriol.
– volume: 5
  start-page: 189
  year: 2011
  ident: bib48
  article-title: Genome-scale reconstruction and system level investigation of the metabolic network of
  publication-title: BMC Syst. Biol.
– start-page: 119
  year: 2006
  end-page: 159
  ident: bib10
  article-title: Selected Syntheses of Terpenes. Terpenes
– volume: 71
  start-page: 3294
  year: 2005
  end-page: 3301
  ident: bib65
  article-title: Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde
  publication-title: Appl. Environ. Microbiol
– volume: 9
  start-page: 65
  year: 2008
  ident: bib51
  article-title: E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI)
  publication-title: BMC Bioinform.
– volume: 60
  start-page: 439
  year: 1996
  end-page: 471
  ident: bib20
  article-title: Methanotrophic bacteria
  publication-title: Microbiol. Rev.
– volume: 81
  start-page: 915
  year: 2009
  end-page: 925
  ident: bib21
  article-title: Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 98
  start-page: 1567
  year: 2014
  end-page: 1581
  ident: bib37
  article-title: Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 27
  start-page: 946
  year: 2009
  end-page: 950
  ident: bib56
  article-title: Automated design of synthetic ribosome binding sites to control protein expression
  publication-title: Nat. Biotechnol.
– volume: vol. 7
  start-page: 242
  year: 1992
  end-page: 243
  ident: bib64
  article-title: Dictionary of terpenoids
  publication-title: Flavour and Fragrance Journal
– volume: 320
  start-page: 330
  year: 2008
  end-page: 334
  ident: bib71
  article-title: Qinghaosu (Artemisinin): the price of success
  publication-title: Science
– volume: 5
  start-page: 147
  year: 2010
  end-page: 162
  ident: bib44
  article-title: Advanced biofuel production in microbes
  publication-title: Biotechnol. J.
– volume: 7
  start-page: 156
  year: 2014
  ident: bib23
  article-title: Metabolic engineering of
  publication-title: Biotechnol. Biofuels
– volume: 79
  start-page: 6795
  year: 2013
  end-page: 6802
  ident: bib25
  article-title: Cumate-inducible gene expression system for sphingomonads and other alphaproteobacteria
  publication-title: Appl. Environ. Microbiol.
– volume: 56
  start-page: 2791
  year: 2015
  end-page: 2794
  ident: bib40
  article-title: 4-[2-
  publication-title: Tetrahedron Lett.
– volume: 49
  start-page: 2474
  year: 2005
  end-page: 2478
  ident: bib67
  article-title: Mechanisms of antibacterial action of three monoterpenes
  publication-title: Antimicrob. Agents Chemother.
– volume: 82
  start-page: 497
  year: 2013
  end-page: 530
  ident: bib73
  article-title: Methylerythritol phosphate pathway of isoprenoid biosynthesis
  publication-title: Annu. Rev. Biochem.
– volume: 569
  start-page: 228
  year: 2007
  end-page: 236
  ident: bib15
  article-title: Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of
  publication-title: Eur. J. Pharmacol.
– volume: 4
  start-page: e7831
  year: 2009
  ident: bib28
  article-title: Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions
  publication-title: PLoS One
– volume: 106
  start-page: 4846
  year: 2009
  end-page: 4851
  ident: bib47
  article-title: Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2001
  ident: bib57
  article-title: Molecular Cloning: A Laboratory Manual. In: Joseph Sambrook, David W. Russell (Eds.)
– volume: 330
  start-page: 70
  year: 2010
  end-page: 74
  ident: bib2
  article-title: Isoprenoid pathway optimization for Taxol precursor overproduction in
  publication-title: Science
– volume: 75
  start-page: 199
  year: 2011
  end-page: 207
  ident: bib29
  article-title: Attractive reactivity of a natural product, zerumbone
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 231
  start-page: 197
  year: 2004
  end-page: 204
  ident: bib5
  article-title: Production of heterologous protein by
  publication-title: FEMS Microbiol. Lett.
