Hybrid Genetic Algorithm for Clustering IC Topographies of EEGs

Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel a...

Full description

Saved in:
Bibliographic Details
Published inBrain topography Vol. 36; no. 3; pp. 338 - 349
Main Authors Munilla, Jorge, Al-Safi, Haedar E. S., Ortiz, Andrés, Luque, Juan L.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0896-0267
1573-6792
1573-6792
DOI10.1007/s10548-023-00947-y

Cover

Abstract Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.
AbstractList Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.
Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.
Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.
Author Ortiz, Andrés
Munilla, Jorge
Al-Safi, Haedar E. S.
Luque, Juan L.
Author_xml – sequence: 1
  givenname: Jorge
  surname: Munilla
  fullname: Munilla, Jorge
  email: munilla@ic.uma.es
  organization: Dpto. Ingeniería de Comunicaciones, Universidad de Málaga
– sequence: 2
  givenname: Haedar E. S.
  surname: Al-Safi
  fullname: Al-Safi, Haedar E. S.
  organization: Dpto. Ingeniería de Comunicaciones, Universidad de Málaga
– sequence: 3
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  organization: Dpto. Ingeniería de Comunicaciones, Universidad de Málaga
– sequence: 4
  givenname: Juan L.
  surname: Luque
  fullname: Luque, Juan L.
  organization: Dpto. Psicología Evolutiva y Educación, Universidad de Málaga
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36881274$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLctX4ADisSFS2D8J7ZzqqrVsq1UiUt7trzJeDdV1g52Asq3x2UXCj2gzsWHee_N-Ddn5MQHj4S8o_CJAqjPiUIldAmMlwC1UOX8iixopXgpVc1OyAJ0LXNbqlNyltIDAPBaqTfklEutKVNiQS6v503s2mKNHseuKa76bYjduNsXLsRi2U9pxNj5bXGzLO7CELbRDrsOUxFcsVqt0wV57Wyf8O3xPSf3X1Z3y-vy9uv6Znl1WzaCybGU2OTSsoXW1jWoVqJlFJzDyiFqu5HOtk4LSiVvN1Qz1CAciopa1zDe8nPCD7mTH-z8w_a9GWK3t3E2FMwjDnPAYTIO8wuHmbPr8uAaps0e2wb9GO2TM9jO_Nvx3c5sw_ccSKUAVuWEj8eEGL5NmEaz71KDfW89hikZprTgWjBKs_TDM-lDmKLPVAzTNIcBB5lV7_9e6c8uv0-SBewgaGJIKaJ72UePeNLweC2MT7P_4_oJmoSurg
Cites_doi 10.1145/3068335
10.1016/j.clinph.2022.06.014
10.1371/journal.pone.0030135
10.1016/j.dib.2019.104101
10.1162/neco.1995.7.6.1129
10.1016/j.clinph.2009.01.015
10.1111/pcn.13201
10.1093/acprof:oso/9780195178081.001.0001
10.1016/j.neuroimage.2019.05.026
10.1016/j.jneumeth.2003.10.009
10.1007/s10548-022-00901-4
10.1016/j.neuroimage.2013.10.067
10.1016/S0898-1221(00)00101-2
10.3389/fnhum.2013.00138
10.1016/j.knosys.2017.12.006
10.1186/1743-0003-8-11
10.1016/j.neubiorev.2006.06.007
10.1016/j.knosys.2021.107522
10.1109/TSMCB.2005.850173
10.1111/ejn.14992
10.1016/j.neuroimage.2018.03.016
10.1109/TEVC.2018.2828643
10.1016/j.knosys.2021.108098
10.1038/s41597-020-00621-z
10.1080/03610917408548446
10.1016/j.knosys.2012.05.016
10.1142/S012906572050029X
10.1016/j.neuroimage.2014.09.010
10.1002/hbm.25262
10.1109/IIAIAAI55812.2022.00071
10.1101/196840
10.1007/s11222-007-9033-z
10.1109/TSMCC.2008.2007252
10.1109/TPAMI.1979.4766909
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10548-023-00947-y
DatabaseName Springer Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature : Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-6792
EndPage 349
ExternalDocumentID 10.1007/s10548-023-00947-y
PMC10164025
36881274
10_1007_s10548_023_00947_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia y Tecnología
  grantid: PGC2018-098813-B-C32
  funderid: http://dx.doi.org/10.13039/501100006280
– fundername: European Regional Development Fund
  grantid: P18-rt-1624; P18-rt-1624
– fundername: Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
  grantid: UMA20- FEDERJA-086; UMA20- FEDERJA-086
– fundername: Universidad de Málaga
– fundername: ;
– fundername: ;
  grantid: UMA20- FEDERJA-086; UMA20- FEDERJA-086
– fundername: ;
  grantid: P18-rt-1624; P18-rt-1624
– fundername: ;
  grantid: PGC2018-098813-B-C32
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
ZGI
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-6ecccc86d0da9907d6ea210ffe5fee8ab6fadf841163db182e804fe451afc23d3
IEDL.DBID UNPAY
ISSN 0896-0267
1573-6792
IngestDate Sun Oct 26 03:12:12 EDT 2025
Tue Sep 30 17:14:15 EDT 2025
Thu Oct 02 05:52:26 EDT 2025
Mon Oct 06 17:48:16 EDT 2025
Thu Apr 03 07:07:28 EDT 2025
Wed Oct 01 02:58:31 EDT 2025
Fri Feb 21 02:45:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GA
Clustering
EEG
ICA
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-6ecccc86d0da9907d6ea210ffe5fee8ab6fadf841163db182e804fe451afc23d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Handling Editor: Ramesh Srinivasan.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10548-023-00947-y.pdf
PMID 36881274
PQID 2810250306
PQPubID 37296
PageCount 12
ParticipantIDs unpaywall_primary_10_1007_s10548_023_00947_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10164025
proquest_miscellaneous_2784384211
proquest_journals_2810250306
pubmed_primary_36881274
crossref_primary_10_1007_s10548_023_00947_y
springer_journals_10_1007_s10548_023_00947_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A Journal of Cerebral Function and Dynamics
PublicationTitle Brain topography
PublicationTitleAbbrev Brain Topogr
PublicationTitleAlternate Brain Topogr
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tinós, Zhao, Chicano, Whitley (CR35) 2018; 22
Piroonsup, Sinthupinyo (CR31) 2018; 143
Pion-Tonachini, Kreutz-Delgado, Makeig (CR29) 2019; 198
Klug, Gramann (CR17) 2021; 54
Rahim, Nguyen, Stewart, Ahmed, Giurco, Blumenstein (CR32) 2021; 233
de Meneses, Teles, Nunes, da Silva Farias, Teixeira (CR7) 2022; 35
Muthukumaraswamy (CR25) 2013; 7
Yin, Shu, Huang (CR38) 2012; 35
Onton, Westerfield, Townsend, Makeig (CR27) 2006; 30
CR37
CR14
Viola, Thorne, Edmonds, Schneider, Eichele, Debener (CR36) 2009; 120
CR12
Delorme, Makeig (CR8) 2004; 134
Pion-Tonachini, Kreutz-Delgado, Makeig (CR30) 2019; 25
Lee, Girolami, Bell, Sejnowski (CR19) 2000; 39
Chung (CR5) 1997
CR6
Ortiz, Martinez-Murcia, Luque, Giménez, Morales-Ortega, Ortega (CR28) 2020
Bell, Sejnowski (CR3) 1995; 7
Delorme, Palmer, Onton, Oostenveld, Makeig (CR9) 2012; 7
Mitra, Bokil (CR22) 2007
Jefsen, Shtyrov, Larsen, Dietz (CR16) 2022; 141
CR26
Artoni, Menicucci, Delorme, Makeig, Micera (CR2) 2014; 103
Caliński, Harabasz (CR4) 1974; 3
Farahani, Wouters, van Wieringen (CR10) 2021; 42
CR24
CR23
Sheng, Swift, Zhang, Liu (CR34) 2005; 35
Lin, Chen, Chiu, Lin, Ko (CR20) 2011; 8
Artoni, Delorme, Makeig (CR1) 2018; 175
Hwang, Han, Kim, Choi (CR15) 2020; 7
Gallego-Molina, Ortiz, Martínez-Murcia, Formoso, Giménez (CR11) 2022; 240
Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (CR13) 2014; 87
Schubert, Sander, Ester, Kriegel, Xu (CR33) 2017; 42
Koshiyama, Miyakoshi, Joshi, Nakanishi, Tanaka-Koshiyama, Sprock, Light (CR18) 2021; 75
Liu, Li, Xiong, Gao, Wu, Wu (CR21) 2012; 43
S Haufe (947_CR13) 2014; 87
X Yin (947_CR38) 2012; 35
NJ Gallego-Molina (947_CR11) 2022; 240
L Pion-Tonachini (947_CR29) 2019; 198
947_CR23
D Koshiyama (947_CR18) 2021; 75
F Artoni (947_CR1) 2018; 175
947_CR26
N Piroonsup (947_CR31) 2018; 143
947_CR24
AJ Bell (947_CR3) 1995; 7
W Sheng (947_CR34) 2005; 35
F Artoni (947_CR2) 2014; 103
MS Rahim (947_CR32) 2021; 233
947_CR6
FRK Chung (947_CR5) 1997
OH Jefsen (947_CR16) 2022; 141
FGA de Meneses (947_CR7) 2022; 35
T Caliński (947_CR4) 1974; 3
P Mitra (947_CR22) 2007
CT Lin (947_CR20) 2011; 8
L Pion-Tonachini (947_CR30) 2019; 25
E Schubert (947_CR33) 2017; 42
947_CR12
E Hwang (947_CR15) 2020; 7
A Delorme (947_CR8) 2004; 134
947_CR37
947_CR14
S Muthukumaraswamy (947_CR25) 2013; 7
F Viola (947_CR36) 2009; 120
A Delorme (947_CR9) 2012; 7
M Klug (947_CR17) 2021; 54
TW Lee (947_CR19) 2000; 39
E Farahani (947_CR10) 2021; 42
Y Liu (947_CR21) 2012; 43
J Onton (947_CR27) 2006; 30
R Tinós (947_CR35) 2018; 22
A Ortiz (947_CR28) 2020
References_xml – volume: 43
  start-page: 982
  issue: 3
  year: 2012
  end-page: 994
  ident: CR21
  article-title: Understanding and enhancement of internal clustering validation measures
  publication-title: IEEE Trans Cybern
– volume: 42
  start-page: 1
  year: 2017
  end-page: 21
  ident: CR33
  article-title: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3068335
– volume: 141
  start-page: 53
  year: 2022
  end-page: 61
  ident: CR16
  article-title: The 40-hz auditory steady-state response in bipolar disorder: a meta-analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2022.06.014
– volume: 7
  start-page: e30135
  issue: 2
  year: 2012
  ident: CR9
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 25
  year: 2019
  ident: CR30
  article-title: The iclabel dataset of electroencephalographic (eeg) independent component (ic) features
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104101
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  end-page: 1159
  ident: CR3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– ident: CR14
– volume: 120
  start-page: 868
  year: 2009
  end-page: 77
  ident: CR36
  article-title: Semi-automatic identification of independent components representing EEG artifact
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.01.015
– ident: CR37
– volume: 75
  start-page: 172
  issue: 5
  year: 2021
  end-page: 179
  ident: CR18
  article-title: Source decomposition of the frontocentral auditory steady-state gamma band response in schizophrenia patients and healthy subjects
  publication-title: Psychiatry Clin Neurosci
  doi: 10.1111/pcn.13201
– ident: CR12
– year: 2007
  ident: CR22
  publication-title: Observed brain dynamics
  doi: 10.1093/acprof:oso/9780195178081.001.0001
– ident: CR6
– volume: 198
  start-page: 181
  year: 2019
  end-page: 197
  ident: CR29
  article-title: May. ICLabel: an automated electroencephalographic independent component classifier, dataset, and website
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.026
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  ident: CR8
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: CR23
– volume: 35
  start-page: 464
  issue: 4
  year: 2022
  end-page: 480
  ident: CR7
  article-title: Neural networks to recognize patterns in topographic images of cortical electrical activity of patients with neurological diseases
  publication-title: Brain Topogr
  doi: 10.1007/s10548-022-00901-4
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  ident: CR13
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 39
  start-page: 1
  issue: 11
  year: 2000
  end-page: 21
  ident: CR19
  article-title: A unifying information-theoretic framework for independent component analysis
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(00)00101-2
– volume: 7
  start-page: 138
  year: 2013
  ident: CR25
  article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00138
– volume: 143
  start-page: 65
  year: 2018
  end-page: 80
  ident: CR31
  article-title: Analysis of training data using clustering to improve semi-supervised self-training
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.12.006
– volume: 8
  start-page: 11
  year: 2011
  ident: CR20
  article-title: Spatial and temporal EEG dynamics of dual-task driving performance
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-11
– volume: 30
  start-page: 808
  issue: 6
  year: 2006
  end-page: 822
  ident: CR27
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 233
  start-page: 107522
  year: 2021
  ident: CR32
  article-title: A clustering solution for analyzing residential water consumption patterns
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107522
– volume: 35
  start-page: 1156
  issue: 6
  year: 2005
  end-page: 1167
  ident: CR34
  article-title: A weighted sum validity function for clustering with a hybrid niching genetic algorithm
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/TSMCB.2005.850173
– volume: 54
  start-page: 8406
  issue: 12
  year: 2021
  end-page: 8420
  ident: CR17
  article-title: Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.14992
– volume: 175
  start-page: 176
  year: 2018
  end-page: 187
  ident: CR1
  article-title: Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.016
– volume: 22
  start-page: 748
  issue: 5
  year: 2018
  end-page: 761
  ident: CR35
  article-title: Nk hybrid genetic algorithm for clustering
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2828643
– volume: 240
  start-page: 108098
  year: 2022
  ident: CR11
  article-title: Complex network modeling of eeg band coupling in dyslexia: an exploratory analysis of auditory processing and diagnosis
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.108098
– volume: 7
  start-page: 288
  issue: 1
  year: 2020
  ident: CR15
  article-title: High-density eeg of auditory steady-state responses during stimulation of basal forebrain parvalbumin neurons
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00621-z
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  end-page: 27
  ident: CR4
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610917408548446
– volume: 35
  start-page: 304
  year: 2012
  end-page: 311
  ident: CR38
  article-title: Semi-supervised fuzzy clustering with metric learning and entropy regularization
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.05.016
– year: 1997
  ident: CR5
  publication-title: Spectral graph theory
– ident: CR26
– ident: CR24
– year: 2020
  ident: CR28
  article-title: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906572050029X
– volume: 103
  start-page: 391
  year: 2014
  end-page: 400
  ident: CR2
  article-title: RELICA: a method for estimating the reliability of independent components
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.010
– volume: 42
  start-page: 780
  issue: 3
  year: 2021
  end-page: 796
  ident: CR10
  article-title: Brain mapping of auditory steady-state responses: a broad view of cortical and subcortical sources
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25262
– volume: 120
  start-page: 868
  year: 2009
  ident: 947_CR36
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.01.015
– volume: 8
  start-page: 11
  year: 2011
  ident: 947_CR20
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-11
– ident: 947_CR24
  doi: 10.1109/IIAIAAI55812.2022.00071
– volume: 42
  start-page: 1
  year: 2017
  ident: 947_CR33
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3068335
– ident: 947_CR12
  doi: 10.1101/196840
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 947_CR8
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: 947_CR23
– ident: 947_CR37
  doi: 10.1007/s11222-007-9033-z
– volume: 75
  start-page: 172
  issue: 5
  year: 2021
  ident: 947_CR18
  publication-title: Psychiatry Clin Neurosci
  doi: 10.1111/pcn.13201
– volume: 39
  start-page: 1
  issue: 11
  year: 2000
  ident: 947_CR19
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(00)00101-2
– volume: 54
  start-page: 8406
  issue: 12
  year: 2021
  ident: 947_CR17
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.14992
– volume: 30
  start-page: 808
  issue: 6
  year: 2006
  ident: 947_CR27
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 198
  start-page: 181
  year: 2019
  ident: 947_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.026
– volume: 143
  start-page: 65
  year: 2018
  ident: 947_CR31
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.12.006
– volume: 141
  start-page: 53
  year: 2022
  ident: 947_CR16
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2022.06.014
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 947_CR3
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– volume: 35
  start-page: 464
  issue: 4
  year: 2022
  ident: 947_CR7
  publication-title: Brain Topogr
  doi: 10.1007/s10548-022-00901-4
– volume: 87
  start-page: 96
  year: 2014
  ident: 947_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 7
  start-page: e30135
  issue: 2
  year: 2012
  ident: 947_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 35
  start-page: 1156
  issue: 6
  year: 2005
  ident: 947_CR34
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/TSMCB.2005.850173
– volume: 22
  start-page: 748
  issue: 5
  year: 2018
  ident: 947_CR35
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2828643
– volume: 175
  start-page: 176
  year: 2018
  ident: 947_CR1
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.016
– ident: 947_CR14
  doi: 10.1109/TSMCC.2008.2007252
– volume: 25
  year: 2019
  ident: 947_CR30
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104101
– ident: 947_CR6
  doi: 10.1109/TPAMI.1979.4766909
– volume: 233
  start-page: 107522
  year: 2021
  ident: 947_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107522
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 947_CR4
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610917408548446
– volume: 103
  start-page: 391
  year: 2014
  ident: 947_CR2
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.010
– volume-title: Spectral graph theory
  year: 1997
  ident: 947_CR5
– volume: 240
  start-page: 108098
  year: 2022
  ident: 947_CR11
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.108098
– volume: 7
  start-page: 288
  issue: 1
  year: 2020
  ident: 947_CR15
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00621-z
– volume: 7
  start-page: 138
  year: 2013
  ident: 947_CR25
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00138
– volume: 43
  start-page: 982
  issue: 3
  year: 2012
  ident: 947_CR21
  publication-title: IEEE Trans Cybern
– volume-title: Observed brain dynamics
  year: 2007
  ident: 947_CR22
  doi: 10.1093/acprof:oso/9780195178081.001.0001
– ident: 947_CR26
– volume: 42
  start-page: 780
  issue: 3
  year: 2021
  ident: 947_CR10
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25262
– volume: 35
  start-page: 304
  year: 2012
  ident: 947_CR38
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.05.016
– year: 2020
  ident: 947_CR28
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906572050029X
SSID ssj0003977
Score 2.3368793
Snippet Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 338
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedicine
Brain
Cluster Analysis
Clustering
EEG
Electroencephalography
Electroencephalography - methods
Event-related potentials
Genetic algorithms
Humans
Neurology
Neurosciences
Original Paper
Psychiatry
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FPbxMPY9b93QYG-rmG3JlvIwShvSZYOGMVrom5H1sRZSO1sTRv773Tm201Aoe7UE8t3Jut9Zd78D-Ciky3wZB44xcspl6RUvg4258kKb2A1tPqR655NpPjmT38-z8x2YdrUwlFbZnYnNQe1qS__IP6c6IXeNCPdg_ptT1yi6Xe1aaJi2tYL70lCM3YPdlJixBrB7NJ7--NmfzQR3GlzZpN7mqi2jaYvpEL3jU8Ep3U7x1baruoU_b6dR9nepj-DBspqb1V8zm91wV8dP4HGLM9nhemM8hR1fPYP7J-1N-nM4mKyoVosR7TROYYezXyjt4uKKIYplo9mSCBRwFfZtxE7r-ZrYGqNqVgc2Hn-9fgFnx-PT0YS3zRS4RSe84Dnaylqdu9gZ9EDK5d6ghkLwWfBemzIPxgUtEwRorsSow-tYBi-zxASbCidewqCqK_8amDCJMtaXUnn0bSErrXFxbIYhtcInTkTwqdNbMV9zZhQbdmTScoFaLhotF6sI9jrVFu33c11srB3Bh34Ydz5dZ5jK10uco7QUWmIEG8GrtSX65USuEbkoGYHeslE_gVi1t0eqy4uGXZt-Z2BQnUWw35lz8153ibHfm_w_pH5zt9Rv4WHa7ETKrNyDweLP0r9D9LMo37db-h-M8QGI
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFGQkbtRVEjux94RWq20XUDl1pXKKHD_aiiVZdROh5dczzqtdihA927IzHtvzTWbmM8B7xk1i89BR9JFjynMraO50SIVlUoVmrNOxr3c--prOF_zzSXLSFYWt-2z3PiTZ3NRXit0QXVO0MdSnwwm6uQ07Dd_WCHYmh9--zIYb2IOaBj02Cbap6Ipl_j7KtkG6hjKvJ0sOEdP7cLcuVmrzUy2XV4zSwUNY9OK0uSjf9-sq39e__mB6vKm8j-BBh1LJpN1Wj-GWLZ7AnaMuDv8UPs43vtKLeNJq7EImy9Py4rw6-0EQA5Ppsvb0CzgZ-TQlx-WqpcVGn5yUjsxmh-tnsDiYHU_ntHuKgWo04RVNUdNay9SERqH9Eia1Cp1F52zirJUqT50yTvII4Z3J0WexMuTO8iRSTsfMsOcwKsrCvgTCVCSUtjkXFi2jS3KtTBiqsYs1s5FhAXzo9ZGtWsaN7JJb2a9JhmuSNWuSbQLY7VWWdadvncUy8tAOvaEA3g3NeG58MEQVtqyxj5CcSY7-bwAvWg0P07FUIu4RPAC5pfuhg-fk3m4pzs8abm7_MwRd8iSAvV6rl9_1LzH2hq30H1K_utnor-Fe3Owjn6e5C6PqorZvEEtV-dvu6PwGsMgV4Q
  priority: 102
  providerName: Springer Nature
Title Hybrid Genetic Algorithm for Clustering IC Topographies of EEGs
URI https://link.springer.com/article/10.1007/s10548-023-00947-y
https://www.ncbi.nlm.nih.gov/pubmed/36881274
https://www.proquest.com/docview/2810250306
https://www.proquest.com/docview/2784384211
https://pubmed.ncbi.nlm.nih.gov/PMC10164025
https://link.springer.com/content/pdf/10.1007/s10548-023-00947-y.pdf
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-6792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003977
  issn: 1573-6792
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-6792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003977
  issn: 1573-6792
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-6792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003977
  issn: 1573-6792
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9trcTHA58DAqMKEm_MXT7t9AmFkK2AVk1olbqnyIltNlGSakuEyl_POV9bGUIgXhIptuLYd9b9Lnf3M8Br1xO-TC1F0Ed2iJdKRlKVWYRJN-CWmGR0ouudj2Z0Ovc-LvzFFrzvamHqbPcuJNnUNGiWprzcXwm1f63wDZE2QXtDdGocI-sxNm_DkPqIyAcwnM-Ow9MaQNY5tvVBsrbPXELZxGlrZ37_ok37dAN03syd7AOod-F2la_4-jtfLq_ZqIP7ILvZNakpX8dVmY6zH78QP_7v9B_AvRbEmmGjdQ9hS-aP4NZRG6Z_DG-na10IZmpOa-xihssvxcV5efbNRIhsRstKszPg4OaHyDwpVg1rNrrsZqHMOD683IH5QXwSTUl7UgPJ0MKXhKIiZFlAhSU4mjcmqOToSyolfSVlwFOquFCBZyP6Eym6NDKwPCU93-Yqc1zhPoFBXuTyGZgutxnPZOoxiYZT-WnGhWXxiXIyV9rCNeBNJ59k1RByJFfUy3pdElyXpF6XZG3AbifCpN2cl4kT2Br5obNkwKu-GbeVjpXwXBYV9mGB5wYeuscGPG0k3g_n0gBhEfMMCDZ0oe-gKbs3W_Lzs5q6W_8rQY_dN2Cvk_LVd_1pGnu9av3FrJ__W_cXcMepdUmnce7CoLyo5EuEWmU6gm22YCMYhoenn2K8v4tnx5_xaUQjvM6dcNTutZ-jQScq
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPgmMMBI8MQskthJ3IdpGqWjZWuFUCftLXP8sU0qSaGtpvxz_G2c0ySlmjTxstfYSuK7s-93vi-A94zryGS-pWgjh5RnJqGZVT5NDBPS1x0Vd1y-83AU90_4t9PodAP-NLkwLqyyOROrg1oXyt2RfwpF4NQ1Itz96S_qukY572rTQkPWrRX0XlVirE7sODLlFZpws73BF-T3hzA87I27fVp3GaAKtdOcxrgIpUSsfS3xaE50bCTaQdaayBojZBZbqa3gASIXnSEcN8Ln1vAokFaFTDN87x3Y4ox30Pjb-twbff_R6gIHryocW4X6xkmdtlMn76G1gE8ZdeF9CS3XVeM1vHs9bLP13d6H7UU-leWVnEz-UY-HD-FBjWvJwVIQH8GGyR_D3WHtuX8C-_3S5YYRV-Yap5CDyTlSd37xkyBqJt3JwhVswK-QQZeMi-mykDZa8aSwpNf7OnsKJ7dC1mewmRe5eQGEySCRymQ8MahLbZQpqX1fdmyomAk08-BjQ7d0uqzRka6qMTsqp0jltKJyWnqw05A2rffrLF1Jlwfv2mHcac59InNTLHBOIjgTHC1mD54vOdF-jsUCkVLCPRBrPGonuCre6yP55UVVzdtdn6ARH3mw27Bz9V83LWO3Zfl_rPrlzat-C9v98fA4PR6Mjl7BvbCSShfVuQOb898L8xqR1zx7U4s3gbPb3lF_AY5jQUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxrwgLgTGGAkeGLW0tiJ3Qc0TV1Ly9jEwyb1LTi-MKSSFNpqyl_j13GcW6kmTbzsNbaS-Fx8vuNzMcA7xk1ss9BR9JEjyjMraOZ0SIVlUoWmr5O-r3c-OU3G5_zzNJ5uwZ-2FsanVbZ7YrVRm0L7M_L9SPa8uUaEu--atIivR6OD-S_qb5Dykdb2Oo1aRI5teYnu2-Lj5Ah5_T6KRsOzwZg2NwxQjZZpSRNcgNYyMaFRuC0Lk1iFPpBzNnbWSpUlThkneQ9Ri8kQilsZcmd53FNOR8wwfO8tuC0Y6_t0QjHtnL3QA6sKwVZJvoloCnaasj30E_Apoz6xT9By0yheQbpXEza7qO09uLPK56q8VLPZP4Zx9ADuN4iWHNYi-BC2bP4Idk6amP1jOBiXviqM-AbXOIUczr4jLZcXPwniZTKYrXyrBvwKmQzIWTGvW2ij_04KR4bDT4sncH4jRH0K23mR2-dAmOoJpW3GhUUr6uJMKxOGqu8izWzPsAA-tHRL53V3jnTdh9lTOUUqpxWV0zKA3Za0aaOpi3QtVwG87YZRx3zgROW2WOEcITmTHH3lAJ7VnOg-xxKJGEnwAOQGj7oJvn_35kj-46Lq4-0PTtB9jwPYa9m5_q_rlrHXsfw_Vv3i-lW_gR3Uo_TL5PT4JdyNKqH06Zy7sL38vbKvEHIts9eVbBP4dtPK9BfEyj7c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwLNAoCAjcaPeJrETe09otWxZkFpx6ErlFDl-0IolWbWJ0PLrGeex7VKEQJw9SjKeseabzMxngNeMm8TmoaOYI8eU51bQ3OmQCsukCs1IpyM_73x4lM7m_ONJcrIF7_pZmKbbvS9JtjMNnqWpqPaXxu1fGXxDpE0x3lDfGifoaojLN2A7TRCRD2B7fvRp_LkBkE2PbXORbJQIRlMxirvZmd8_aDM-XQOd13sn1wXUO3CrLpZq9V0tFldi1ME9sL12bWvK12Fd5UP94xfix_9V_z7c7UAsGbde9wC2bPEQbh52ZfpH8Ha28oNgxHNaowgZL76U52fV6TeCEJlMFrVnZ8CXkw8TclwuW9ZsTNlJ6ch0-v5iB-YH0-PJjHY3NVCNEb6iKTqC1jI1oVEY3oRJrcJc0jmbOGulylOnjJM8QvRnckxprAy5szyJlNMxM-wxDIqysE-BMBUJpW3OhcXA6ZJcKxOGauRizWxkWABvevtky5aQI7ukXvb7kuG-ZM2-ZKsAdnsTZt3hvMhiGXnkh8lSAK_Wy3isfK1EFbasUUZIziTH9DiAJ63F169jqURYJHgAcsMX1gKesntzpTg7bai7_b8SzNiTAPZ6K19-15_U2Fu71l9o_ezfxJ_D7bjxJd_GuQuD6ry2LxBqVfnL7iT9BN5BIU8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Genetic+Algorithm+for+Clustering+IC+Topographies+of+EEGs&rft.jtitle=Brain+topography&rft.au=Munilla%2C+Jorge&rft.au=Al-Safi%2C+Haedar+E.+S&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Luque%2C+Juan+L&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0896-0267&rft.eissn=1573-6792&rft.volume=36&rft.issue=3&rft.spage=338&rft.epage=349&rft_id=info:doi/10.1007%2Fs10548-023-00947-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-0267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-0267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-0267&client=summon