Robotic navigation with deep reinforcement learning in transthoracic echocardiography

Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 20; no. 1; pp. 191 - 202
Main Authors Shida, Yuuki, Kumagai, Souto, Iwata, Hiroyasu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6429
1861-6410
1861-6429
DOI10.1007/s11548-024-03275-z

Cover

Abstract Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components. Method The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times. Results The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method. Conclusion The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
AbstractList The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components. The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times. The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method. The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
PurposeThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.MethodThe proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.ResultsThe mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.ConclusionThe results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.PURPOSEThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.METHODThe proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.RESULTSThe mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.CONCLUSIONThe results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components. Method The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times. Results The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method. Conclusion The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
Author Shida, Yuuki
Kumagai, Souto
Iwata, Hiroyasu
Author_xml – sequence: 1
  givenname: Yuuki
  orcidid: 0000-0003-2698-9577
  surname: Shida
  fullname: Shida, Yuuki
  email: arares201@moegi.waseda.jp
  organization: Graduate School of Creative Science and Engineering, Waseda University
– sequence: 2
  givenname: Souto
  surname: Kumagai
  fullname: Kumagai, Souto
  organization: Graduate School of Creative Science and Engineering, Waseda University
– sequence: 3
  givenname: Hiroyasu
  surname: Iwata
  fullname: Iwata, Hiroyasu
  organization: Faculty of Science and Engineering, Waseda University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39304590$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3TAQRkVJaR7tH-iiGLrpxo0kS5a8KiX0BYFASdZiLI9tBV_JleyEm19fNfemSbsoXWlA5xvNHB2TAx88EvKa0feMUnWaGJNCl5SLklZcyfLuGTliumZlLXhz8KQ-JMcpXVMqpKrkC3JYNVWuG3pErr6HNizOFh5u3ACLC764dctYdIhzEdH5PkSLG_RLMSFE7_xQOF8sEXxaxhDB5jDaMViInQtDhHncviTPe5gSvtqfJ-Tq86fLs6_l-cWXb2cfz0sreL2UskMAzpXgbSvbXgvdSSoUULSaQc9Bdp1qhBay6xupkbFWS0obyVRra9lXJ6Ta9V39DNtbmCYzR7eBuDWMml-SzE6SyZLMvSRzl1Mfdql5bTfY2bxbhMdkAGf-vPFuNEO4MYwpqXTd5A7v9h1i-LFiWszGJYvTBB7DmkzFqJK0Fvfo27_Q67BGn62YikuhdEWbOlNvno70e5aHj8oA3wE2hpQi9v-36F5PyrAfMD6-_Y_UT2rHt6M
Cites_doi 10.1007/s11548-017-1566-9
10.1007/BF00992699
10.1007/s11548-018-1759-x
10.1109/LRA.2023.3292568
10.1109/TASE.2023.3246089
10.1109/ICRA48506.2021.9560839
10.1109/IROS45743.2020.9340913
10.1007/978-3-030-32875-7_1
10.1109/SII55687.2023.10039203
10.1007/s11548-022-02829-3
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11548-024-03275-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 202
ExternalDocumentID 10.1007/s11548-024-03275-z
PMC11757869
39304590
10_1007_s11548_024_03275_z
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Institute for Mechanical Engineering Frontiers
– fundername: NSK Foundation for Advancement of Mechatronics
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
BGLVJ
CCPQU
HMCUK
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UKHRP
UNPAY
ID FETCH-LOGICAL-c426t-5deaa22742bb5bf848d5047a0ec81af2a5dd794845df958e11b85009517bc65f3
IEDL.DBID UNPAY
ISSN 1861-6429
1861-6410
IngestDate Sun Oct 26 03:54:09 EDT 2025
Tue Sep 30 17:05:54 EDT 2025
Thu Oct 02 11:07:17 EDT 2025
Tue Oct 07 07:08:42 EDT 2025
Fri Apr 25 03:23:43 EDT 2025
Wed Oct 01 00:20:43 EDT 2025
Fri Feb 21 02:37:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robotic ultrasound
Echocardiography
Human–robot interaction
Medical robots
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-5deaa22742bb5bf848d5047a0ec81af2a5dd794845df958e11b85009517bc65f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2698-9577
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11548-024-03275-z
PMID 39304590
PQID 3254783096
PQPubID 2043910
PageCount 12
ParticipantIDs unpaywall_primary_10_1007_s11548_024_03275_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11757869
proquest_miscellaneous_3107506469
proquest_journals_3254783096
pubmed_primary_39304590
crossref_primary_10_1007_s11548_024_03275_z
springer_journals_10_1007_s11548_024_03275_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 3275_CR6
T Hashimoto (3275_CR11) 2023
F Milletari (3275_CR8) 2019
J Esteban (3275_CR3) 2018; 13
3275_CR1
3275_CR4
K Li (3275_CR7) 2023
Y Shida (3275_CR10) 2023; 8
J Cohen (3275_CR12) 1962
LJ Lin (3275_CR9) 1992; 8
Y Shida (3275_CR5) 2023; 18
TY Fang (3275_CR2) 2017; 12
References_xml – volume: 12
  start-page: 983
  issue: 6
  year: 2017
  ident: 3275_CR2
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1566-9
– volume: 8
  start-page: 293
  year: 1992
  ident: 3275_CR9
  publication-title: Mach Learn
  doi: 10.1007/BF00992699
– volume: 13
  start-page: 895
  issue: 6
  year: 2018
  ident: 3275_CR3
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1759-x
– volume: 8
  start-page: 5228
  issue: 8
  year: 2023
  ident: 3275_CR10
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2023.3292568
– year: 2023
  ident: 3275_CR7
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2023.3246089
– ident: 3275_CR4
  doi: 10.1109/ICRA48506.2021.9560839
– ident: 3275_CR6
  doi: 10.1109/IROS45743.2020.9340913
– year: 2019
  ident: 3275_CR8
  publication-title: Smart Ultrasound Imaging Perinat Preterm Paediatr Image Anal
  doi: 10.1007/978-3-030-32875-7_1
– ident: 3275_CR1
– year: 2023
  ident: 3275_CR11
  publication-title: 2023 IEEE/SICE Int Symp Syst Integr
  doi: 10.1109/SII55687.2023.10039203
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1962
  ident: 3275_CR12
– volume: 18
  start-page: 887
  year: 2023
  ident: 3275_CR5
  publication-title: Int J CARS
  doi: 10.1007/s11548-022-02829-3
SSID ssj0045735
Score 2.361731
Snippet Purpose The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic...
The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation...
PurposeThe search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 191
SubjectTerms Algorithms
Cardiovascular disease
Computer Imaging
Computer Science
Deep Learning
Echocardiography
Echocardiography - methods
Health Informatics
Heart
Humans
Imaging
Medicine
Medicine & Public Health
Mitral Valve - diagnostic imaging
Navigation systems
Original
Original Article
Pattern Recognition and Graphics
Point of care testing
Radiology
Reinforcement Machine Learning
Robotic Surgical Procedures - methods
Robotics
Robots
Searching
Surgery
Surgery, Computer-Assisted - methods
Ultrasonic imaging
Vision
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD_RS6L4AIqCQzQ18U1KtnXd2kdiQKLBB-NN8Gnp14RAuhvY1Xj_etuu2_WKMfK8tttpz9fOOf0dgDe5qByX8AyXvNTYWbwGM80ZFqoxRJa6IsrHIU8_lSfT4sMZPYuXwm6GavchJRk09fKym_eusbMpOCV5RfHiPqwFvK0JrB2-__rxaNDABa0IjRdk_j5z1Qjd8ixvF0iOWdJH8HBuZ-LnD3F19ZshOt6E6UBCX39yeTDv5IFa_IHueFcaH8NG9EzRYc9KT-CesVuwOXR9QFEJbMGD05iOfwrTz61s3XBkxfcA1dFa5AO7SBszQ9cmoLKqEIBEsT3FN3RhUecNZHfuuE-5ycZpYBXKYnv07GcwPT768u4Exz4NWDn73mGqjRC5z_lKSWXDCqZpWlQiNYploskF1dqJPSuobjhlJssko8G3q6QqaUO2YWJba54DEoarVDgmMQUpjORMi4I0bm6ZC5KyJoG3w8HVsx6Oo14CL_vNq93m1WHz6kUCe8PZ1lE0b2qSewgz4n7dEng9PnZC5TMlwpp27sZk3pMqi5InsNOzwvg6wn1ymacJsBUmGQd4wO7VJ_biPAB3e1jUivlF94fjX37Xv8jYH3nuP6jevdvqL2A99z2NQ1hpDybd9dy8dI5WJ19FufoF_yQiTw
  priority: 102
  providerName: Springer Nature
Title Robotic navigation with deep reinforcement learning in transthoracic echocardiography
URI https://link.springer.com/article/10.1007/s11548-024-03275-z
https://www.ncbi.nlm.nih.gov/pubmed/39304590
https://www.proquest.com/docview/3254783096
https://www.proquest.com/docview/3107506469
https://pubmed.ncbi.nlm.nih.gov/PMC11757869
https://doi.org/10.1007/s11548-024-03275-z
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7RXYnjgfsIlFWQeKMuSRw79uNq1VKBWiFEpPYp8hVaUSWrbhbE_nrGSTZlW4TKSxTJV2zPZMYz428A3iYqQyqRMeGSW4ISryTCSkGUKR3V3GbUeDvk4RE_yNOPx-y4h8nxd2Gu-O_fLzxcjCAoSUhEk4yR1RaMOUO9ewTj_Ojz9MSfqATHwdIOeqB7T2R_Q-bvnWxKoWuq5fUIycFNeg_uLKu5-vVTnZ__IYn2H3QpjRYtgKEPQPm-u2z0rlldgXe82SQfwv1eIQ2nHQU9gluuegy3D3uX-xPIv9S6xrKwUj9aOI66Cr3xNrTOzcML1yKvmtbIGPYpKL6FZ1XYeCHYnCKFGWzs8C9r2tDXDiH7KeT7e19nB6TPxUAMyvCGMOuUSrxfV2umS5EKy6I0U5EzIlZlopi1yNoiZbaUTLg41oK1-lumDWclfQajqq7cCwiVkyZSSAgupanTUliV0hLb8kTRSJQBvFvvTTHvIDeKS3Blv1IFrlTRrlSxCmB7vX1Fz36LgiYepozi8SyAN0MxMo73hqjK1UusE3ttiadcBvC82-1hOCq9A1lGAYgNOhgqeFDuzZLq7LQF5_bQp5nwne6sSebyu_41jZ2BrG4w65f_V_0V3E183uLWdLQNo-Zi6V6jMtXoCYynH04-7U1ga8Zn-MyT6aTnrN_9Yxh1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKpX20AeFkkKLK_VWLCVxnDhHVBUtLcsBsRK3yK8AEnJWkG0Fv75jb5LtigrBObYT55vxjGfsbwC-prJAKSkTmpe5oWjxaipMKajUtWUqNwXTPg45Ps5Hk-znGT_rLoXd9Kfd-5RkWKkXl928d03RptCYpQWnd8_guSew8oz5k3S_X38zXjDeXY_5f79lE3TPr7x_PHLIkb6CtZmbyts_8urqHzN08BZed_4j2Z8D_g5WrFuHN31tBtKp6jq8GHdJ8_cwOWlUg82Jk78DoUbjiA-_EmPtlFzbwJ2qQ5iQdEUkzsmlI603Y-0FyojGzhbXSR0Or845rjdgcvDj9PuIdtUUqEYr3FJurJSpz8wqxVUtMmF4nBUytloksk4lNwaVU2Tc1CUXNkmU4MEDK5TOec02YdU1zm4BkbbUsUQobcYyq0phZMZq7JunksWijuBb_4Or6Zw0o1rQI3s4KoSjCnBUdxHs9BhUnQLdVCz1RGMMN1gRfBkeo-j7fIZ0tplhm8T7Ozlu8CP4MIdseB0rfQq4jCMQS2AODTyt9vITd3kR6LU9eWkh_KB7Pe6L73poGnuDbDxi1h-fNvourI1Ox0fV0eHxr214mfoqxCEQtAOr7fXMfkLXqFWfgyb8BSGIB_I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkQo98CiFhhYwEjdqNYntxDmiLavyaIUQK_UW-UkrVc6qzRbRX4_tPLarIgTn2E6cz-MZz3i-AXibi9KvkirDRVVo7DWexVxXHAtlDZGFLokKfsij4-JwRj-dsJMbWfzxtvsQkuxyGgJLk2v359ruLxPfgqWNvX7BKclLhq_vwj3qtVuoYTApJsNeTFlJWJ8q8-d-q-rolo15-6rkGC_dgPsLNxe_forz8xsqafoYHva2JHrfgf8E7hi3CY-GOg2oF9tNWD_qA-hPYfatkY1vjpy4iuQajUPBFYu0MXN0YSKPqoouQ9QXlPiBzhxqg0prT_16Ub6z8XumihdZO77rLZhNP3yfHOK-sgJWXiO3mGkjRB6itFIyaTnlmqW0FKlRPBM2F0xrL6icMm0rxk2WSc6iNVZKVTBLnsGaa5zZBiRMpVLhYTWUUCMrrgUl1vctckFSbhN4N_zget4RaNRLquQAR-3hqCMc9XUCuwMGdS9MlzXJA-kY8YetBN6Mj70YhNiGcKZZ-DZZsH0Kf9hP4HkH2fg6UoVwcJUmwFfAHBsEiu3VJ-7sNFJtByLTkodB9wbcl9_1t2nsjWvjH2b94v9Gfw3rXw-m9ZePx5934EEeChJHn9AurLUXC_PSW0mtfBUF4TfMjgwY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoJy4E0JFGQkbtQliR-xjxWiqpBaIcRK5RT5lbaiclbdLIj99dhONmVbhMotkh-J7W8y4xn7G4C3paoCSmSBueQWB43XYGGlwMo0jmhuK2KiH_LwiB9M6adjdjzQ5MS7MFfi9-_nkS5G4KBJcE7KiuHlbdjgLNjdE9iYHn3e-xZ3VIKHl9GeeqB_LuVwQ-bvnaxroWum5fUTkmOY9B7cXfiZ-vVTnZ__oYn2H_QpjeaJwDAeQPm-u-j0rlleoXe82SAfwv3BIEV7PYIewS3nH8OdwyHk_gSmX1rdhjLk1Y9Ex9F6FJ23yDo3QxcuMa-a5GREQwqKE3TmUReVYHcaEGZCYxf-siYdfe0Zsp_CdP_j1w8HeMjFgE3Q4R1m1ilVxriu1kw3ggrLclqp3BlRqKZUzNog2oIy20gmXFFowZL9VmnDWUOewcS33j0HpJw0uQpAcJRQp6WwipImtOWlIrloMni3Wpt61lNu1JfkynGm6jBTdZqpepnB9mr56kH85jUpI00ZCduzDN6MxUFwYjREedcuQp0iWkuccpnBVr_a4-uIjAFkmWcg1nAwVoik3Osl_uw0kXNH6tNKxE53VpC5_K5_DWNnhNUNRv3i_6q_hM0y5i1OrqNtmHQXC_cqGFOdfj1I0W88GRUb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robotic+navigation+with+deep+reinforcement+learning+in+transthoracic+echocardiography&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Shida%2C+Yuuki&rft.au=Kumagai%2C+Souto&rft.au=Iwata%2C+Hiroyasu&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=20&rft.issue=1&rft.spage=191&rft.epage=202&rft_id=info:doi/10.1007%2Fs11548-024-03275-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6429&client=summon