– volume: 227
  start-page: 1291
  year: 2008
  end-page: 1299
  ident: bib72
  article-title: Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (
  publication-title: Planta
– volume: 55
  start-page: 634
  year: 1989
  ident: bib27
  article-title: Analysis of the volatile compounds from cones of ten
  publication-title: Planta Medica
– volume: 14
  start-page: 91
  year: 2012
  end-page: 103
  ident: bib59
  article-title: Dynamic control of gene expression in
  publication-title: Metab. Eng.
– volume: 26
  start-page: 101
  year: 1983
  end-page: 106
  ident: bib36
  article-title: Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis
  publication-title: Gene
– volume: 34c
  start-page: 181
  year: 1979
  end-page: 185
  ident: bib1001
  article-title: New C
– volume: 193
  start-page: 195
  year: 2000
  end-page: 200
  ident: bib16
  article-title: Production of green fluorescent protein by the methylotrophic bacterium
  publication-title: FEMS Microbiol. Lett.
– year: 2014
  ident: bib7
  article-title: Methanol: The Basic Chemical and Energy Feedstock of the Future
– volume: 15
  start-page: 1281
  year: 1987
  end-page: 1295
  ident: bib61
  article-title: The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications
  publication-title: Nucleic Acids Res.
– reference: Renninger, N.S., McPhee, D.J., 2008. Fuel Compositions Comprising Farnesane and Farnesane Derivatives and Method of Making and Using Same. US Patent 7399323.
– volume: 1
  start-page: 133
  year: 2012
  end-page: 140
  ident: bib12
  article-title: Optimization of gene expression through divergent mutational paths
  publication-title: Cell Rep.
– volume: 27
  start-page: 107
  year: 2009
  end-page: 115
  ident: bib60
  article-title: Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria
  publication-title: Trends Biotechnol.
– volume: 280
  start-page: 32493
  year: 2005
  end-page: 32498
  ident: bib43
  article-title: Structure and biosynthesis of staphyloxanthin from
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 483
  year: 2011
  ident: bib45
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2441
  year: 2002
  end-page: 2443
  ident: bib24
  article-title: Short syntheses of (±)-δ-araneosene and humulene utilizing a combination of four-component assembly and palladium-mediated cyclization
  publication-title: Org. Lett.
– volume: 29
  start-page: 142
  year: 2015
  end-page: 152
  ident: bib26
  article-title: Metabolic engineering in methanotrophic bacteria
  publication-title: Metabol. Eng.
– start-page: 1
  year: 2015
  end-page: 13
  ident: bib63
  article-title: High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 99
  start-page: 666
  year: 2008
  end-page: 677
  ident: bib4
  article-title: Production of plant sesquiterpenes in
  publication-title: Biotechnol. Bioeng.
– volume: 31
  start-page: 1039
  year: 2013
  end-page: 1046
  ident: bib13
  article-title: Engineering dynamic pathway regulation using stress-response promoters
  publication-title: Nat. Biotechnol.
– volume: 81
  start-page: 465
  year: 1961
  end-page: 469
  ident: bib42
  article-title: Microbial growth on C1 compounds. I. Isolation and characterization of
  publication-title: Biochem. J.
– volume: 3
  start-page: 466
  year: 2014
  end-page: 475
  ident: bib58
  article-title: Microbial synthesis of pinene
  publication-title: ACS Synth. Biol.
– volume: 69
  start-page: 7563
  year: 2003
  end-page: 7566
  ident: bib68
  article-title: Genetic characterization of the carotenoid biosynthetic pathway in
  publication-title: Appl. Environ. Microbiol.
– start-page: 431
  year: 1998
  end-page: 449
  ident: bib14
  article-title: Yeast Mutant and Plasmid Collections
  publication-title: Yeast Mutant and Plasmid Collections
– volume: 44
  start-page: 367
  year: 1995
  end-page: 376
  ident: bib8
  article-title: High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 41
  start-page: 1075
  year: 2010
  ident: 10.1016/j.ymben.2015.09.004_bib9
  article-title: Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2010.07.003
– volume: 27
  start-page: 107
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib60
  article-title: Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2008.10.009
– volume: 191
  start-page: 6145
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib70
  article-title: Hopanoids play a role in membrane integrity and ph homeostasis in Rhodopseudomonas palustris TIE-1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00460-09
– volume: 98
  start-page: 4533
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib62
  article-title: Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5456-y
– volume: 5
  start-page: 167
  year: 2008
  ident: 10.1016/j.ymben.2015.09.004_bib1
  article-title: Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms
  publication-title: Mol. Pharm.
  doi: 10.1021/mp700151b
– volume: 62
  start-page: 293
  year: 1951
  ident: 10.1016/j.ymben.2015.09.004_bib6
  article-title: Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.62.3.293-300.1951
– volume: 106
  start-page: 4846
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib47
  article-title: Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810932106
– volume: 69
  start-page: 7563
  year: 2003
  ident: 10.1016/j.ymben.2015.09.004_bib68
  article-title: Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.12.7563-7566.2003
– volume: vol. 498
  start-page: 19
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib55
  article-title: The ribosome binding site calculator
– volume: 166
  start-page: 1
  year: 1998
  ident: 10.1016/j.ymben.2015.09.004_bib66
  article-title: Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1998.tb13175.x
– volume: 13
  start-page: 247
  year: 1995
  ident: 10.1016/j.ymben.2015.09.004_bib19
  article-title: Metabolic load and heterologous gene expression
  publication-title: Biotechnol. Adv.
  doi: 10.1016/0734-9750(95)00004-A
– year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib7
– volume: 81
  start-page: 915
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib21
  article-title: Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1724-7
– volume: 81
  start-page: 263
  year: 2003
  ident: 10.1016/j.ymben.2015.09.004_bib17
  article-title: Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-β-hydroxybutyrate-deficient strain of the facultative methylotroph Methylobacterium extorquens AM1
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10470
– volume: 569
  start-page: 228
  year: 2007
  ident: 10.1016/j.ymben.2015.09.004_bib15
  article-title: Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2007.04.059
– volume: 60
  start-page: 439
  year: 1996
  ident: 10.1016/j.ymben.2015.09.004_bib20
  article-title: Methanotrophic bacteria
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.60.2.439-471.1996
– volume: 27
  start-page: 946
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib56
  article-title: Automated design of synthetic ribosome binding sites to control protein expression
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1568
– volume: 2
  start-page: 483
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib45
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1494
– volume: 4
  start-page: 45
  year: 2010
  ident: 10.1016/j.ymben.2015.09.004_bib54
  article-title: OptFlux: an open-source software platform for in silico metabolic engineering
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-45
– volume: 147
  start-page: 2065
  year: 2001
  ident: 10.1016/j.ymben.2015.09.004_bib33
  article-title: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria
  publication-title: Microbiology
  doi: 10.1099/00221287-147-8-2065
– volume: 14
  start-page: 91
  year: 2012
  ident: 10.1016/j.ymben.2015.09.004_bib59
  article-title: Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.01.007
– volume: 31
  start-page: 1039
  year: 2013
  ident: 10.1016/j.ymben.2015.09.004_bib13
  article-title: Engineering dynamic pathway regulation using stress-response promoters
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2689
– volume: 9
  start-page: 65
  year: 2008
  ident: 10.1016/j.ymben.2015.09.004_bib51
  article-title: E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI)
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-65
– start-page: 119
  year: 2006
  ident: 10.1016/j.ymben.2015.09.004_bib10
– volume: 13
  start-page: 588
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib31
  article-title: Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2011.07.001
– volume: 330
  start-page: 70
  year: 2010
  ident: 10.1016/j.ymben.2015.09.004_bib2
  article-title: Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1191652
– volume: 193
  start-page: 195
  year: 2000
  ident: 10.1016/j.ymben.2015.09.004_bib16
  article-title: Production of green fluorescent protein by the methylotrophic bacterium Methylobacterium extorquens
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2000.tb09423.x
– volume: 7
  start-page: 156
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib23
  article-title: Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-014-0156-0
– volume: 34c
  start-page: 181
  year: 1979
  ident: 10.1016/j.ymben.2015.09.004_bib1001
  article-title: New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos
  publication-title: Z. Naturforsch.
  doi: 10.1515/znc-1979-3-404
– volume: 71
  start-page: 3294
  year: 2005
  ident: 10.1016/j.ymben.2015.09.004_bib65
  article-title: Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde
  publication-title: Appl. Environ. Microbiol
  doi: 10.1128/AEM.71.6.3294-3301.2005
– volume: 1
  start-page: 133
  year: 2012
  ident: 10.1016/j.ymben.2015.09.004_bib12
  article-title: Optimization of gene expression through divergent mutational paths
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2011.12.003
– volume: 11
  start-page: 13
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib3
  article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2008.07.007
– volume: 46
  start-page: 1703
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib11
  article-title: Microbial production of isoprenoids
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2011.05.012
– volume: 99
  start-page: 514
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib38
  article-title: Methylobacterium extorquens: methylotrophy and biotechnological applications
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 3
  start-page: 466
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib58
  article-title: Microbial synthesis of pinene
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb4001382
– volume: 49
  start-page: 2474
  year: 2005
  ident: 10.1016/j.ymben.2015.09.004_bib67
  article-title: Mechanisms of antibacterial action of three monoterpenes
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.6.2474-2478.2005
– volume: 4
  start-page: 2441
  year: 2002
  ident: 10.1016/j.ymben.2015.09.004_bib24
  article-title: Short syntheses of (±)-δ-araneosene and humulene utilizing a combination of four-component assembly and palladium-mediated cyclization
  publication-title: Org. Lett.
  doi: 10.1021/ol026205p
– volume: 227
  start-page: 1291
  year: 2008
  ident: 10.1016/j.ymben.2015.09.004_bib72
  article-title: Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith)
  publication-title: Planta
  doi: 10.1007/s00425-008-0700-x
– volume: 280
  start-page: 32493
  year: 2005
  ident: 10.1016/j.ymben.2015.09.004_bib43
  article-title: Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505070200
– volume: 30
  start-page: 1226
  year: 2013
  ident: 10.1016/j.ymben.2015.09.004_bib18
  article-title: Natural sesquiterpenoids
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c3np70047j
– volume: 56
  start-page: 2791
  year: 2015
  ident: 10.1016/j.ymben.2015.09.004_bib40
  article-title: 4-[2-O-11Z-Octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid and 4-[2-O-9Z-hexadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid: new C30-carotenoids produced by Methylobacterium
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.04.042
– volume: 320
  start-page: 330
  year: 2008
  ident: 10.1016/j.ymben.2015.09.004_bib71
  article-title: Qinghaosu (Artemisinin): the price of success
  publication-title: Science
  doi: 10.1126/science.1155165
– volume: 44
  start-page: 367
  year: 1995
  ident: 10.1016/j.ymben.2015.09.004_bib8
  article-title: High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00169931
– volume: 75
  start-page: 199
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib29
  article-title: Attractive reactivity of a natural product, zerumbone
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100532
– volume: 110
  start-page: 323
  year: 2007
  ident: 10.1016/j.ymben.2015.09.004_bib41
  article-title: Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea
  publication-title: J Ethnopharmacol.
  doi: 10.1016/j.jep.2006.09.032
– volume: 55
  start-page: 634
  year: 1989
  ident: 10.1016/j.ymben.2015.09.004_bib27
  article-title: Analysis of the volatile compounds from cones of ten Humulus lupulus cultivars
  publication-title: Planta Medica
  doi: 10.1055/s-2006-962205
– ident: 10.1016/j.ymben.2015.09.004_bib52
– volume: 13
  start-page: 170
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib34
  article-title: De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida
  publication-title: Microb. Cell Fact.
  doi: 10.1186/s12934-014-0170-8
– volume: vol. 7
  start-page: 242
  year: 1992
  ident: 10.1016/j.ymben.2015.09.004_bib64
  article-title: Dictionary of terpenoids
– volume: 4
  start-page: e7831
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib28
  article-title: Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007831
– year: 2001
  ident: 10.1016/j.ymben.2015.09.004_bib57
– start-page: 431
  year: 1998
  ident: 10.1016/j.ymben.2015.09.004_bib14
  article-title: Yeast Mutant and Plasmid Collections
– volume: 9
  start-page: 193
  year: 2007
  ident: 10.1016/j.ymben.2015.09.004_bib49
  article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2006.11.002
– volume: 84
  start-page: 1268
  year: 2012
  ident: 10.1016/j.ymben.2015.09.004_bib50
  article-title: Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.07.015
– start-page: 1
  year: 2015
  ident: 10.1016/j.ymben.2015.09.004_bib63
  article-title: High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 82
  start-page: 497
  year: 2013
  ident: 10.1016/j.ymben.2015.09.004_bib73
  article-title: Methylerythritol phosphate pathway of isoprenoid biosynthesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-052010-100934
– volume: 79
  start-page: 6795
  year: 2013
  ident: 10.1016/j.ymben.2015.09.004_bib25
  article-title: Cumate-inducible gene expression system for sphingomonads and other alphaproteobacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02296-13
– volume: 99
  start-page: 666
  year: 2008
  ident: 10.1016/j.ymben.2015.09.004_bib4
  article-title: Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21581
– volume: 81
  start-page: 465
  year: 1961
  ident: 10.1016/j.ymben.2015.09.004_bib42
  article-title: Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM 1
  publication-title: Biochem. J.
  doi: 10.1042/bj0810465
– volume: 26
  start-page: 101
  year: 1983
  ident: 10.1016/j.ymben.2015.09.004_bib36
  article-title: Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis
  publication-title: Gene
  doi: 10.1016/0378-1119(83)90040-9
– volume: 5
  start-page: 189
  year: 2011
  ident: 10.1016/j.ymben.2015.09.004_bib48
  article-title: Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-5-189
– volume: 21
  start-page: 796
  year: 2003
  ident: 10.1016/j.ymben.2015.09.004_bib32
  article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt833
– ident: 10.1016/j.ymben.2015.09.004_bib53
– volume: 98
  start-page: 1567
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib37
  article-title: Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5361-4
– volume: 9
  start-page: 70
  year: 2010
  ident: 10.1016/j.ymben.2015.09.004_bib22
  article-title: Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-9-70
– volume: 15
  start-page: 1281
  year: 1987
  ident: 10.1016/j.ymben.2015.09.004_bib61
  article-title: The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/15.3.1281
– volume: 488
  start-page: 320
  year: 2012
  ident: 10.1016/j.ymben.2015.09.004_bib46
  article-title: Microbial engineering for the production of advanced biofuels
  publication-title: Nature
  doi: 10.1038/nature11478
– volume: 29
  start-page: 142
  year: 2015
  ident: 10.1016/j.ymben.2015.09.004_bib26
  article-title: Metabolic engineering in methanotrophic bacteria
  publication-title: Metabol. Eng.
  doi: 10.1016/j.ymben.2015.03.010
– volume: 98
  start-page: 3715
  year: 2014
  ident: 10.1016/j.ymben.2015.09.004_bib39
  article-title: Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5490-9
– volume: 4
  start-page: e5584
  year: 2009
  ident: 10.1016/j.ymben.2015.09.004_bib69
  article-title: Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005584
– volume: 231
  start-page: 197
  year: 2004
  ident: 10.1016/j.ymben.2015.09.004_bib5
  article-title: Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00956-X
– volume: 66
  start-page: 1619
  year: 2002
  ident: 10.1016/j.ymben.2015.09.004_bib30
  article-title: Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.66.1619
– volume: 28
  start-page: 190
  year: 2015
  ident: 10.1016/j.ymben.2015.09.004_bib35
  article-title: Engineering Escherichia coli for methanol conversion
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.12.008
– volume: 5
  start-page: 147
  year: 2010
  ident: 10.1016/j.ymben.2015.09.004_bib44
  article-title: Advanced biofuel production in microbes
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200900220
SSID ssj0011591
Score 2.4382262
Snippet Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 82
SubjectTerms Alpha-humulene
binding sites
Bioreactors
Biotechnology
carbon
carotenoids
Carotenoids - biosynthesis
Computer Simulation
Culture Media
Diapocarotenoids
farnesene
Fermentation
Life Sciences
metabolic engineering
Metabolic Engineering - methods
Metabolic Networks and Pathways - genetics
Methanol
Methanol - metabolism
Methylobacterium extorquens
Methylobacterium extorquens - genetics
Methylobacterium extorquens - metabolism
Mevalonate pathway
Mevalonic Acid - metabolism
microorganisms
mutants
Myxococcus xanthus
Plasmids
prices
raw materials
ribosomes
Saccharomyces cerevisiae
Sesquiterpenes - metabolism
sugars
Terpenoids
Zingiber zerumbet
Title Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol
URI https://dx.doi.org/10.1016/j.ymben.2015.09.004
https://www.ncbi.nlm.nih.gov/pubmed/26369439
https://www.proquest.com/docview/1733195823
https://www.proquest.com/docview/2000145162
https://hal.inrae.fr/hal-02639651
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQ4oFJeC6UyiCNh48RONsdV1Wp5tBeo1JsVv9RF3WRpNpX2wn_ij_CbmHGSVSvRHrgl0Vi2PM7MN8nMNwDvpTa85NxGJaKFSMiSR9oIEQnDJxN02IWVVOB8fJLNTsXnM3m2BQdDLQylVfa2v7PpwVr3T8b9bo6X8_n4G0f0jcEIMZpjUBHKr4XI6ax__LVJ80DAE7rmkXBE0gPzUMjxWi-0IxJULgPZad-t7R_e6d45pUnehkGDLzragcc9iGTTbp1PYMtVu_Cgayu53oVH10gGn0J17Y4dO1QMcYAEjuZ2wdA215eUTd0whK_MOlbVVzVr1hUiw2besNozvGKNa362VK68dFU9t-zP7-i8XbTosxyjEhVGrajLqr54BqdHh98PZlHfZSEy6J1XEUICYXOpYysQfJSp95kteOLRFvhM5FrkhRPaxmVuijQ2KJbQd9NUo23IUs3T57Bd1ZV7CQyDN228sUnspfAu1gUV3hovdVnGiZmMIBl2V5megpw6YVyoIdfshwoqUaQSFRcKVTKCD5tBy46B427xbFCbunGQFPqIuwe-QyVvpiDa7dn0q6JnGKemRSb5FR_B2-EMKHwP6edKWbm6bRSn5peFnCTp7TJJiEglz5IRvOgO0GY-nCIrcLde_e_6X8NDuuvqJPdge3XZujcImFZ6P7wR-3B_-unL7OQvpF0Vlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIgQcEJSfht8FcWQbr73rxMeqogqQ9EIr9bbaXa_VoMZO67hSLrwTL8IzMbO2oyLRHrjZzlhr7YxnvnFmvgH4qKwTRoicG0QLXCojuHVScunEeIwBO8sVNTjPjtLJifx6qk634KDvhaGyys73tz49eOvuyrDbzeFyPh9-F4i-MRkhRnNMKqj9-q4ki0Kj3vu5qfNAxBPG5pE0J_GeeigUea0X1hMLqlCB7bQb1_aP8HTnjOokbwKhIRgdPoZHHYpk--2DPoEtX-7AvXau5HoHHl5jGXwK5bUzNvOoGSIBCSTNzYKhc64uqZy6ZohfWe5ZWV1VrF6XCA3rec2qguERq3190VC_8tKX1Txnv3_xs2bRYNDyjHpUGM2iNmV1_gxODj8fH0x4N2aBOwzPK46YQOYjZaNcIvowSVGkeSbiAp1BkcqRlaPMS5tHZuSyJHIoFtOH08Sic0gTK5LnsF1Wpd8FhtmbdYXL46hQsvCRzajz1hXKGhPFbjyAuN9d7ToOchqFca77YrMfOqhEk0p0lGlUyQA-bW5athQct4unvdr0X5akMUjcfuMHVPJmCeLdnuxPNV3DRDXJUiWuxADe9zag8UWkf1dM6aum1oKmX2ZqHCc3y8QhJVUijQfwojWgzXq4RJrhbr383-d_B_cnx7Opnn45-vYKHtAvbdPka9heXTb-DaKnlX0b3o4_2sAXJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Methylobacterium+extorquens+for+de+novo+synthesis+of+the+sesquiterpenoid+%CE%B1-humulene+from+methanol&rft.jtitle=Metabolic+engineering&rft.au=Sonntag%2C+Frank&rft.au=Kroner%2C+Cora&rft.au=Lubuta%2C+Patrice&rft.au=Peyraud%2C+R%C3%A9mi&rft.date=2015-11-01&rft.issn=1096-7176&rft.volume=32+p.82-94&rft.spage=82&rft.epage=94&rft_id=info:doi/10.1016%2Fj.ymben.2015.09.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon