Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers
To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone. All protocols were approved by the institutional review board at each...
Saved in:
Published in | Radiology Vol. 266; no. 2; pp. 583 - 591 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Radiological Society of North America, Inc
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-8419 1527-1315 1527-1315 |
DOI | 10.1148/radiol.12120010 |
Cover
Abstract | To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone.
All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score).
Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08).
Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information. |
---|---|
AbstractList | A model combining clinical information with MR imaging, fluorine 18 fluorodeoxyglucose (FDG) PET, and cerebrospinal fluid markers yielded the highest accuracy for predicting future mild cognitive impairment conversion; however, the most efficient model included only FDG PET with the clinical covariates. To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone.PURPOSETo assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone.All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score).MATERIALS AND METHODSAll protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score).Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08).RESULTSCombining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08).Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information.CONCLUSIONImaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information. To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive impairment (MCI) compared with predictions based on clinical parameters alone. All protocols were approved by the institutional review board at each site, and written informed consent was obtained from all subjects. The study was HIPAA compliant. Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies for 97 subjects with MCI were used. MR imaging-derived gray matter probability maps and FDG PET images were analyzed by using independent component analysis, an unbiased data-driven method to extract independent sources of information from whole-brain data. The loading parameters for all MR imaging and FDG components, along with cerebrospinal fluid (CSF) proteins, were entered into logistic regression models (dependent variable: conversion to AD within 4 years). Eight models were considered, including all combinations of MR imaging, PET, and CSF markers with the covariates (age, education, apolipoprotein E genotype, Alzheimer's Disease Assessment Scale-Cognitive subscale score). Combining MR imaging, FDG PET, and CSF data with routine clinical tests significantly increased the accuracy of predicting conversion to AD compared with clinical testing alone. The misclassification rate decreased from 41.3% to 28.4% (P < .00001). FDG PET contributed more information to routine tests (P < .00001) than CSF (P = .32) or MR imaging (P = .08). Imaging and CSF biomarkers can improve prediction of conversion from MCI to AD compared with baseline clinical testing. FDG PET appears to add the greatest prognostic information. |
Author | Shaffer, Jennifer L. Coleman, R. Edward Sheldon, Forrest C. Petrella, Jeffrey R. Calhoun, Vince D. Choudhury, Kingshuk Roy Doraiswamy, P. Murali |
Author_xml | – sequence: 1 givenname: Jennifer L. surname: Shaffer fullname: Shaffer, Jennifer L. – sequence: 2 givenname: Jeffrey R. surname: Petrella fullname: Petrella, Jeffrey R. – sequence: 3 givenname: Forrest C. surname: Sheldon fullname: Sheldon, Forrest C. – sequence: 4 givenname: Kingshuk Roy surname: Choudhury fullname: Choudhury, Kingshuk Roy – sequence: 5 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. – sequence: 6 givenname: R. Edward surname: Coleman fullname: Coleman, R. Edward – sequence: 7 givenname: P. Murali surname: Doraiswamy fullname: Doraiswamy, P. Murali |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23232293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1PFTEYhRuDkQu6dme6dMGFfs50NiZ4-ZAEI0FYN-30nUuh017bGRL8Df5o5uYCURNjuuiizzk579uzg7ZiioDQe0r2KRXqIBvnU9injDJCKHmFZlSyek45lVtoRgjncyVos412SrmdCCFV_QZtMz4d1vAZ-nWRwfl28HGJF2kZ_eDvAR9BG3wE7CP-PtpbaIeCzYAvfbnDXcr4MPy8Ad9Dxke-gCmA7QO-LhuT3k5ShxeQweZUVj6agE_C6N0e_nqJz3qznMA9bKLDF8dX-LNPvcl3kMtb9LozocC7p3sXXZ8cXy2-zM-_nZ4tDs_nrWDVMK-cU3XNHBjRGUu5q6ltWW2Yc8ySpumk5EpZDqaqoTWWuVo1ddeJqnNWTqPvok8b39Voe3AtxCGboFfZT0EedDJe__kS_Y1epnvNpVSqFpPBxyeDnH6MUAbd-9JCCCZCGoumVUUEFYLT_6NMSVFJQtfoh99jveR5_q0JONgA7bTXkqF7QSjR6z7oTR_0cx8mhfxL0frBDD6t5_Lhn7pHyke89w |
CitedBy_id | crossref_primary_10_1016_j_archger_2021_104359 crossref_primary_10_3390_ijms241311119 crossref_primary_10_1097_WAD_0000000000000406 crossref_primary_10_1016_j_tics_2013_08_007 crossref_primary_10_3389_fncom_2019_00072 crossref_primary_10_6009_jjrt_2021_JSRT_77_2_193 crossref_primary_10_4236_aar_2013_23013 crossref_primary_10_1016_j_pnpbp_2013_02_018 crossref_primary_10_3233_JAD_160403 crossref_primary_10_1016_j_cmpb_2017_07_003 crossref_primary_10_1093_brain_awx353 crossref_primary_10_1177_1533317513494457 crossref_primary_10_2217_nmt_14_29 crossref_primary_10_1002_alz_13385 crossref_primary_10_3233_JAD_210308 crossref_primary_10_1016_j_cpet_2016_08_003 crossref_primary_10_1016_j_ejrad_2014_04_008 crossref_primary_10_1016_j_heliyon_2020_e05724 crossref_primary_10_3389_fnagi_2021_764872 crossref_primary_10_1016_S1474_4422_20_30314_8 crossref_primary_10_1016_j_jalz_2014_02_001 crossref_primary_10_1007_s00259_013_2458_z crossref_primary_10_1259_bjr_20130464 crossref_primary_10_1007_s00259_020_04969_7 crossref_primary_10_1016_j_cpet_2017_03_001 crossref_primary_10_1016_j_pscychresns_2014_08_005 crossref_primary_10_2967_jnumed_119_234930 crossref_primary_10_1080_13803395_2022_2115015 crossref_primary_10_1371_journal_pone_0154406 crossref_primary_10_1007_s00259_017_3761_x crossref_primary_10_1111_jon_12163 crossref_primary_10_1016_j_neuroscience_2014_08_044 crossref_primary_10_2337_db13_1783 crossref_primary_10_1007_s12149_014_0932_8 crossref_primary_10_3233_JAD_150164 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1016_j_jalz_2015_05_009 crossref_primary_10_1586_ern_13_45 crossref_primary_10_3233_JAD_215289 crossref_primary_10_1089_brain_2020_0937 crossref_primary_10_1186_s12888_020_02886_5 crossref_primary_10_3233_JAD_171125 crossref_primary_10_2478_raon_2021_0051 crossref_primary_10_3233_JAD_170395 crossref_primary_10_1038_srep26712 crossref_primary_10_1007_s11011_021_00733_4 crossref_primary_10_1016_j_pscychresns_2017_10_008 crossref_primary_10_1080_22311866_2020_1726813 crossref_primary_10_3233_JAD_170833 crossref_primary_10_3390_cells11213364 crossref_primary_10_3892_mmr_2016_5618 crossref_primary_10_1016_j_nicl_2018_01_019 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1016_j_neuroimage_2019_01_031 crossref_primary_10_1002_trc2_12223 crossref_primary_10_7554_eLife_100238 crossref_primary_10_1007_s40336_013_0018_y crossref_primary_10_1186_1750_1326_8_20 crossref_primary_10_1148_radiol_13122503 crossref_primary_10_3389_fnins_2018_01045 crossref_primary_10_1159_000354074 crossref_primary_10_1007_s40336_013_0031_1 crossref_primary_10_1111_ene_14639 crossref_primary_10_1109_TMI_2021_3063150 crossref_primary_10_1093_cercor_bhab271 crossref_primary_10_57197_JDR_2024_0103 crossref_primary_10_1016_j_jalz_2015_02_003 crossref_primary_10_2967_jnumed_114_141416 crossref_primary_10_1007_s00259_015_3170_y crossref_primary_10_1109_JBHI_2018_2872581 crossref_primary_10_1371_journal_pone_0173372 crossref_primary_10_1016_j_neuroimage_2016_05_026 crossref_primary_10_1038_s41598_020_74399_w crossref_primary_10_3389_fnhum_2020_00245 crossref_primary_10_3233_JAD_180004 crossref_primary_10_1007_s00259_015_3098_2 crossref_primary_10_1016_j_neurad_2017_05_008 crossref_primary_10_31887_DCNS_2013_15_3_ekim crossref_primary_10_3389_fneur_2020_00496 crossref_primary_10_3390_diagnostics12102425 crossref_primary_10_1016_S1474_4422_15_00093_9 crossref_primary_10_3389_fphar_2019_00665 crossref_primary_10_1016_j_trsl_2018_01_001 crossref_primary_10_1002_hast_296 crossref_primary_10_1016_j_jalz_2017_01_019 crossref_primary_10_1007_s11590_021_01816_y crossref_primary_10_13005_bpj_2091 crossref_primary_10_3233_JAD_190822 crossref_primary_10_3390_diagnostics14060585 crossref_primary_10_3390_pr5030047 crossref_primary_10_1016_j_lpm_2022_104121 crossref_primary_10_3233_JAD_181022 crossref_primary_10_1007_s11920_013_0360_9 crossref_primary_10_3390_brainsci7060064 crossref_primary_10_2174_1570163816666190214161825 crossref_primary_10_3174_ajnr_A5259 crossref_primary_10_1007_s00259_019_04559_2 crossref_primary_10_1002_alz_70005 crossref_primary_10_1016_j_dscb_2024_100168 crossref_primary_10_1016_j_jagp_2024_11_015 crossref_primary_10_1016_j_neurobiolaging_2015_08_007 crossref_primary_10_3233_JAD_160327 crossref_primary_10_3233_JAD_170261 crossref_primary_10_1080_10543406_2023_2169928 crossref_primary_10_1038_s41598_019_56923_9 crossref_primary_10_1155_2014_785039 crossref_primary_10_1159_000484248 crossref_primary_10_3174_ajnr_A5814 crossref_primary_10_3233_JAD_190539 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1097_WCO_0000000000000494 crossref_primary_10_1111_joim_12190 crossref_primary_10_1186_s13195_021_00886_5 crossref_primary_10_1007_s40291_018_0334_z crossref_primary_10_1007_s40846_022_00717_4 crossref_primary_10_1007_s10072_024_07731_1 crossref_primary_10_1016_j_dadm_2015_01_006 crossref_primary_10_3389_fnins_2017_00578 crossref_primary_10_3233_JAD_150788 crossref_primary_10_3389_fnagi_2014_00287 crossref_primary_10_1093_brain_awab294 crossref_primary_10_14283_jpad_2022_52 crossref_primary_10_3389_fnins_2023_1216215 crossref_primary_10_1002_hbm_23078 crossref_primary_10_1016_j_cpet_2016_05_003 crossref_primary_10_3348_kjr_2017_18_6_983 crossref_primary_10_3390_brainsci14060590 crossref_primary_10_1159_000487801 crossref_primary_10_3390_pharmaceutics15092316 crossref_primary_10_1002_alz_12991 crossref_primary_10_1007_s40336_016_0209_4 crossref_primary_10_1097_WCO_0000000000001172 crossref_primary_10_1002_dad2_12174 crossref_primary_10_46847_ujmm_2023_4_4__045 crossref_primary_10_1146_annurev_pharmtox_011613_135928 crossref_primary_10_1148_radiol_2018170575 crossref_primary_10_1177_1533317520911573 crossref_primary_10_1002_jmri_26000 crossref_primary_10_1007_s40336_015_0110_6 crossref_primary_10_1038_s12276_021_00638_3 crossref_primary_10_3174_ajnr_A3695 crossref_primary_10_3390_diagnostics11112023 crossref_primary_10_6009_jjrt_2017_JSRT_73_9_737 crossref_primary_10_1053_j_semnuclmed_2015_09_003 crossref_primary_10_1053_j_semnuclmed_2016_09_005 crossref_primary_10_1097_RMR_0000000000000225 crossref_primary_10_1155_2018_1483791 crossref_primary_10_1016_j_neurobiolaging_2016_03_033 crossref_primary_10_1080_02664763_2021_1899141 crossref_primary_10_17116_jnevro201511511172_79 crossref_primary_10_3233_JAD_150136 crossref_primary_10_3390_sci5010013 crossref_primary_10_1007_s00330_023_10168_3 crossref_primary_10_3389_fnagi_2014_00052 crossref_primary_10_3390_bioengineering10101225 crossref_primary_10_2217_WHE_13_22 crossref_primary_10_2967_jnumed_116_185835 crossref_primary_10_1016_j_biopsych_2013_11_020 crossref_primary_10_1016_j_jalz_2014_06_006 crossref_primary_10_1002_brb3_2850 crossref_primary_10_1016_j_neurobiolaging_2016_05_024 crossref_primary_10_1186_s12877_016_0281_7 crossref_primary_10_1007_s00259_022_05999_z crossref_primary_10_3233_JAD_201398 crossref_primary_10_3390_cells12050694 crossref_primary_10_1016_j_arr_2016_02_001 crossref_primary_10_1016_j_acra_2022_12_033 crossref_primary_10_1038_s41598_018_31653_6 crossref_primary_10_1093_braincomms_fcab264 crossref_primary_10_3389_fnagi_2017_00009 crossref_primary_10_1021_cn500101j crossref_primary_10_1186_s13195_021_00785_9 crossref_primary_10_1007_s40708_015_0028_9 crossref_primary_10_1007_s00415_019_09441_7 crossref_primary_10_1186_s13195_019_0549_1 crossref_primary_10_3389_fnagi_2014_00047 |
Cites_doi | 10.1001/archgenpsychiatry.2011.96 10.1016/j.neuroimage.2008.02.043 10.1038/nrn1433 10.1001/archneur.60.8.1119 10.1212/WNL.59.3.378 10.1016/j.neuroimage.2011.01.049 10.1016/j.neuroimage.2004.07.051 10.1017/S1041610297004717 10.1016/S0197-4580(01)00230-5 10.1016/j.neurobiolaging.2010.10.019 10.1148/radiol.2262011600 10.1016/j.jalz.2010.03.007 10.1006/nimg.2000.0582 10.1001/archneur.58.3.397 10.1006/nimg.2001.0786 10.1002/hbm.20166 10.1109/TITB.2008.923773 10.1016/j.neuroimage.2009.11.046 10.1212/WNL.0b013e3181af79fb 10.1093/brain/awq277 10.1073/pnas.0500579102 10.1148/radiol.10091402 10.1001/archneur.1985.04060100083029 10.1002/ana.21610 10.1007/978-1-4899-3242-6 10.1016/j.jalz.2011.04.007 10.1016/j.jalz.2010.01.009 10.1016/j.neuroimage.2007.01.010 10.3174/ajnr.A1809 10.1212/WNL.0b013e3181e8e8b8 10.1212/WNL.0b013e3182343314 10.1016/j.neurobiolaging.2005.03.026 10.1148/radiol.11101975 10.1016/j.neurobiolaging.2008.08.013 10.1016/j.neuroimage.2008.10.055 10.1016/j.neuroimage.2010.10.081 10.1002/hbm.20508 10.1523/JNEUROSCI.2177-05.2005 |
ContentType | Journal Article |
Copyright | RSNA, 2013 2013 |
Copyright_xml | – notice: RSNA, 2013 2013 |
CorporateAuthor | For the Alzheimer’s Disease Neuroimaging Initiative Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: For the Alzheimer’s Disease Neuroimaging Initiative – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1148/radiol.12120010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-1315 |
EndPage | 591 |
ExternalDocumentID | PMC3558874 23232293 10_1148_radiol_12120010 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U19 AG010483 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIBIB NIH HHS grantid: 1R01EB005846 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP ACRZS CGR CUY CVF ECM EIF NPM VXZ ZKG 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c426t-6dd8772dea4fab13d71bc27a2dd2b099f55388b3ea67ecab2d7897ff46fdb5323 |
ISSN | 0033-8419 1527-1315 |
IngestDate | Thu Aug 21 18:10:28 EDT 2025 Thu Sep 04 19:41:32 EDT 2025 Fri Sep 05 05:51:43 EDT 2025 Wed Feb 19 02:36:18 EST 2025 Thu Apr 24 23:08:28 EDT 2025 Tue Jul 01 02:16:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c426t-6dd8772dea4fab13d71bc27a2dd2b099f55388b3ea67ecab2d7897ff46fdb5323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: Guarantors of integrity of entire study, J.L.S., J.R.P.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; manuscript final version approval, all authors; literature research, J.L.S., J.R.P., P.M.D.; clinical studies, R.E.C., P.M.D.; statistical analysis, J.L.S., J.R.P., F.C.S., K.R.C., V.D.C.; and manuscript editing, J.L.S., J.R.P., F.C.S., V.D.C., R.E.C., P.M.D. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3558874 |
PMID | 23232293 |
PQID | 1285465011 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3558874 proquest_miscellaneous_1660414431 proquest_miscellaneous_1285465011 pubmed_primary_23232293 crossref_primary_10_1148_radiol_12120010 crossref_citationtrail_10_1148_radiol_12120010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-00 2013-Feb 20130201 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Radiology |
PublicationTitleAlternate | Radiology |
PublicationYear | 2013 |
Publisher | Radiological Society of North America, Inc |
Publisher_xml | – name: Radiological Society of North America, Inc |
References | r2 r3 r4 r5 r7 r8 Cui Y (r18) 2011; 6 r9 r30 r10 r32 r31 r12 r34 r33 r14 r36 r13 r16 r38 r15 r37 r39 r19 Davatzikos C (r11) 2010; 32 Rachakonda S (r27) 2008 r41 r40 r21 r43 r20 r42 r23 r45 r22 r44 r25 r24 r46 r26 r1 Trojanowski JQ (r6) 2004; 3 23804126 - Rofo. 2013 Jul;185(7):604-5 |
References_xml | – ident: r19 doi: 10.1001/archgenpsychiatry.2011.96 – ident: r43 doi: 10.1016/j.neuroimage.2008.02.043 – ident: r37 doi: 10.1038/nrn1433 – ident: r5 doi: 10.1001/archneur.60.8.1119 – ident: r14 doi: 10.1212/WNL.59.3.378 – ident: r22 doi: 10.1016/j.neuroimage.2011.01.049 – ident: r32 doi: 10.1016/j.neuroimage.2004.07.051 – ident: r10 doi: 10.1017/S1041610297004717 – volume: 32 start-page: 2322 issue: 12 year: 2010 ident: r11 publication-title: Neurobiol Aging – volume-title: Fusion ICA toolbox (FIT) manual year: 2008 ident: r27 – volume: 6 issue: 7 year: 2011 ident: r18 publication-title: PLoS ONE – ident: r15 doi: 10.1016/S0197-4580(01)00230-5 – ident: r20 doi: 10.1016/j.neurobiolaging.2010.10.019 – ident: r2 doi: 10.1148/radiol.2262011600 – ident: r3 doi: 10.1016/j.jalz.2010.03.007 – ident: r30 doi: 10.1006/nimg.2000.0582 – volume: 3 start-page: 30 year: 2004 ident: r6 publication-title: Pract Neurol – ident: r9 doi: 10.1001/archneur.58.3.397 – ident: r31 doi: 10.1006/nimg.2001.0786 – ident: r25 doi: 10.1002/hbm.20166 – ident: r44 doi: 10.1109/TITB.2008.923773 – ident: r12 doi: 10.1016/j.neuroimage.2009.11.046 – ident: r38 doi: 10.1212/WNL.0b013e3181af79fb – ident: r8 doi: 10.1093/brain/awq277 – ident: r39 doi: 10.1073/pnas.0500579102 – ident: r42 doi: 10.1148/radiol.10091402 – ident: r1 doi: 10.1001/archneur.1985.04060100083029 – ident: r34 doi: 10.1002/ana.21610 – ident: r36 doi: 10.1007/978-1-4899-3242-6 – ident: r45 doi: 10.1016/j.jalz.2011.04.007 – ident: r4 doi: 10.1016/j.jalz.2010.01.009 – ident: r41 doi: 10.1016/j.neuroimage.2007.01.010 – ident: r13 doi: 10.3174/ajnr.A1809 – ident: r21 doi: 10.1212/WNL.0b013e3181e8e8b8 – ident: r24 doi: 10.1212/WNL.0b013e3182343314 – ident: r46 doi: 10.1016/j.neurobiolaging.2005.03.026 – ident: r23 doi: 10.1148/radiol.11101975 – ident: r16 doi: 10.1016/j.neurobiolaging.2008.08.013 – ident: r33 doi: 10.1016/j.neuroimage.2008.10.055 – ident: r7 doi: 10.1016/j.neuroimage.2010.10.081 – ident: r26 doi: 10.1002/hbm.20508 – ident: r40 doi: 10.1523/JNEUROSCI.2177-05.2005 – reference: 23804126 - Rofo. 2013 Jul;185(7):604-5 |
SSID | ssj0014587 |
Score | 2.5193253 |
Snippet | To assess the extent to which multiple Alzheimer disease (AD) biomarkers improve the ability to predict future decline in subjects with mild cognitive... A model combining clinical information with MR imaging, fluorine 18 fluorodeoxyglucose (FDG) PET, and cerebrospinal fluid markers yielded the highest accuracy... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 583 |
SubjectTerms | Aged Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Area Under Curve Biomarkers - analysis Chi-Square Distribution Cognition Disorders - cerebrospinal fluid Cognition Disorders - diagnostic imaging Cognition Disorders - pathology Female Fluorodeoxyglucose F18 Humans Image Interpretation, Computer-Assisted Logistic Models Magnetic Resonance Imaging - methods Male Original Research Positron-Emission Tomography - methods Predictive Value of Tests Radiopharmaceuticals Regression Analysis Retrospective Studies Risk Factors |
Title | Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23232293 https://www.proquest.com/docview/1285465011 https://www.proquest.com/docview/1660414431 https://pubmed.ncbi.nlm.nih.gov/PMC3558874 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDfhpUXigJSmJPba6xyrKlELSanSRMrN2vWuZUPiINc-tL8B8ZuZsdePtIAKlyhyNraT-Tw7s_PtfIS8V_AUKMY15CYhSph5Ah4pSFyVJXngjrTmxfax2al7vGSfVs6q0_nZYi3lmTwIrn67r-R_rArHwK64S_YfLFufFA7Ae7AvvIKF4fVWNj5LscySlaX7hgYUFKFjnKBX-FqwNUTWmyOHHDmFh-urSMcbnWLnTSzOYAS6rOr_kCgXa74p5MooKYLB6mSdx6X28Lx3silkjSrS59l4gXKWGyT5mLpQ1e1bqHhnyf48EqjF0qbU9KaNZ85S5GG1Npc1VMbzSK-N5ggqiTQLu0fRNleRYQKgOstFlH_rzbeX7bUM1JWoeSHGP9t232PGiRr_bJWyLAaIVsvbOqUGjpm4nVL26-acwHCfQ1r8amymgSyyQTP9VSX_0y_-ZDmd-ovxanGH3LU4xGIYZJ98rqtSzPHKHqzmLk2rKLjAx2un341ybqQu1xm4rZBm8ZA8MLkIPSyB9Yh0dPKY3JsZtsUT8qPBF63xRQ2-aJzQCl9UZBTxRQFftMYXNfii8pIW-KIVvugOvmiBr306m1ODrn0K2KKALdpg6ylZTsaLo-O-Ue_oBxD1ZX1XKQ9SN6UFC4Uc2ooPZWBxYSnwA5CXhA7MtZ60tXC5DoS0FPdGPAyZGyrp2Jb9jOwl20S_INRGLjJzlWeHHpMj5Y2kkioYBHLAhQqdLjmo_m0_MK3tUWFl7Zfb7j2_NI9fmadLPtRf-F52dfnz0HeV-XzwvFhOE4ne5hcwwoObcmCC_MsY1x2wIYMovUuelyavLwi5DMymI7tL-A4Y6gHY-X33kySOig7wqIngcfbyFtd9Re43T9prspeluX4DcXQm3xbg_gVtC88t |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Cognitive+Decline+in+Subjects+at+Risk+for+Alzheimer+Disease+by+Using+Combined+Cerebrospinal+Fluid%2C+MR+Imaging%2C+and+PET+Biomarkers&rft.jtitle=Radiology&rft.au=Shaffer%2C+Jennifer+L&rft.au=Petrella%2C+Jeffrey+R&rft.au=Sheldon%2C+rest+C&rft.au=Choudhury%2C+Kingshuk+Roy&rft.date=2013-02-01&rft.issn=0033-8419&rft.volume=266&rft.issue=2&rft.spage=583&rft.epage=591&rft_id=info:doi/10.1148%2Fradiol.12120010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |