Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers

To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone. All protocols were approved by the institutional review board at each...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 266; no. 2; pp. 583 - 591
Main Authors Shaffer, Jennifer L., Petrella, Jeffrey R., Sheldon, Forrest C., Choudhury, Kingshuk Roy, Calhoun, Vince D., Coleman, R. Edward, Doraiswamy, P. Murali
Format Journal Article
LanguageEnglish
Published United States Radiological Society of North America, Inc 01.02.2013
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.12120010

Cover

Abstract To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone. All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score). Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08). Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information.
AbstractList A model combining clinical information with MR imaging, fluorine 18 fluorodeoxyglucose (FDG) PET, and cerebrospinal fluid markers yielded the highest accuracy for predicting future mild cognitive impairment conversion; however, the most efficient model included only FDG PET with the clinical covariates.
To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone.PURPOSETo assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone.All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score).MATERIALS AND METHODSAll protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score).Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08).RESULTSCombining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08).Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information.CONCLUSIONImaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information.
To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone. All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score). Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08). Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information.
Author Shaffer, Jennifer L.
Coleman, R. Edward
Sheldon, Forrest C.
Petrella, Jeffrey R.
Calhoun, Vince D.
Choudhury, Kingshuk Roy
Doraiswamy, P. Murali
Author_xml – sequence: 1
  givenname: Jennifer L.
  surname: Shaffer
  fullname: Shaffer, Jennifer L.
– sequence: 2
  givenname: Jeffrey R.
  surname: Petrella
  fullname: Petrella, Jeffrey R.
– sequence: 3
  givenname: Forrest C.
  surname: Sheldon
  fullname: Sheldon, Forrest C.
– sequence: 4
  givenname: Kingshuk Roy
  surname: Choudhury
  fullname: Choudhury, Kingshuk Roy
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
– sequence: 6
  givenname: R. Edward
  surname: Coleman
  fullname: Coleman, R. Edward
– sequence: 7
  givenname: P. Murali
  surname: Doraiswamy
  fullname: Doraiswamy, P. Murali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23232293$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1PFTEYhRuDkQu6dme6dMGFfs50NiZ4-ZAEI0FYN-30nUuh017bGRL8Df5o5uYCURNjuuiizzk579uzg7ZiioDQe0r2KRXqIBvnU9injDJCKHmFZlSyek45lVtoRgjncyVos412SrmdCCFV_QZtMz4d1vAZ-nWRwfl28HGJF2kZ_eDvAR9BG3wE7CP-PtpbaIeCzYAvfbnDXcr4MPy8Ad9Dxke-gCmA7QO-LhuT3k5ShxeQweZUVj6agE_C6N0e_nqJz3qznMA9bKLDF8dX-LNPvcl3kMtb9LozocC7p3sXXZ8cXy2-zM-_nZ4tDs_nrWDVMK-cU3XNHBjRGUu5q6ltWW2Yc8ySpumk5EpZDqaqoTWWuVo1ddeJqnNWTqPvok8b39Voe3AtxCGboFfZT0EedDJe__kS_Y1epnvNpVSqFpPBxyeDnH6MUAbd-9JCCCZCGoumVUUEFYLT_6NMSVFJQtfoh99jveR5_q0JONgA7bTXkqF7QSjR6z7oTR_0cx8mhfxL0frBDD6t5_Lhn7pHyke89w
CitedBy_id crossref_primary_10_1016_j_archger_2021_104359
crossref_primary_10_3390_ijms241311119
crossref_primary_10_1097_WAD_0000000000000406
crossref_primary_10_1016_j_tics_2013_08_007
crossref_primary_10_3389_fncom_2019_00072
crossref_primary_10_6009_jjrt_2021_JSRT_77_2_193
crossref_primary_10_4236_aar_2013_23013
crossref_primary_10_1016_j_pnpbp_2013_02_018
crossref_primary_10_3233_JAD_160403
crossref_primary_10_1016_j_cmpb_2017_07_003
crossref_primary_10_1093_brain_awx353
crossref_primary_10_1177_1533317513494457
crossref_primary_10_2217_nmt_14_29
crossref_primary_10_1002_alz_13385
crossref_primary_10_3233_JAD_210308
crossref_primary_10_1016_j_cpet_2016_08_003
crossref_primary_10_1016_j_ejrad_2014_04_008
crossref_primary_10_1016_j_heliyon_2020_e05724
crossref_primary_10_3389_fnagi_2021_764872
crossref_primary_10_1016_S1474_4422_20_30314_8
crossref_primary_10_1016_j_jalz_2014_02_001
crossref_primary_10_1007_s00259_013_2458_z
crossref_primary_10_1259_bjr_20130464
crossref_primary_10_1007_s00259_020_04969_7
crossref_primary_10_1016_j_cpet_2017_03_001
crossref_primary_10_1016_j_pscychresns_2014_08_005
crossref_primary_10_2967_jnumed_119_234930
crossref_primary_10_1080_13803395_2022_2115015
crossref_primary_10_1371_journal_pone_0154406
crossref_primary_10_1007_s00259_017_3761_x
crossref_primary_10_1111_jon_12163
crossref_primary_10_1016_j_neuroscience_2014_08_044
crossref_primary_10_2337_db13_1783
crossref_primary_10_1007_s12149_014_0932_8
crossref_primary_10_3233_JAD_150164
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1016_j_jalz_2015_05_009
crossref_primary_10_1586_ern_13_45
crossref_primary_10_3233_JAD_215289
crossref_primary_10_1089_brain_2020_0937
crossref_primary_10_1186_s12888_020_02886_5
crossref_primary_10_3233_JAD_171125
crossref_primary_10_2478_raon_2021_0051
crossref_primary_10_3233_JAD_170395
crossref_primary_10_1038_srep26712
crossref_primary_10_1007_s11011_021_00733_4
crossref_primary_10_1016_j_pscychresns_2017_10_008
crossref_primary_10_1080_22311866_2020_1726813
crossref_primary_10_3233_JAD_170833
crossref_primary_10_3390_cells11213364
crossref_primary_10_3892_mmr_2016_5618
crossref_primary_10_1016_j_nicl_2018_01_019
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1016_j_neuroimage_2019_01_031
crossref_primary_10_1002_trc2_12223
crossref_primary_10_7554_eLife_100238
crossref_primary_10_1007_s40336_013_0018_y
crossref_primary_10_1186_1750_1326_8_20
crossref_primary_10_1148_radiol_13122503
crossref_primary_10_3389_fnins_2018_01045
crossref_primary_10_1159_000354074
crossref_primary_10_1007_s40336_013_0031_1
crossref_primary_10_1111_ene_14639
crossref_primary_10_1109_TMI_2021_3063150
crossref_primary_10_1093_cercor_bhab271
crossref_primary_10_57197_JDR_2024_0103
crossref_primary_10_1016_j_jalz_2015_02_003
crossref_primary_10_2967_jnumed_114_141416
crossref_primary_10_1007_s00259_015_3170_y
crossref_primary_10_1109_JBHI_2018_2872581
crossref_primary_10_1371_journal_pone_0173372
crossref_primary_10_1016_j_neuroimage_2016_05_026
crossref_primary_10_1038_s41598_020_74399_w
crossref_primary_10_3389_fnhum_2020_00245
crossref_primary_10_3233_JAD_180004
crossref_primary_10_1007_s00259_015_3098_2
crossref_primary_10_1016_j_neurad_2017_05_008
crossref_primary_10_31887_DCNS_2013_15_3_ekim
crossref_primary_10_3389_fneur_2020_00496
crossref_primary_10_3390_diagnostics12102425
crossref_primary_10_1016_S1474_4422_15_00093_9
crossref_primary_10_3389_fphar_2019_00665
crossref_primary_10_1016_j_trsl_2018_01_001
crossref_primary_10_1002_hast_296
crossref_primary_10_1016_j_jalz_2017_01_019
crossref_primary_10_1007_s11590_021_01816_y
crossref_primary_10_13005_bpj_2091
crossref_primary_10_3233_JAD_190822
crossref_primary_10_3390_diagnostics14060585
crossref_primary_10_3390_pr5030047
crossref_primary_10_1016_j_lpm_2022_104121
crossref_primary_10_3233_JAD_181022
crossref_primary_10_1007_s11920_013_0360_9
crossref_primary_10_3390_brainsci7060064
crossref_primary_10_2174_1570163816666190214161825
crossref_primary_10_3174_ajnr_A5259
crossref_primary_10_1007_s00259_019_04559_2
crossref_primary_10_1002_alz_70005
crossref_primary_10_1016_j_dscb_2024_100168
crossref_primary_10_1016_j_jagp_2024_11_015
crossref_primary_10_1016_j_neurobiolaging_2015_08_007
crossref_primary_10_3233_JAD_160327
crossref_primary_10_3233_JAD_170261
crossref_primary_10_1080_10543406_2023_2169928
crossref_primary_10_1038_s41598_019_56923_9
crossref_primary_10_1155_2014_785039
crossref_primary_10_1159_000484248
crossref_primary_10_3174_ajnr_A5814
crossref_primary_10_3233_JAD_190539
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1097_WCO_0000000000000494
crossref_primary_10_1111_joim_12190
crossref_primary_10_1186_s13195_021_00886_5
crossref_primary_10_1007_s40291_018_0334_z
crossref_primary_10_1007_s40846_022_00717_4
crossref_primary_10_1007_s10072_024_07731_1
crossref_primary_10_1016_j_dadm_2015_01_006
crossref_primary_10_3389_fnins_2017_00578
crossref_primary_10_3233_JAD_150788
crossref_primary_10_3389_fnagi_2014_00287
crossref_primary_10_1093_brain_awab294
crossref_primary_10_14283_jpad_2022_52
crossref_primary_10_3389_fnins_2023_1216215
crossref_primary_10_1002_hbm_23078
crossref_primary_10_1016_j_cpet_2016_05_003
crossref_primary_10_3348_kjr_2017_18_6_983
crossref_primary_10_3390_brainsci14060590
crossref_primary_10_1159_000487801
crossref_primary_10_3390_pharmaceutics15092316
crossref_primary_10_1002_alz_12991
crossref_primary_10_1007_s40336_016_0209_4
crossref_primary_10_1097_WCO_0000000000001172
crossref_primary_10_1002_dad2_12174
crossref_primary_10_46847_ujmm_2023_4_4__045
crossref_primary_10_1146_annurev_pharmtox_011613_135928
crossref_primary_10_1148_radiol_2018170575
crossref_primary_10_1177_1533317520911573
crossref_primary_10_1002_jmri_26000
crossref_primary_10_1007_s40336_015_0110_6
crossref_primary_10_1038_s12276_021_00638_3
crossref_primary_10_3174_ajnr_A3695
crossref_primary_10_3390_diagnostics11112023
crossref_primary_10_6009_jjrt_2017_JSRT_73_9_737
crossref_primary_10_1053_j_semnuclmed_2015_09_003
crossref_primary_10_1053_j_semnuclmed_2016_09_005
crossref_primary_10_1097_RMR_0000000000000225
crossref_primary_10_1155_2018_1483791
crossref_primary_10_1016_j_neurobiolaging_2016_03_033
crossref_primary_10_1080_02664763_2021_1899141
crossref_primary_10_17116_jnevro201511511172_79
crossref_primary_10_3233_JAD_150136
crossref_primary_10_3390_sci5010013
crossref_primary_10_1007_s00330_023_10168_3
crossref_primary_10_3389_fnagi_2014_00052
crossref_primary_10_3390_bioengineering10101225
crossref_primary_10_2217_WHE_13_22
crossref_primary_10_2967_jnumed_116_185835
crossref_primary_10_1016_j_biopsych_2013_11_020
crossref_primary_10_1016_j_jalz_2014_06_006
crossref_primary_10_1002_brb3_2850
crossref_primary_10_1016_j_neurobiolaging_2016_05_024
crossref_primary_10_1186_s12877_016_0281_7
crossref_primary_10_1007_s00259_022_05999_z
crossref_primary_10_3233_JAD_201398
crossref_primary_10_3390_cells12050694
crossref_primary_10_1016_j_arr_2016_02_001
crossref_primary_10_1016_j_acra_2022_12_033
crossref_primary_10_1038_s41598_018_31653_6
crossref_primary_10_1093_braincomms_fcab264
crossref_primary_10_3389_fnagi_2017_00009
crossref_primary_10_1021_cn500101j
crossref_primary_10_1186_s13195_021_00785_9
crossref_primary_10_1007_s40708_015_0028_9
crossref_primary_10_1007_s00415_019_09441_7
crossref_primary_10_1186_s13195_019_0549_1
crossref_primary_10_3389_fnagi_2014_00047
Cites_doi 10.1001/archgenpsychiatry.2011.96
10.1016/j.neuroimage.2008.02.043
10.1038/nrn1433
10.1001/archneur.60.8.1119
10.1212/WNL.59.3.378
10.1016/j.neuroimage.2011.01.049
10.1016/j.neuroimage.2004.07.051
10.1017/S1041610297004717
10.1016/S0197-4580(01)00230-5
10.1016/j.neurobiolaging.2010.10.019
10.1148/radiol.2262011600
10.1016/j.jalz.2010.03.007
10.1006/nimg.2000.0582
10.1001/archneur.58.3.397
10.1006/nimg.2001.0786
10.1002/hbm.20166
10.1109/TITB.2008.923773
10.1016/j.neuroimage.2009.11.046
10.1212/WNL.0b013e3181af79fb
10.1093/brain/awq277
10.1073/pnas.0500579102
10.1148/radiol.10091402
10.1001/archneur.1985.04060100083029
10.1002/ana.21610
10.1007/978-1-4899-3242-6
10.1016/j.jalz.2011.04.007
10.1016/j.jalz.2010.01.009
10.1016/j.neuroimage.2007.01.010
10.3174/ajnr.A1809
10.1212/WNL.0b013e3181e8e8b8
10.1212/WNL.0b013e3182343314
10.1016/j.neurobiolaging.2005.03.026
10.1148/radiol.11101975
10.1016/j.neurobiolaging.2008.08.013
10.1016/j.neuroimage.2008.10.055
10.1016/j.neuroimage.2010.10.081
10.1002/hbm.20508
10.1523/JNEUROSCI.2177-05.2005
ContentType Journal Article
Copyright RSNA, 2013 2013
Copyright_xml – notice: RSNA, 2013 2013
CorporateAuthor For the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: For the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1148/radiol.12120010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 591
ExternalDocumentID PMC3558874
23232293
10_1148_radiol_12120010
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U19 AG010483
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIBIB NIH HHS
  grantid: 1R01EB005846
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
7TK
5PM
ID FETCH-LOGICAL-c426t-6dd8772dea4fab13d71bc27a2dd2b099f55388b3ea67ecab2d7897ff46fdb5323
ISSN 0033-8419
1527-1315
IngestDate Thu Aug 21 18:10:28 EDT 2025
Thu Sep 04 19:41:32 EDT 2025
Fri Sep 05 05:51:43 EDT 2025
Wed Feb 19 02:36:18 EST 2025
Thu Apr 24 23:08:28 EDT 2025
Tue Jul 01 02:16:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-6dd8772dea4fab13d71bc27a2dd2b099f55388b3ea67ecab2d7897ff46fdb5323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: Guarantors of integrity of entire study, J.L.S., J.R.P.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; manuscript final version approval, all authors; literature research, J.L.S., J.R.P., P.M.D.; clinical studies, R.E.C., P.M.D.; statistical analysis, J.L.S., J.R.P., F.C.S., K.R.C., V.D.C.; and manuscript editing, J.L.S., J.R.P., F.C.S., V.D.C., R.E.C., P.M.D.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3558874
PMID 23232293
PQID 1285465011
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3558874
proquest_miscellaneous_1660414431
proquest_miscellaneous_1285465011
pubmed_primary_23232293
crossref_primary_10_1148_radiol_12120010
crossref_citationtrail_10_1148_radiol_12120010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-00
2013-Feb
20130201
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2013
Publisher Radiological Society of North America, Inc
Publisher_xml – name: Radiological Society of North America, Inc
References r2
r3
r4
r5
r7
r8
Cui Y (r18) 2011; 6
r9
r30
r10
r32
r31
r12
r34
r33
r14
r36
r13
r16
r38
r15
r37
r39
r19
Davatzikos C (r11) 2010; 32
Rachakonda S (r27) 2008
r41
r40
r21
r43
r20
r42
r23
r45
r22
r44
r25
r24
r46
r26
r1
Trojanowski JQ (r6) 2004; 3
23804126 - Rofo. 2013 Jul;185(7):604-5
References_xml – ident: r19
  doi: 10.1001/archgenpsychiatry.2011.96
– ident: r43
  doi: 10.1016/j.neuroimage.2008.02.043
– ident: r37
  doi: 10.1038/nrn1433
– ident: r5
  doi: 10.1001/archneur.60.8.1119
– ident: r14
  doi: 10.1212/WNL.59.3.378
– ident: r22
  doi: 10.1016/j.neuroimage.2011.01.049
– ident: r32
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: r10
  doi: 10.1017/S1041610297004717
– volume: 32
  start-page: 2322
  issue: 12
  year: 2010
  ident: r11
  publication-title: Neurobiol Aging
– volume-title: Fusion ICA toolbox (FIT) manual
  year: 2008
  ident: r27
– volume: 6
  issue: 7
  year: 2011
  ident: r18
  publication-title: PLoS ONE
– ident: r15
  doi: 10.1016/S0197-4580(01)00230-5
– ident: r20
  doi: 10.1016/j.neurobiolaging.2010.10.019
– ident: r2
  doi: 10.1148/radiol.2262011600
– ident: r3
  doi: 10.1016/j.jalz.2010.03.007
– ident: r30
  doi: 10.1006/nimg.2000.0582
– volume: 3
  start-page: 30
  year: 2004
  ident: r6
  publication-title: Pract Neurol
– ident: r9
  doi: 10.1001/archneur.58.3.397
– ident: r31
  doi: 10.1006/nimg.2001.0786
– ident: r25
  doi: 10.1002/hbm.20166
– ident: r44
  doi: 10.1109/TITB.2008.923773
– ident: r12
  doi: 10.1016/j.neuroimage.2009.11.046
– ident: r38
  doi: 10.1212/WNL.0b013e3181af79fb
– ident: r8
  doi: 10.1093/brain/awq277
– ident: r39
  doi: 10.1073/pnas.0500579102
– ident: r42
  doi: 10.1148/radiol.10091402
– ident: r1
  doi: 10.1001/archneur.1985.04060100083029
– ident: r34
  doi: 10.1002/ana.21610
– ident: r36
  doi: 10.1007/978-1-4899-3242-6
– ident: r45
  doi: 10.1016/j.jalz.2011.04.007
– ident: r4
  doi: 10.1016/j.jalz.2010.01.009
– ident: r41
  doi: 10.1016/j.neuroimage.2007.01.010
– ident: r13
  doi: 10.3174/ajnr.A1809
– ident: r21
  doi: 10.1212/WNL.0b013e3181e8e8b8
– ident: r24
  doi: 10.1212/WNL.0b013e3182343314
– ident: r46
  doi: 10.1016/j.neurobiolaging.2005.03.026
– ident: r23
  doi: 10.1148/radiol.11101975
– ident: r16
  doi: 10.1016/j.neurobiolaging.2008.08.013
– ident: r33
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: r7
  doi: 10.1016/j.neuroimage.2010.10.081
– ident: r26
  doi: 10.1002/hbm.20508
– ident: r40
  doi: 10.1523/JNEUROSCI.2177-05.2005
– reference: 23804126 - Rofo. 2013 Jul;185(7):604-5
SSID ssj0014587
Score 2.5193253
Snippet To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive...
A model combining clinical information with MR imaging, fluorine 18 fluorodeoxyglucose (FDG) PET, and cerebrospinal fluid markers yielded the highest accuracy...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 583
SubjectTerms Aged
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Area Under Curve
Biomarkers - analysis
Chi-Square Distribution
Cognition Disorders - cerebrospinal fluid
Cognition Disorders - diagnostic imaging
Cognition Disorders - pathology
Female
Fluorodeoxyglucose F18
Humans
Image Interpretation, Computer-Assisted
Logistic Models
Magnetic Resonance Imaging - methods
Male
Original Research
Positron-Emission Tomography - methods
Predictive Value of Tests
Radiopharmaceuticals
Regression Analysis
Retrospective Studies
Risk Factors
Title Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers
URI https://www.ncbi.nlm.nih.gov/pubmed/23232293
https://www.proquest.com/docview/1285465011
https://www.proquest.com/docview/1660414431
https://pubmed.ncbi.nlm.nih.gov/PMC3558874
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDfhpUXigJSmJPba6xyrKlELSanSRMrN2vWuZUPiINc-tL8B8ZuZsdePtIAKlyhyNraT-Tw7s_PtfIS8V_AUKMY15CYhSph5Ah4pSFyVJXngjrTmxfax2al7vGSfVs6q0_nZYi3lmTwIrn67r-R_rArHwK64S_YfLFufFA7Ae7AvvIKF4fVWNj5LscySlaX7hgYUFKFjnKBX-FqwNUTWmyOHHDmFh-urSMcbnWLnTSzOYAS6rOr_kCgXa74p5MooKYLB6mSdx6X28Lx3silkjSrS59l4gXKWGyT5mLpQ1e1bqHhnyf48EqjF0qbU9KaNZ85S5GG1Npc1VMbzSK-N5ggqiTQLu0fRNleRYQKgOstFlH_rzbeX7bUM1JWoeSHGP9t232PGiRr_bJWyLAaIVsvbOqUGjpm4nVL26-acwHCfQ1r8amymgSyyQTP9VSX_0y_-ZDmd-ovxanGH3LU4xGIYZJ98rqtSzPHKHqzmLk2rKLjAx2un341ybqQu1xm4rZBm8ZA8MLkIPSyB9Yh0dPKY3JsZtsUT8qPBF63xRQ2-aJzQCl9UZBTxRQFftMYXNfii8pIW-KIVvugOvmiBr306m1ODrn0K2KKALdpg6ylZTsaLo-O-Ue_oBxD1ZX1XKQ9SN6UFC4Uc2ooPZWBxYSnwA5CXhA7MtZ60tXC5DoS0FPdGPAyZGyrp2Jb9jOwl20S_INRGLjJzlWeHHpMj5Y2kkioYBHLAhQqdLjmo_m0_MK3tUWFl7Zfb7j2_NI9fmadLPtRf-F52dfnz0HeV-XzwvFhOE4ne5hcwwoObcmCC_MsY1x2wIYMovUuelyavLwi5DMymI7tL-A4Y6gHY-X33kySOig7wqIngcfbyFtd9Re43T9prspeluX4DcXQm3xbg_gVtC88t
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Cognitive+Decline+in+Subjects+at+Risk+for+Alzheimer+Disease+by+Using+Combined+Cerebrospinal+Fluid%2C+MR+Imaging%2C+and+PET+Biomarkers&rft.jtitle=Radiology&rft.au=Shaffer%2C+Jennifer+L&rft.au=Petrella%2C+Jeffrey+R&rft.au=Sheldon%2C+rest+C&rft.au=Choudhury%2C+Kingshuk+Roy&rft.date=2013-02-01&rft.issn=0033-8419&rft.volume=266&rft.issue=2&rft.spage=583&rft.epage=591&rft_id=info:doi/10.1148%2Fradiol.12120010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon