Robotic navigation with deep reinforcement learning in transthoracic echocardiography
Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components...
Saved in:
| Published in | International journal for computer assisted radiology and surgery Vol. 20; no. 1; pp. 191 - 202 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.01.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1861-6429 1861-6410 1861-6429 |
| DOI | 10.1007/s11548-024-03275-z |
Cover
| Abstract | Purpose
The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.
Method
The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.
Results
The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.
Conclusion
The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components. |
|---|---|
| AbstractList | The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.
The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.
The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.
The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components. PurposeThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.MethodThe proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.ResultsThe mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.ConclusionThe results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components. The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.PURPOSEThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.METHODThe proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.RESULTSThe mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.CONCLUSIONThe results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components. Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components. Method The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times. Results The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method. Conclusion The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components. |
| Author | Shida, Yuuki Kumagai, Souto Iwata, Hiroyasu |
| Author_xml | – sequence: 1 givenname: Yuuki orcidid: 0000-0003-2698-9577 surname: Shida fullname: Shida, Yuuki email: arares201@moegi.waseda.jp organization: Graduate School of Creative Science and Engineering, Waseda University – sequence: 2 givenname: Souto surname: Kumagai fullname: Kumagai, Souto organization: Graduate School of Creative Science and Engineering, Waseda University – sequence: 3 givenname: Hiroyasu surname: Iwata fullname: Iwata, Hiroyasu organization: Faculty of Science and Engineering, Waseda University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39304590$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtr3TAQRkVJaR7tH-iiGLrpxo0kS5a8KiX0BYFASdZiLI9tBV_JleyEm19fNfemSbsoXWlA5xvNHB2TAx88EvKa0feMUnWaGJNCl5SLklZcyfLuGTliumZlLXhz8KQ-JMcpXVMqpKrkC3JYNVWuG3pErr6HNizOFh5u3ACLC764dctYdIhzEdH5PkSLG_RLMSFE7_xQOF8sEXxaxhDB5jDaMViInQtDhHncviTPe5gSvtqfJ-Tq86fLs6_l-cWXb2cfz0sreL2UskMAzpXgbSvbXgvdSSoUULSaQc9Bdp1qhBay6xupkbFWS0obyVRra9lXJ6Ta9V39DNtbmCYzR7eBuDWMml-SzE6SyZLMvSRzl1Mfdql5bTfY2bxbhMdkAGf-vPFuNEO4MYwpqXTd5A7v9h1i-LFiWszGJYvTBB7DmkzFqJK0Fvfo27_Q67BGn62YikuhdEWbOlNvno70e5aHj8oA3wE2hpQi9v-36F5PyrAfMD6-_Y_UT2rHt6M |
| Cites_doi | 10.1007/s11548-017-1566-9 10.1007/BF00992699 10.1007/s11548-018-1759-x 10.1109/LRA.2023.3292568 10.1109/TASE.2023.3246089 10.1109/ICRA48506.2021.9560839 10.1109/IROS45743.2020.9340913 10.1007/978-3-030-32875-7_1 10.1109/SII55687.2023.10039203 10.1007/s11548-022-02829-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s11548-024-03275-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1861-6429 |
| EndPage | 202 |
| ExternalDocumentID | 10.1007/s11548-024-03275-z PMC11757869 39304590 10_1007_s11548_024_03275_z |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Institute for Mechanical Engineering Frontiers – fundername: NSK Foundation for Advancement of Mechatronics |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADHKG AGQPQ CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC BGLVJ CCPQU HMCUK PHGZM PHGZT PJZUB PPXIY PQGLB UKHRP UNPAY |
| ID | FETCH-LOGICAL-c426t-5deaa22742bb5bf848d5047a0ec81af2a5dd794845df958e11b85009517bc65f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1861-6429 1861-6410 |
| IngestDate | Sun Oct 26 03:54:09 EDT 2025 Tue Sep 30 17:05:54 EDT 2025 Thu Oct 02 11:07:17 EDT 2025 Tue Oct 07 07:08:42 EDT 2025 Fri Apr 25 03:23:43 EDT 2025 Wed Oct 01 00:20:43 EDT 2025 Fri Feb 21 02:37:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Robotic ultrasound Echocardiography Human–robot interaction Medical robots |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-5deaa22742bb5bf848d5047a0ec81af2a5dd794845df958e11b85009517bc65f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2698-9577 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11548-024-03275-z |
| PMID | 39304590 |
| PQID | 3254783096 |
| PQPubID | 2043910 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1007_s11548_024_03275_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_11757869 proquest_miscellaneous_3107506469 proquest_journals_3254783096 pubmed_primary_39304590 crossref_primary_10_1007_s11548_024_03275_z springer_journals_10_1007_s11548_024_03275_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
| PublicationTitle | International journal for computer assisted radiology and surgery |
| PublicationTitleAbbrev | Int J CARS |
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | 3275_CR6 T Hashimoto (3275_CR11) 2023 F Milletari (3275_CR8) 2019 J Esteban (3275_CR3) 2018; 13 3275_CR1 3275_CR4 K Li (3275_CR7) 2023 Y Shida (3275_CR10) 2023; 8 J Cohen (3275_CR12) 1962 LJ Lin (3275_CR9) 1992; 8 Y Shida (3275_CR5) 2023; 18 TY Fang (3275_CR2) 2017; 12 |
| References_xml | – volume: 12 start-page: 983 issue: 6 year: 2017 ident: 3275_CR2 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1566-9 – volume: 8 start-page: 293 year: 1992 ident: 3275_CR9 publication-title: Mach Learn doi: 10.1007/BF00992699 – volume: 13 start-page: 895 issue: 6 year: 2018 ident: 3275_CR3 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1759-x – volume: 8 start-page: 5228 issue: 8 year: 2023 ident: 3275_CR10 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2023.3292568 – year: 2023 ident: 3275_CR7 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2023.3246089 – ident: 3275_CR4 doi: 10.1109/ICRA48506.2021.9560839 – ident: 3275_CR6 doi: 10.1109/IROS45743.2020.9340913 – year: 2019 ident: 3275_CR8 publication-title: Smart Ultrasound Imaging Perinat Preterm Paediatr Image Anal doi: 10.1007/978-3-030-32875-7_1 – ident: 3275_CR1 – year: 2023 ident: 3275_CR11 publication-title: 2023 IEEE/SICE Int Symp Syst Integr doi: 10.1109/SII55687.2023.10039203 – volume-title: Statistical power analysis for the behavioral sciences year: 1962 ident: 3275_CR12 – volume: 18 start-page: 887 year: 2023 ident: 3275_CR5 publication-title: Int J CARS doi: 10.1007/s11548-022-02829-3 |
| SSID | ssj0045735 |
| Score | 2.361731 |
| Snippet | Purpose
The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic... The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation... PurposeThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 191 |
| SubjectTerms | Algorithms Cardiovascular disease Computer Imaging Computer Science Deep Learning Echocardiography Echocardiography - methods Health Informatics Heart Humans Imaging Medicine Medicine & Public Health Mitral Valve - diagnostic imaging Navigation systems Original Original Article Pattern Recognition and Graphics Point of care testing Radiology Reinforcement Machine Learning Robotic Surgical Procedures - methods Robotics Robots Searching Surgery Surgery, Computer-Assisted - methods Ultrasonic imaging Vision |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD_RS6L4AIqCQzQ18U1KtnXd2kdiQKLBB-NN8Gnp14RAuhvY1Xj_etuu2_WKMfK8tttpz9fOOf0dgDe5qByX8AyXvNTYWbwGM80ZFqoxRJa6IsrHIU8_lSfT4sMZPYuXwm6GavchJRk09fKym_eusbMpOCV5RfHiPqwFvK0JrB2-__rxaNDABa0IjRdk_j5z1Qjd8ixvF0iOWdJH8HBuZ-LnD3F19ZshOt6E6UBCX39yeTDv5IFa_IHueFcaH8NG9EzRYc9KT-CesVuwOXR9QFEJbMGD05iOfwrTz61s3XBkxfcA1dFa5AO7SBszQ9cmoLKqEIBEsT3FN3RhUecNZHfuuE-5ycZpYBXKYnv07GcwPT768u4Exz4NWDn73mGqjRC5z_lKSWXDCqZpWlQiNYploskF1dqJPSuobjhlJssko8G3q6QqaUO2YWJba54DEoarVDgmMQUpjORMi4I0bm6ZC5KyJoG3w8HVsx6Oo14CL_vNq93m1WHz6kUCe8PZ1lE0b2qSewgz4n7dEng9PnZC5TMlwpp27sZk3pMqi5InsNOzwvg6wn1ymacJsBUmGQd4wO7VJ_biPAB3e1jUivlF94fjX37Xv8jYH3nuP6jevdvqL2A99z2NQ1hpDybd9dy8dI5WJ19FufoF_yQiTw priority: 102 providerName: Springer Nature |
| Title | Robotic navigation with deep reinforcement learning in transthoracic echocardiography |
| URI | https://link.springer.com/article/10.1007/s11548-024-03275-z https://www.ncbi.nlm.nih.gov/pubmed/39304590 https://www.proquest.com/docview/3254783096 https://www.proquest.com/docview/3107506469 https://pubmed.ncbi.nlm.nih.gov/PMC11757869 https://doi.org/10.1007/s11548-024-03275-z |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6429 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6429 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045735 issn: 1861-6429 databaseCode: U2A dateStart: 20060625 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7RXYnjgfsIlFWQeKMuSRw79uNq1VKBWiFEpPYp8hVaUSWrbhbE_nrGSTZlW4TKSxTJV2zPZMYz428A3iYqQyqRMeGSW4ISryTCSkGUKR3V3GbUeDvk4RE_yNOPx-y4h8nxd2Gu-O_fLzxcjCAoSUhEk4yR1RaMOUO9ewTj_Ojz9MSfqATHwdIOeqB7T2R_Q-bvnWxKoWuq5fUIycFNeg_uLKu5-vVTnZ__IYn2H3QpjRYtgKEPQPm-u2z0rlldgXe82SQfwv1eIQ2nHQU9gluuegy3D3uX-xPIv9S6xrKwUj9aOI66Cr3xNrTOzcML1yKvmtbIGPYpKL6FZ1XYeCHYnCKFGWzs8C9r2tDXDiH7KeT7e19nB6TPxUAMyvCGMOuUSrxfV2umS5EKy6I0U5EzIlZlopi1yNoiZbaUTLg41oK1-lumDWclfQajqq7cCwiVkyZSSAgupanTUliV0hLb8kTRSJQBvFvvTTHvIDeKS3Blv1IFrlTRrlSxCmB7vX1Fz36LgiYepozi8SyAN0MxMo73hqjK1UusE3ttiadcBvC82-1hOCq9A1lGAYgNOhgqeFDuzZLq7LQF5_bQp5nwne6sSebyu_41jZ2BrG4w65f_V_0V3E183uLWdLQNo-Zi6V6jMtXoCYynH04-7U1ga8Zn-MyT6aTnrN_9Yxh1 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKpX20AeFkkKLK_VWLCVxnDhHVBUtLcsBsRK3yK8AEnJWkG0Fv75jb5LtigrBObYT55vxjGfsbwC-prJAKSkTmpe5oWjxaipMKajUtWUqNwXTPg45Ps5Hk-znGT_rLoXd9Kfd-5RkWKkXl928d03RptCYpQWnd8_guSew8oz5k3S_X38zXjDeXY_5f79lE3TPr7x_PHLIkb6CtZmbyts_8urqHzN08BZed_4j2Z8D_g5WrFuHN31tBtKp6jq8GHdJ8_cwOWlUg82Jk78DoUbjiA-_EmPtlFzbwJ2qQ5iQdEUkzsmlI603Y-0FyojGzhbXSR0Or845rjdgcvDj9PuIdtUUqEYr3FJurJSpz8wqxVUtMmF4nBUytloksk4lNwaVU2Tc1CUXNkmU4MEDK5TOec02YdU1zm4BkbbUsUQobcYyq0phZMZq7JunksWijuBb_4Or6Zw0o1rQI3s4KoSjCnBUdxHs9BhUnQLdVCz1RGMMN1gRfBkeo-j7fIZ0tplhm8T7Ozlu8CP4MIdseB0rfQq4jCMQS2AODTyt9vITd3kR6LU9eWkh_KB7Pe6L73poGnuDbDxi1h-fNvourI1Ox0fV0eHxr214mfoqxCEQtAOr7fXMfkLXqFWfgyb8BSGIB_I |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkQo98CiFhhYwEjdqNYntxDmiLavyaIUQK_UW-UkrVc6qzRbRX4_tPLarIgTn2E6cz-MZz3i-AXibi9KvkirDRVVo7DWexVxXHAtlDZGFLokKfsij4-JwRj-dsJMbWfzxtvsQkuxyGgJLk2v359ruLxPfgqWNvX7BKclLhq_vwj3qtVuoYTApJsNeTFlJWJ8q8-d-q-rolo15-6rkGC_dgPsLNxe_forz8xsqafoYHva2JHrfgf8E7hi3CY-GOg2oF9tNWD_qA-hPYfatkY1vjpy4iuQajUPBFYu0MXN0YSKPqoouQ9QXlPiBzhxqg0prT_16Ub6z8XumihdZO77rLZhNP3yfHOK-sgJWXiO3mGkjRB6itFIyaTnlmqW0FKlRPBM2F0xrL6icMm0rxk2WSc6iNVZKVTBLnsGaa5zZBiRMpVLhYTWUUCMrrgUl1vctckFSbhN4N_zget4RaNRLquQAR-3hqCMc9XUCuwMGdS9MlzXJA-kY8YetBN6Mj70YhNiGcKZZ-DZZsH0Kf9hP4HkH2fg6UoVwcJUmwFfAHBsEiu3VJ-7sNFJtByLTkodB9wbcl9_1t2nsjWvjH2b94v9Gfw3rXw-m9ZePx5934EEeChJHn9AurLUXC_PSW0mtfBUF4TfMjgwY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoJy4E0JFGQkbtQliR-xjxWiqpBaIcRK5RT5lbaiclbdLIj99dhONmVbhMotkh-J7W8y4xn7G4C3paoCSmSBueQWB43XYGGlwMo0jmhuK2KiH_LwiB9M6adjdjzQ5MS7MFfi9-_nkS5G4KBJcE7KiuHlbdjgLNjdE9iYHn3e-xZ3VIKHl9GeeqB_LuVwQ-bvnaxroWum5fUTkmOY9B7cXfiZ-vVTnZ__oYn2H_QpjeaJwDAeQPm-u-j0rlleoXe82SAfwv3BIEV7PYIewS3nH8OdwyHk_gSmX1rdhjLk1Y9Ex9F6FJ23yDo3QxcuMa-a5GREQwqKE3TmUReVYHcaEGZCYxf-siYdfe0Zsp_CdP_j1w8HeMjFgE3Q4R1m1ilVxriu1kw3ggrLclqp3BlRqKZUzNog2oIy20gmXFFowZL9VmnDWUOewcS33j0HpJw0uQpAcJRQp6WwipImtOWlIrloMni3Wpt61lNu1JfkynGm6jBTdZqpepnB9mr56kH85jUpI00ZCduzDN6MxUFwYjREedcuQp0iWkuccpnBVr_a4-uIjAFkmWcg1nAwVoik3Osl_uw0kXNH6tNKxE53VpC5_K5_DWNnhNUNRv3i_6q_hM0y5i1OrqNtmHQXC_cqGFOdfj1I0W88GRUb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robotic+navigation+with+deep+reinforcement+learning+in+transthoracic+echocardiography&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Shida%2C+Yuuki&rft.au=Kumagai%2C+Souto&rft.au=Iwata%2C+Hiroyasu&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=20&rft.issue=1&rft.spage=191&rft.epage=202&rft_id=info:doi/10.1007%2Fs11548-024-03275-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6429&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6429&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6429&client=summon |