A fast algorithm for Euclidean distance maps of a 2-D binary image

The Euclidean distance map (EDM) is a basic operation in computer vision, pattern recognition, and robotics. It converts a binary image consisting of foreground pixels and background pixels into one where each pixel has a value equal to its Euclidean distance to the nearest foreground pixel. Yamada...

Full description

Saved in:
Bibliographic Details
Published inInformation processing letters Vol. 51; no. 1; pp. 25 - 29
Main Authors Chen, Ling, Chuang, Henry Y.H.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 12.07.1994
Elsevier Science
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0020-0190
1872-6119
DOI10.1016/0020-0190(94)00062-X

Cover

Abstract The Euclidean distance map (EDM) is a basic operation in computer vision, pattern recognition, and robotics. It converts a binary image consisting of foreground pixels and background pixels into one where each pixel has a value equal to its Euclidean distance to the nearest foreground pixel. Yamada (1984) presented an O(n-cubed) EDM algorithm that can be computed in O(n) time on an 8-neighbor connected mesh array of size n x n. Kolountzakis and Kutulakos (1992) presented an O(n-squared log n) sequential algorithm for EDM. They also showed that, on an r-process, with r less than or equal to n, exclusive read excluxive write parallel random access machine (EREW PRAM), the time complexity of the algorithm is O((n-squared log n)/r). An analysis presents a parallel algorithm on the r-processor EREW PRAM with time complexity O(n-squared/r + n log r). Particularly, when r equals one, it is a sequential algorithm with time complexity O(n-squared). The time complexity is optimal because in any EDM algorithm each of the n-squared pixels has to be scanned at least once.
AbstractList The Euclidean distance map (EDM) is a basic operation in computer vision, pattern recognition, and robotics. It converts a binary image consisting of foreground pixels and background pixels into one where each pixel has a value equal to its Euclidean distance to the nearest foreground pixel. Yamada (1984) presented an O(n-cubed) EDM algorithm that can be computed in O(n) time on an 8-neighbor connected mesh array of size n x n. Kolountzakis and Kutulakos (1992) presented an O(n-squared log n) sequential algorithm for EDM. They also showed that, on an r-process, with r less than or equal to n, exclusive read excluxive write parallel random access machine (EREW PRAM), the time complexity of the algorithm is O((n-squared log n)/r). An analysis presents a parallel algorithm on the r-processor EREW PRAM with time complexity O(n-squared/r + n log r). Particularly, when r equals one, it is a sequential algorithm with time complexity O(n-squared). The time complexity is optimal because in any EDM algorithm each of the n-squared pixels has to be scanned at least once.
Author Chen, Ling
Chuang, Henry Y.H.
Author_xml – sequence: 1
  givenname: Ling
  surname: Chen
  fullname: Chen, Ling
  organization: Department of Mathematics, Teachers' College, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
– sequence: 2
  givenname: Henry Y.H.
  surname: Chuang
  fullname: Chuang, Henry Y.H.
  organization: Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3419457$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsK3-AxdBXOhiNK95xIVQa31AwY1CdyHJJDVlOqlJKvTfO7XShQtd3c13zj18A9BrfWsAOMXoCiNcXCNEUIYwRxecXSKECpLNDkAfVyXJCox5D_T3yBEYxLjYQoyWfXA3glbGBGUz98Gl9yW0PsDJWjeuNrKFtYtJttrApVxF6C2UkGT3ULlWhg10Szk3x-DQyiaak587BG8Pk9fxUzZ9eXwej6aZZqRIWSE1ooooktNSK8VpZao6p3nBubG41pWiilpJK2s4Lwwt8pxypZipck610nQIzna9q-A_1iYmsfDr0HYvBaElKVnFWAed_0AyatnY0I13UaxCNzVsBGWYs7zsMLbDdPAxBmP3BEZi61RshYmtMMGZ-HYqZl3s5ldMuyST820K0jX_hW93YdNJ-nQmiKid6dzWLhidRO3d3wVfRHCPfQ
CODEN IFPLAT
CitedBy_id crossref_primary_10_3724_SP_J_1016_2011_00499
crossref_primary_10_1109_TPAMI_2006_133
crossref_primary_10_1016_0020_0190_95_00041_A
crossref_primary_10_1006_cviu_1999_0756
crossref_primary_10_1016_j_ipl_2006_12_005
crossref_primary_10_1137_080719613
crossref_primary_10_1145_1322432_1322434
crossref_primary_10_1016_j_jcp_2003_06_001
crossref_primary_10_1016_S0020_0255_99_00084_5
crossref_primary_10_1016_S0167_739X_02_00033_X
crossref_primary_10_15803_ijnc_1_2_260
crossref_primary_10_1016_0020_0190_96_00049_X
crossref_primary_10_1002_ecjc_1098
crossref_primary_10_1006_cviu_1997_0539
crossref_primary_10_1080_17445760_2012_703195
crossref_primary_10_1109_TSMCA_2002_1021110
crossref_primary_10_1142_S0219467801000359
crossref_primary_10_1109_TPDS_2003_1239866
crossref_primary_10_3390_app9102029
crossref_primary_10_1006_cviu_1997_0596
crossref_primary_10_1002_scj_4690270702
crossref_primary_10_1089_ten_2006_0381
crossref_primary_10_1016_j_patcog_2012_07_030
crossref_primary_10_1109_TPDS_2003_1189579
crossref_primary_10_1109_TPDS_2004_71
crossref_primary_10_1006_cviu_1998_0741
crossref_primary_10_1109_3477_826967
crossref_primary_10_1109_LSP_2019_2910466
crossref_primary_10_1007_BF03167439
crossref_primary_10_1016_j_imavis_2010_11_005
crossref_primary_10_1007_s11760_012_0419_9
crossref_primary_10_1080_00207169708804608
crossref_primary_10_1137_100788458
crossref_primary_10_1016_0167_8191_95_00066_6
crossref_primary_10_1016_j_imavis_2006_10_011
Cites_doi 10.1016/0020-0190(92)90197-4
10.1016/0031-3203(68)90013-7
ContentType Journal Article
Copyright 1994
1995 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jul 12, 1994
Copyright_xml – notice: 1994
– notice: 1995 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jul 12, 1994
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/0020-0190(94)00062-X
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-6119
EndPage 29
ExternalDocumentID 7090390
3419457
10_1016_0020_0190_94_00062_X
002001909400062X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c426t-6ac03b2b2537cbb938e8d535699ef1dc8b3b3fa38fe996e365539bb4e8593cbc3
ISSN 0020-0190
IngestDate Mon Jun 30 03:40:29 EDT 2025
Mon Jul 21 09:13:23 EDT 2025
Wed Oct 01 03:08:41 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer vision
Euclidean distance map
Image processing
Parallel algorithms
Robotics
Parallel algorithm
Euclidean geometry
Theorem proving
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-6ac03b2b2537cbb938e8d535699ef1dc8b3b3fa38fe996e365539bb4e8593cbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 237274844
PQPubID 45522
PageCount 5
ParticipantIDs proquest_journals_237274844
pascalfrancis_primary_3419457
crossref_primary_10_1016_0020_0190_94_00062_X
crossref_citationtrail_10_1016_0020_0190_94_00062_X
elsevier_sciencedirect_doi_10_1016_0020_0190_94_00062_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1994-07-12
PublicationDateYYYYMMDD 1994-07-12
PublicationDate_xml – month: 07
  year: 1994
  text: 1994-07-12
  day: 12
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 1994
Publisher Elsevier B.V
Elsevier Science
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier Sequoia S.A
References Kolountzakis, Kutulakos (BIB1) 1992; 43
Yamada (BIB4) 1984; Vol. 1
Saito, Toriwaki (BIB3) 1993
Rosenfeld, Pfaltz (BIB2) 1968; 1
Kolountzakis (10.1016/0020-0190(94)00062-X_BIB1) 1992; 43
Yamada (10.1016/0020-0190(94)00062-X_BIB4) 1984; Vol. 1
Rosenfeld (10.1016/0020-0190(94)00062-X_BIB2) 1968; 1
Saito (10.1016/0020-0190(94)00062-X_BIB3) 1993
References_xml – volume: 1
  start-page: 33
  year: 1968
  end-page: 61
  ident: BIB2
  article-title: Distance functions on digital pictures
  publication-title: Pattern Recognition
– volume: Vol. 1
  start-page: 69
  year: 1984
  end-page: 71
  ident: BIB4
  article-title: Complete Euclidean distance transformation by parallel operation
  publication-title: Proc. 7th Internat. Conf. on Pattern Recognition
– volume: 43
  start-page: 181
  year: 1992
  end-page: 184
  ident: BIB1
  article-title: Fast computation of Euclidean distance maps for binary images
  publication-title: Inform. Process. Lett.
– start-page: 747
  year: 1993
  end-page: 754
  ident: BIB3
  article-title: A fast algorithm for
  publication-title: Proc. 8th Scandinavian Conf. on Image Analysis
– volume: 43
  start-page: 181
  year: 1992
  ident: 10.1016/0020-0190(94)00062-X_BIB1
  article-title: Fast computation of Euclidean distance maps for binary images
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(92)90197-4
– start-page: 747
  year: 1993
  ident: 10.1016/0020-0190(94)00062-X_BIB3
  article-title: A fast algorithm for n-dimensional Euclidean Distance Transformations
  publication-title: Proc. 8th Scandinavian Conf. on Image Analysis
– volume: Vol. 1
  start-page: 69
  year: 1984
  ident: 10.1016/0020-0190(94)00062-X_BIB4
  article-title: Complete Euclidean distance transformation by parallel operation
  publication-title: Proc. 7th Internat. Conf. on Pattern Recognition
– volume: 1
  start-page: 33
  year: 1968
  ident: 10.1016/0020-0190(94)00062-X_BIB2
  article-title: Distance functions on digital pictures
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(68)90013-7
SSID ssj0006437
Score 1.5770762
Snippet The Euclidean distance map (EDM) is a basic operation in computer vision, pattern recognition, and robotics. It converts a binary image consisting of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer vision
Euclidean distance map
Exact sciences and technology
Image processing
Image processing system
Mathematical models
Parallel algorithms
Pattern recognition. Digital image processing. Computational geometry
Robotics
Robots
Theory
Title A fast algorithm for Euclidean distance maps of a 2-D binary image
URI https://dx.doi.org/10.1016/0020-0190(94)00062-X
https://www.proquest.com/docview/237274844
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AKRWK
  dateStart: 19930125
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0FCvBHdZZEPIIGqlCZ23PgYlqKIBQ5oK8rJih0bVupLm-6FX884frTLggpcosiKY8nzeTwzns-D0HNOdCZHWifgI8vEnuyBHjSw8LhsmL1Dv9GWjfzxE6um9P0sn4Va7Z5dspFD9eO3vJL_kSq0gVwtS_YfJBt_Cg3wDvKFJ0gYnn8l43Jg6tbGbL-twMf_vuhyBieXan7e2AB7Y21Du3AX9bp1RMgseTuQjoJ7vqiv5gF5ZlIHiLXjD9g4wrwj_ETT-0MX3qom8QjnpJqWjvhUDQdfh57t0HhmHbURynTrdkaGi1cqu1ozs8lrrqxn0Jr-mthddHgVmO9spi6acU1Nu4hB_C_Y0py-yGz9UpYls-3WFI7jf9mxYh6hvYyO5uOb6CADpT7qoYPy9POX07gV21NJl-PjBgrcyZS9jm0vOX3lB_6TbXJ7XbewYowrdXJt1-5MkbN76I73IXDpAHEf3dDLB-iu9yewn9gWmkLJjtD2EL0psYUMjpDBIHMcIYMDZLCFDF4ZXGOADHaQwR1kHqHpu8nZSZX4MhqJAvNrk7BajYjMZJaTsZKSk0IXTU5yxrk2aaMKSSQxNSmMBudXE5bnhEtJtb0KT0lFHqPecrXUTxCm8GmqwILVDDzduuBNatJRXaTMMJObtI9ImECh_B3zttTJXIRkQjvtwk674FR00y5mfZTEXmt3x8qe78dBNsLbic7-E4CvPT2Pr4gyDueB1EdHQbTCr_NWZARsfFpQerin9xG6tV1XT1Fvc3Gpj8Fk3chnHpg_AfiJjho
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+algorithm+for+Euclidean+distance+maps+of+a+2-D+binary+image&rft.jtitle=Information+processing+letters&rft.au=LING+CHEN&rft.au=CHUANG%2C+H.+Y.+H&rft.date=1994-07-12&rft.pub=Elsevier+Science&rft.issn=0020-0190&rft.volume=51&rft.issue=1&rft.spage=25&rft.epage=29&rft_id=info:doi/10.1016%2F0020-0190%2894%2900062-X&rft.externalDBID=n%2Fa&rft.externalDocID=3419457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon