Sequential Monte Carlo filter based on multiple strategies for a scene specialization classifier

Transfer learning approaches have shown interesting results by using knowledge from source domains to learn a specialized classifier/detector for a target domain containing unlabeled data or only a few labeled samples. In this paper, we present a new transductive transfer learning framework based on...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on image and video processing Vol. 2016; no. 1; pp. 1 - 19
Main Authors Maâmatou, Houda, Chateau, Thierry, Gazzah, Sami, Goyat, Yann, Ben Amara, Najoua Essoukri
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2016
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1687-5281
1687-5176
1687-5281
DOI10.1186/s13640-016-0143-4

Cover

Abstract Transfer learning approaches have shown interesting results by using knowledge from source domains to learn a specialized classifier/detector for a target domain containing unlabeled data or only a few labeled samples. In this paper, we present a new transductive transfer learning framework based on a sequential Monte Carlo filter to specialize a generic classifier towards a specific scene. The proposed framework utilizes different strategies and approximates iteratively the hidden target distribution as a set of samples in order to learn a specialized classifier. These training samples are selected from both source and target domains according to their weight importance, which indicates that they belong to the target distribution. The resulting classifier is applied to pedestrian and car detection on several challenging traffic scenes. The experiments have demonstrated that our solution improves and outperforms several state of the art’s specialization algorithms on public datasets.
AbstractList Transfer learning approaches have shown interesting results by using knowledge from source domains to learn a specialized classifier/detector for a target domain containing unlabeled data or only a few labeled samples. In this paper, we present a new transductive transfer learning framework based on a sequential Monte Carlo filter to specialize a generic classifier towards a specific scene. The proposed framework utilizes different strategies and approximates iteratively the hidden target distribution as a set of samples in order to learn a specialized classifier. These training samples are selected from both source and target domains according to their weight importance, which indicates that they belong to the target distribution. The resulting classifier is applied to pedestrian and car detection on several challenging traffic scenes. The experiments have demonstrated that our solution improves and outperforms several state of the art’s specialization algorithms on public datasets.
ArticleNumber 40
Author Ben Amara, Najoua Essoukri
Maâmatou, Houda
Goyat, Yann
Gazzah, Sami
Chateau, Thierry
Author_xml – sequence: 1
  givenname: Houda
  orcidid: 0000-0001-7298-0253
  surname: Maâmatou
  fullname: Maâmatou, Houda
  email: houda.maamatou@etudiant.univ-bpclermont.fr
  organization: Institut Pascal, Blaise Pascal University, SAGE ENISo, University of Sousse, Logiroad
– sequence: 2
  givenname: Thierry
  surname: Chateau
  fullname: Chateau, Thierry
  organization: Institut Pascal, Blaise Pascal University
– sequence: 3
  givenname: Sami
  surname: Gazzah
  fullname: Gazzah, Sami
  organization: SAGE ENISo, University of Sousse
– sequence: 4
  givenname: Yann
  surname: Goyat
  fullname: Goyat, Yann
  organization: Logiroad
– sequence: 5
  givenname: Najoua Essoukri
  surname: Ben Amara
  fullname: Ben Amara, Najoua Essoukri
  organization: SAGE ENISo, University of Sousse
BackLink https://hal.science/hal-01653428$$DView record in HAL
BookMark eNqNkEtrFTEYhkNpoTd_gLuAG12MTSaXmVmWg1rhSBfVdczJfKkpOcmYZJT66804BUtB6SIkhOf9Ls8pOgwxAEIvKXlLaS8vMmWSk4ZQWQ9nDT9AJ1T2XSPanh4-eh-j05zvCBFCsPYEfb2B7zOE4rTHn2IogDc6-Yit8wUS3ukMI44B72df3OQB55J0gVsHGduYsMbZQKjfE5haw_3SxVXceJ2zsw7SOTqy2md48XCfoS_v333eXDXb6w8fN5fbxvBWlkaMnFhrxbgbxxaMNYPoRtlzRqmmduSWDSOxujeD3fU7wzprpTSkrbwlPaPsDLVr3TlM-v6n9l5Nye11uleUqMWRWh2p6kgtjhSvoTdr6Jv-i0ft1NXlVi1_lRWMt_2PpcHrlZ1SrMpyUXtXd_deB4hzVrUDF10nu6XsqyfoXZxTqOtXirNWSDkMlepWyqSYcwKrjCt_9FXFzv93bPok-ZxVH_zkyoZbSI9m-mfoNwPQtuE
CitedBy_id crossref_primary_10_14778_3137628_3137664
crossref_primary_10_1007_s13735_019_00180_z
crossref_primary_10_1109_TIP_2017_2779271
crossref_primary_10_1186_s13640_016_0154_1
crossref_primary_10_1109_TITS_2018_2876614
Cites_doi 10.1007/978-3-319-10578-9_31
10.1023/A:1008078328650
10.1007/978-1-4757-3437-9
10.1109/CVPR.2014.222
10.1109/CVPR.1994.323794
10.1109/ICCV.2011.6126504
10.1109/TPAMI.2010.117
10.1109/TPAMI.2011.66
10.1109/ICCV.2003.1238406
10.1109/CVPR.2008.4587597
10.1109/TPAMI.2013.124
10.5244/C.24.68
10.5220/0003822105130520
10.1109/CVPR.2010.5540064
10.1109/CVPR.2010.5539906
10.1109/CVPR.2011.5995698
10.1007/s11263-007-0067-7
10.1109/ITSC.2010.5624980
10.1109/WACV.2015.30
10.5220/0005725104110422
10.1007/s11263-009-0275-4
10.1109/TPAMI.2004.108
10.1109/CVPR.2004.1315181
10.1109/CVPR.2005.177
10.1109/CVPR.2012.6248064
10.1109/CVPR.2011.5995403
10.5244/C.23.91
10.1109/ISBI.2007.357035
10.1109/ACVMOT.2005.107
10.1109/TPAMI.2014.2300479
10.1109/WISP.2015.7139161
10.1109/TPAMI.2008.87
ContentType Journal Article
Copyright The Author(s) 2016
EURASIP Journal on Image and Video Processing is a copyright of Springer, 2016.
Attribution - NonCommercial
Copyright_xml – notice: The Author(s) 2016
– notice: EURASIP Journal on Image and Video Processing is a copyright of Springer, 2016.
– notice: Attribution - NonCommercial
DBID C6C
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
ADTOC
UNPAY
DOI 10.1186/s13640-016-0143-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Technology Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1687-5281
EndPage 19
ExternalDocumentID 10.1186/s13640-016-0143-4
oai:HAL:hal-01653428v1
4261694561
10_1186_s13640_016_0143_4
GroupedDBID -A0
0R~
29J
2WC
4.4
40G
5VS
8FE
8FG
8R4
8R5
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACM
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AERSA
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
E3Z
EBLON
EBS
ECE
EJD
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IN-
IPNFZ
ITG
ITH
KQ8
M~E
OK1
P2P
P62
PIMPY
PROAC
Q2X
RHU
RIG
RSV
SEG
SOJ
U2A
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
2VQ
C1A
H13
IL9
ITC
O9-
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-5d40fff5dbdd2ecfc957d684311a1fd4f39d0fa8c9fb8bc37ff66c02dbdf08313
IEDL.DBID C24
ISSN 1687-5281
1687-5176
IngestDate Tue Aug 19 18:43:37 EDT 2025
Tue Oct 14 20:23:18 EDT 2025
Fri Sep 05 12:03:31 EDT 2025
Sat Oct 11 05:43:05 EDT 2025
Wed Oct 01 06:06:18 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Fri Feb 21 02:32:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sample-proposal and observation strategies
Sequential Monte Carlo filter
Specialization
Transductive transfer learning
Generic and specialized classifier
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-5d40fff5dbdd2ecfc957d684311a1fd4f39d0fa8c9fb8bc37ff66c02dbdf08313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7298-0253
0000-0003-4854-5686
OpenAccessLink https://link.springer.com/10.1186/s13640-016-0143-4
PQID 1843256699
PQPubID 237295
PageCount 19
ParticipantIDs unpaywall_primary_10_1186_s13640_016_0143_4
hal_primary_oai_HAL_hal_01653428v1
proquest_miscellaneous_1864577674
proquest_journals_1843256699
crossref_citationtrail_10_1186_s13640_016_0143_4
crossref_primary_10_1186_s13640_016_0143_4
springer_journals_10_1186_s13640_016_0143_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on image and video processing
PublicationTitleAbbrev J Image Video Proc
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References AgarwalSAwanARothDLearning to detect objects in images via a sparse, part-based representationPAMI200426111475149010.1109/TPAMI.2004.108
YuanQThangaliAAblavskyVSclaroffSLearning a family of detectors via multiplicative kernelsPAMI201133351453010.1109/TPAMI.2010.117
PF Felzenszwalb, RB Girshick, D McAllester, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010. Cascade object detection with deformable part models (IEEE, 2010), pp. 2241–2248.
PanSJTsangIWKwokJTYangQDomain adaptation via transfer component analysisNN2011222199210
LiXYeMFuMXuPLiTDomain adaption of vehicle detector based on convolutional neural networksIJCAS201513410201031
LinB-FChanY-MFuL-CHsiaoP-YChuangL-AHuangS-SLoM-FIntegrating appearance and edge features for sedan vehicle detection in the blind-spot areaITS2012132737747
X Zhang, N Zheng, in Intelligent Transportation Systems (ITSC), 13th International IEEE Conference on. Vehicle detection under varying poses using conditional random fields (IEEE, 2010), pp. 875–880.
H Maâmatou, T Chateau, S Gazzah, Y Goyat, N Essoukri Ben Amara, in Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 4: VISAPP. Transductive transfer learning to specialize a generic classifier towards a specific scene (SciTePress, 2016), pp. 411–422.
S Alvarez, M Sotelo, I Parra, D Llorca, M Gavilán, in Proceedings of the World Congress on Engineering and Computer Science (WCECS), 2. Vehicle and pedestrian detection in esafety applications, (2009), pp. 1–6.
I Smal, W Niessen, E Meijering, in 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Advanced particle filtering for multiple object tracking in dynamic fluorescence microscopy images (IEEE, 2007), pp. 1048–1051.
MeiXLingHRobust visual tracking and vehicle classification via sparse representationPAMI201133112259227210.1109/TPAMI.2011.66
DollárPAppelRBelongieSPeronaPFast feature pyramids for object detectionPAMI20143681532154510.1109/TPAMI.2014.2300479
N Dalal, B Triggs, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1. Histograms of oriented gradients for human detection (IEEE, 2005), pp. 886–893.
X Zeng, W Ouyang, M Wang, X Wang, in European Conference on Computer Vision (ECCV). Deep learning of scene-specific classifier for pedestrian detection (Springer, 2014), pp. 472–487.
M Wang, W Li, X Wang, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. Transferring a generic pedestrian detector towards specific scenes (IEEE, 2012), pp. 3274–3281.
M Wang, X Wang, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. Automatic adaptation of a generic pedestrian detector to a specific traffic scene (IEEE, 2011), pp. 3401–3408.
IsardMBlakeACondensation—conditional density propagation for visual trackingIJCV199829152810.1023/A:1008078328650
EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (VOC) challengeIJCV201088230333810.1007/s11263-009-0275-4
JJ Lim, R Salakhutdinov, A Torralba, in Advances in Neural Information Processing Systems (NIPS). Transfer learning by borrowing examples for multiclass object detection, (2011), pp. 118–126.
SivaramanSTrivediMMVehicle detection by independent parts for urban driver assistanceITS201314415971608
CarbonettoPDorko, ǴSchmidCKückHDe FreitasNLearning to recognize objects with little supervisionIJCV2008771-321923710.1007/s11263-007-0067-7
BoltzSDebreuveEBarlaudMHigh-dimensional statistical measure for region-of-interest trackingIP2009186126612832742157
C Rosenberg, M Hebert, H Schneiderman, in Application of Computer Vision, 2005. WACV/MOTIONS ’05 Volume 1. Seventh IEEE Workshops on. Semi-supervised self-training of object detection models (IEEE Press, 2005), pp. 29–36.
V Nair, JJ Clark, in Computer Vision and Pattern Recognition (CVPR), Proceedings of the 2004 IEEE Conference on, 2. An unsupervised, online learning framework for moving object detection (IEEE, 2004), pp. II–317.
T Chesnais, N Allezard, Y Dhome, T Chateau, in VISAPP 2012 - Proceedings of the International Conference on Computer Vision Theory and Applications, Volume 1. Automatic process to build a contextualized detector (SciTePress, 2012), pp. 513–520.
F Han, Y Shan, R Cekander, HS Sawhney, R Kumar, in Performance Metrics for Intelligent Systems (PMIS) 2006 Workshop. A two-stage approach to people and vehicle detection with hog-based SVM (Citeseer, 2006), pp. 133–140.
B Philip, P Updike, Caltech Computational Vision Caltech Cars 2001 (Rear). http://www.vision.caltech.edu/archive.html.
A Levin, P Viola, Y Freund, in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on (ICCV). Unsupervised improvement of visual detectors using cotraining (IEEE, 2003), pp. 626–633.
M Oquab, L Bottou, I Laptev, J Sivic, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). Learning and transferring mid-level image representations using convolutional neural networks (IEEE, 2014), pp. 1717–1724.
P Dollár, Z Tu, P Perona, S Belongie, in British Machine Vision Conference, BMVC 2009, Proceedings. Integral channel features (British Machine Vision Association, 2009), pp. 1–11.
Y Aytar, A Zisserman, in 2011 International Conference on Computer Vision (ICCV). Tabula rasa: model transfer for object category detection (IEEE, 2011), pp. 2252–2259.
J Shi, C Tomasi, in Computer Vision and Pattern Recognition (CVPR), 1994 IEEE Conference on. Good features to track (IEEE, 1994), pp. 593–600.
DanescuROnigaFNedevschiSModeling and tracking the driving environment with a particle-based occupancy gridITS201112413311342
PanSJYangQA survey on transfer learningKDE2010221013451359
P Dollár, S Belongie, P Perona, in British Machine Vision Conference, BMVC 2010, Proceedings, vol. 2, issue 3. The fastest pedestrian detector in the west (British Machine Vision Association, 2010), pp. 1–11.
K Tang, V Ramanathan, L Fei-Fei, D Koller, in Advances in Neural Information Processing Systems (NIPS). Shifting weights: adapting object detectors from image to video, (2012), pp. 638–646.
WangXWangMLiWScene-specific pedestrian detection for static video surveillancePAMI201436236137410.1109/TPAMI.2013.124
WangXMaXGrimsonWELUnsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian modelsPAMI200931353955510.1109/TPAMI.2008.87
P Felzenszwalb, D McAllester, D Ramanan, in Computer Vision and Pattern Recognition, CVPR 2008, IEEE Conference on. A discriminatively trained, multiscale, deformable part model (IEEE, 2008), pp. 1–8.
TomasiCKanadeTDetection and tracking of point features1991PittsburghSchool of Computer Science, Carnegie Mellon Univ. Pittsburgh
DoucetADe FreitasNGordonNSequential Monte Carlo methods in practice2001New YorkSpringer Science + Business Media10.1007/978-1-4757-3437-90967.00022
K Ali, D Hasler, F Fleuret, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. Flowboost–appearance learning from sparsely annotated video (IEEE, 2011), pp. 1433–1440.
T Tommasi, F Orabona, B Caputo, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. Safety in numbers: learning categories from few examples with multi model knowledge transfer (IEEE, 2010), pp. 3081–3088.
QuanzBHuanJMishraMKnowledge transfer with low-quality data: a feature extraction issueKDE2012241017891802
D Sun, J Watada, in Intelligent Signal Processing (WISP), 9th International Symposium on. Detecting pedestrians and vehicles in traffic scene based on boosted HOG features and SVM (IEEE, 2015), pp. 1–4.
Y Mao, Z Yin, in 2015 IEEE Winter Conference on Applications of Computer Vision (WCACV). Training a scene-specific pedestrian detector using tracklets (IEEE, 2015), pp. 170–176.
143_CR34
143_CR11
143_CR10
143_CR31
C Tomasi (143_CR39) 1991
143_CR30
X Li (143_CR18) 2015; 13
A Doucet (143_CR21) 2001
SJ Pan (143_CR32) 2011; 22
P Dollár (143_CR12) 2014; 36
R Danescu (143_CR2) 2011; 12
143_CR6
143_CR8
143_CR9
P Carbonetto (143_CR43) 2008; 77
143_CR1
143_CR28
143_CR27
143_CR3
143_CR26
X Wang (143_CR41) 2009; 31
M Everingham (143_CR42) 2010; 88
143_CR25
Q Yuan (143_CR7) 2011; 33
X Wang (143_CR17) 2014; 36
143_CR23
143_CR45
M Isard (143_CR22) 1998; 29
143_CR20
143_CR40
SJ Pan (143_CR29) 2010; 22
B-F Lin (143_CR4) 2012; 13
X Mei (143_CR24) 2011; 33
B Quanz (143_CR33) 2012; 24
S Agarwal (143_CR44) 2004; 26
143_CR19
143_CR16
143_CR38
S Boltz (143_CR46) 2009; 18
S Sivaraman (143_CR5) 2013; 14
143_CR15
143_CR37
143_CR14
143_CR36
143_CR13
143_CR35
References_xml – reference: V Nair, JJ Clark, in Computer Vision and Pattern Recognition (CVPR), Proceedings of the 2004 IEEE Conference on, 2. An unsupervised, online learning framework for moving object detection (IEEE, 2004), pp. II–317.
– reference: C Rosenberg, M Hebert, H Schneiderman, in Application of Computer Vision, 2005. WACV/MOTIONS ’05 Volume 1. Seventh IEEE Workshops on. Semi-supervised self-training of object detection models (IEEE Press, 2005), pp. 29–36.
– reference: IsardMBlakeACondensation—conditional density propagation for visual trackingIJCV199829152810.1023/A:1008078328650
– reference: S Alvarez, M Sotelo, I Parra, D Llorca, M Gavilán, in Proceedings of the World Congress on Engineering and Computer Science (WCECS), 2. Vehicle and pedestrian detection in esafety applications, (2009), pp. 1–6.
– reference: M Wang, W Li, X Wang, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. Transferring a generic pedestrian detector towards specific scenes (IEEE, 2012), pp. 3274–3281.
– reference: LinB-FChanY-MFuL-CHsiaoP-YChuangL-AHuangS-SLoM-FIntegrating appearance and edge features for sedan vehicle detection in the blind-spot areaITS2012132737747
– reference: PanSJTsangIWKwokJTYangQDomain adaptation via transfer component analysisNN2011222199210
– reference: CarbonettoPDorko, ǴSchmidCKückHDe FreitasNLearning to recognize objects with little supervisionIJCV2008771-321923710.1007/s11263-007-0067-7
– reference: K Ali, D Hasler, F Fleuret, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. Flowboost–appearance learning from sparsely annotated video (IEEE, 2011), pp. 1433–1440.
– reference: P Felzenszwalb, D McAllester, D Ramanan, in Computer Vision and Pattern Recognition, CVPR 2008, IEEE Conference on. A discriminatively trained, multiscale, deformable part model (IEEE, 2008), pp. 1–8.
– reference: K Tang, V Ramanathan, L Fei-Fei, D Koller, in Advances in Neural Information Processing Systems (NIPS). Shifting weights: adapting object detectors from image to video, (2012), pp. 638–646.
– reference: DoucetADe FreitasNGordonNSequential Monte Carlo methods in practice2001New YorkSpringer Science + Business Media10.1007/978-1-4757-3437-90967.00022
– reference: BoltzSDebreuveEBarlaudMHigh-dimensional statistical measure for region-of-interest trackingIP2009186126612832742157
– reference: YuanQThangaliAAblavskyVSclaroffSLearning a family of detectors via multiplicative kernelsPAMI201133351453010.1109/TPAMI.2010.117
– reference: T Chesnais, N Allezard, Y Dhome, T Chateau, in VISAPP 2012 - Proceedings of the International Conference on Computer Vision Theory and Applications, Volume 1. Automatic process to build a contextualized detector (SciTePress, 2012), pp. 513–520.
– reference: MeiXLingHRobust visual tracking and vehicle classification via sparse representationPAMI201133112259227210.1109/TPAMI.2011.66
– reference: T Tommasi, F Orabona, B Caputo, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. Safety in numbers: learning categories from few examples with multi model knowledge transfer (IEEE, 2010), pp. 3081–3088.
– reference: WangXMaXGrimsonWELUnsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian modelsPAMI200931353955510.1109/TPAMI.2008.87
– reference: D Sun, J Watada, in Intelligent Signal Processing (WISP), 9th International Symposium on. Detecting pedestrians and vehicles in traffic scene based on boosted HOG features and SVM (IEEE, 2015), pp. 1–4.
– reference: H Maâmatou, T Chateau, S Gazzah, Y Goyat, N Essoukri Ben Amara, in Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 4: VISAPP. Transductive transfer learning to specialize a generic classifier towards a specific scene (SciTePress, 2016), pp. 411–422.
– reference: SivaramanSTrivediMMVehicle detection by independent parts for urban driver assistanceITS201314415971608
– reference: QuanzBHuanJMishraMKnowledge transfer with low-quality data: a feature extraction issueKDE2012241017891802
– reference: F Han, Y Shan, R Cekander, HS Sawhney, R Kumar, in Performance Metrics for Intelligent Systems (PMIS) 2006 Workshop. A two-stage approach to people and vehicle detection with hog-based SVM (Citeseer, 2006), pp. 133–140.
– reference: X Zhang, N Zheng, in Intelligent Transportation Systems (ITSC), 13th International IEEE Conference on. Vehicle detection under varying poses using conditional random fields (IEEE, 2010), pp. 875–880.
– reference: J Shi, C Tomasi, in Computer Vision and Pattern Recognition (CVPR), 1994 IEEE Conference on. Good features to track (IEEE, 1994), pp. 593–600.
– reference: DanescuROnigaFNedevschiSModeling and tracking the driving environment with a particle-based occupancy gridITS201112413311342
– reference: M Wang, X Wang, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. Automatic adaptation of a generic pedestrian detector to a specific traffic scene (IEEE, 2011), pp. 3401–3408.
– reference: I Smal, W Niessen, E Meijering, in 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Advanced particle filtering for multiple object tracking in dynamic fluorescence microscopy images (IEEE, 2007), pp. 1048–1051.
– reference: B Philip, P Updike, Caltech Computational Vision Caltech Cars 2001 (Rear). http://www.vision.caltech.edu/archive.html.
– reference: LiXYeMFuMXuPLiTDomain adaption of vehicle detector based on convolutional neural networksIJCAS201513410201031
– reference: X Zeng, W Ouyang, M Wang, X Wang, in European Conference on Computer Vision (ECCV). Deep learning of scene-specific classifier for pedestrian detection (Springer, 2014), pp. 472–487.
– reference: P Dollár, S Belongie, P Perona, in British Machine Vision Conference, BMVC 2010, Proceedings, vol. 2, issue 3. The fastest pedestrian detector in the west (British Machine Vision Association, 2010), pp. 1–11.
– reference: JJ Lim, R Salakhutdinov, A Torralba, in Advances in Neural Information Processing Systems (NIPS). Transfer learning by borrowing examples for multiclass object detection, (2011), pp. 118–126.
– reference: WangXWangMLiWScene-specific pedestrian detection for static video surveillancePAMI201436236137410.1109/TPAMI.2013.124
– reference: Y Aytar, A Zisserman, in 2011 International Conference on Computer Vision (ICCV). Tabula rasa: model transfer for object category detection (IEEE, 2011), pp. 2252–2259.
– reference: TomasiCKanadeTDetection and tracking of point features1991PittsburghSchool of Computer Science, Carnegie Mellon Univ. Pittsburgh
– reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (VOC) challengeIJCV201088230333810.1007/s11263-009-0275-4
– reference: P Dollár, Z Tu, P Perona, S Belongie, in British Machine Vision Conference, BMVC 2009, Proceedings. Integral channel features (British Machine Vision Association, 2009), pp. 1–11.
– reference: M Oquab, L Bottou, I Laptev, J Sivic, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). Learning and transferring mid-level image representations using convolutional neural networks (IEEE, 2014), pp. 1717–1724.
– reference: AgarwalSAwanARothDLearning to detect objects in images via a sparse, part-based representationPAMI200426111475149010.1109/TPAMI.2004.108
– reference: Y Mao, Z Yin, in 2015 IEEE Winter Conference on Applications of Computer Vision (WCACV). Training a scene-specific pedestrian detector using tracklets (IEEE, 2015), pp. 170–176.
– reference: PanSJYangQA survey on transfer learningKDE2010221013451359
– reference: N Dalal, B Triggs, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1. Histograms of oriented gradients for human detection (IEEE, 2005), pp. 886–893.
– reference: DollárPAppelRBelongieSPeronaPFast feature pyramids for object detectionPAMI20143681532154510.1109/TPAMI.2014.2300479
– reference: PF Felzenszwalb, RB Girshick, D McAllester, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010. Cascade object detection with deformable part models (IEEE, 2010), pp. 2241–2248.
– reference: A Levin, P Viola, Y Freund, in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on (ICCV). Unsupervised improvement of visual detectors using cotraining (IEEE, 2003), pp. 626–633.
– volume: 18
  start-page: 1266
  issue: 6
  year: 2009
  ident: 143_CR46
  publication-title: IP
– volume: 12
  start-page: 1331
  issue: 4
  year: 2011
  ident: 143_CR2
  publication-title: ITS
– ident: 143_CR36
  doi: 10.1007/978-3-319-10578-9_31
– volume: 29
  start-page: 5
  issue: 1
  year: 1998
  ident: 143_CR22
  publication-title: IJCV
  doi: 10.1023/A:1008078328650
– volume: 14
  start-page: 1597
  issue: 4
  year: 2013
  ident: 143_CR5
  publication-title: ITS
– volume-title: Sequential Monte Carlo methods in practice
  year: 2001
  ident: 143_CR21
  doi: 10.1007/978-1-4757-3437-9
– ident: 143_CR38
  doi: 10.1109/CVPR.2014.222
– ident: 143_CR40
  doi: 10.1109/CVPR.1994.323794
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 143_CR29
  publication-title: KDE
– ident: 143_CR31
  doi: 10.1109/ICCV.2011.6126504
– ident: 143_CR34
– volume: 33
  start-page: 514
  issue: 3
  year: 2011
  ident: 143_CR7
  publication-title: PAMI
  doi: 10.1109/TPAMI.2010.117
– volume: 13
  start-page: 1020
  issue: 4
  year: 2015
  ident: 143_CR18
  publication-title: IJCAS
– volume: 33
  start-page: 2259
  issue: 11
  year: 2011
  ident: 143_CR24
  publication-title: PAMI
  doi: 10.1109/TPAMI.2011.66
– ident: 143_CR27
  doi: 10.1109/ICCV.2003.1238406
– volume: 13
  start-page: 737
  issue: 2
  year: 2012
  ident: 143_CR4
  publication-title: ITS
– ident: 143_CR3
– ident: 143_CR1
– ident: 143_CR14
  doi: 10.1109/CVPR.2008.4587597
– volume: 36
  start-page: 361
  issue: 2
  year: 2014
  ident: 143_CR17
  publication-title: PAMI
  doi: 10.1109/TPAMI.2013.124
– ident: 143_CR11
  doi: 10.5244/C.24.68
– ident: 143_CR28
  doi: 10.5220/0003822105130520
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 143_CR32
  publication-title: NN
– ident: 143_CR30
  doi: 10.1109/CVPR.2010.5540064
– volume-title: Detection and tracking of point features
  year: 1991
  ident: 143_CR39
– ident: 143_CR13
  doi: 10.1109/CVPR.2010.5539906
– ident: 143_CR15
  doi: 10.1109/CVPR.2011.5995698
– volume: 24
  start-page: 1789
  issue: 10
  year: 2012
  ident: 143_CR33
  publication-title: KDE
– volume: 77
  start-page: 219
  issue: 1-3
  year: 2008
  ident: 143_CR43
  publication-title: IJCV
  doi: 10.1007/s11263-007-0067-7
– ident: 143_CR8
  doi: 10.1109/ITSC.2010.5624980
– ident: 143_CR19
  doi: 10.1109/WACV.2015.30
– ident: 143_CR20
  doi: 10.5220/0005725104110422
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 143_CR42
  publication-title: IJCV
  doi: 10.1007/s11263-009-0275-4
– volume: 26
  start-page: 1475
  issue: 11
  year: 2004
  ident: 143_CR44
  publication-title: PAMI
  doi: 10.1109/TPAMI.2004.108
– ident: 143_CR26
  doi: 10.1109/CVPR.2004.1315181
– ident: 143_CR9
  doi: 10.1109/CVPR.2005.177
– ident: 143_CR16
  doi: 10.1109/CVPR.2012.6248064
– ident: 143_CR37
  doi: 10.1109/CVPR.2011.5995403
– ident: 143_CR10
  doi: 10.5244/C.23.91
– ident: 143_CR35
– ident: 143_CR23
  doi: 10.1109/ISBI.2007.357035
– ident: 143_CR25
  doi: 10.1109/ACVMOT.2005.107
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  ident: 143_CR12
  publication-title: PAMI
  doi: 10.1109/TPAMI.2014.2300479
– ident: 143_CR6
  doi: 10.1109/WISP.2015.7139161
– volume: 31
  start-page: 539
  issue: 3
  year: 2009
  ident: 143_CR41
  publication-title: PAMI
  doi: 10.1109/TPAMI.2008.87
– ident: 143_CR45
SSID ssj0055532
ssib044603796
ssib044736454
ssib008501553
Score 2.0661182
Snippet Transfer learning approaches have shown interesting results by using knowledge from source domains to learn a specialized classifier/detector for a target...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Approximation
Biometrics
Classifiers
Computer Science
Computer Vision and Pattern Recognition
Engineering
Image Processing and Computer Vision
Learning
Monte Carlo methods
Pattern Recognition
Pedestrians
Signal,Image and Speech Processing
State of the art
Strategy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB212wNwoHxVBFpkECeqqHFiO8kBVW3VaoVghYBKvQXHjkWlKFm6uyD-PTNZOywHyjHJJEo8M55xZvwewGshCePcNbFppIxpK2Rcu5THuVBpjREfQ9iA9jlT00vx7kpebcEs7IWhtsowJw4Tte0N_SM_Il4SDM-qLI_n32NijaLqaqDQ0J5awb4dIMa2YSclZKwJ7Jyezz5-Gi2skANRTjjGtVCSbQDOCZFTWU6EuVyi7FAvVeiKkufK10V5oY4WHEWpqYtW5CKLxV-Rbfsb9VVuJK1jnfUe3Fl1c_3rp27bjVB28QDu-xyUnayN5iFsNd0j2PX5KPPevngMXz8PfdY4B7TsA6FYsTN90_bMXVOJnVEAtKzvWGhKZItlAJ5gmAszzQgqCk-vOe79jk9mKGG_dhiPn8DlxfmXs2nsGRlig5F8GUsrEuectLW1aWOcKWVuFWqGc82dFS4rbeJ0YUpXF7XJcueUMkmK8o4ozbI9mHR91zwFplLTaI0Dnie1KBTXuk5qZwttmkLI0kWQhNGsjIcrJ9aMthqWLYWq1gqoqEWNFFCJCN6Mt8zXWB23Cb9CFY1yhLI9PXlf0Tna4ZXhsuwHj2A_aLDyvr2o_lhiBC_Hy-iVVGrRXdOvSAbNaABKiuAwaH7jEf9-q8PROP7_Dc9uf73ncDcl8xyab_ZhsrxZNQeYQi3rF94vfgPL6BEo
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB612wfgoeUUKQUZxBNVtjlsJ3lcVVQrBBUIVipPwfGhLo2yUY4i-PV4cmlBHELiLXImUWyPPd9kxt8APKcMOc6NdqVmzMWjkG5mAt-NKA8ya_GtCevYPs_5ckVfXbCLHXg3noX5vL4uXd1Wol6Xw2jW8zFEiQWlut27qYS8OimV6Rd9zE9qP-SYqOijf0xDl-7CHmcWns9gb3X-dvERHS9uFxTzu4Jz_XUQ-0Ok85fv-MFW7V5ipuQWDJ0ip7fgRluU4usXkedbxunsAKqxW31OytW8bbK5_PYT4-N_7fdt2B-gLFn0uncHdnRxFw4GWEuGTaO-B5_ed-nadivJyRskwyKnoso3xKwxUk_QjiqyKciY20jqZuSvIBZSE0GQcco2lxr_7w8HR4lE3L821qzfh9XZyw-nS3co7OBKCwgalynqGWOYypQKtDQyYZHiscUyvvCNoiZMlGdELBOTxZkMI2M4l15g5Q1WRgsfwKzYFPohEB5ILQSlUeRlNOa-EJmXGRULqWPKEuOAN05hKgfWcyy-kaed9xPztB_BFDPdcART6sCL6ZGyp_z4k_AzqxeTHJJ1LxevU2zDg2Kh9e6ufQeORrVJx8lNsdCOxZs8SRx4Ot22ixsjNqLQmxZlOGUd35IDx6M2bL3i9191PGnk3_tw-E_Sj-BmgOrWpfQcwaypWv3YArMmezIste-AKTCt
  priority: 102
  providerName: Unpaywall
Title Sequential Monte Carlo filter based on multiple strategies for a scene specialization classifier
URI https://link.springer.com/article/10.1186/s13640-016-0143-4
https://www.proquest.com/docview/1843256699
https://www.proquest.com/docview/1864577674
https://hal.science/hal-01653428
https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-016-0143-4
UnpaywallVersion publishedVersion
Volume 2016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044736454
  issn: 1687-5176
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5281
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: 8FG
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: AAJSJ
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: C6C
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1687-5281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055532
  issn: 1687-5281
  databaseCode: C24
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6R5gA98CggXEq0IE5UFn7sru2jiRKiiEYVJVI5mfV6V1SynKpOqLjw25nxS0HiIS5jy15btsfj-dYz8w3Aay6I49waVxshXCqFdHMb-G7EZZCjx0cX1rB9ruRizZeX4rKr4677bPc-JNl8qRuzjuXb2g8lpSL6NAPmoctHMEb4EVC_himVOLSfXyFEGHThy98e9osDGn2l9Mc9bDmEQw_h7q66Vt9vVVnueZz5Q7jfQUWWtrp9BHdMdQQPOtjIOqOsj-Bwj1PwMXy5aJKj0XBLdkbUU2yqbsoNs1cUF2fktQq2qVifScjqbc8WwRDAMsWI3wk3t43puzJNpgllX1l0ok9gPZ99mi7cro2Cq9H9bl1RcM9aK4q8KAKjrU5EVMgYkYOvfFtwGyaFZ1WsE5vHuQ4ja6XUXoDjLfUhC5_CQbWpzDNgMtBGKc6jyMt5LH2lci-3Ray0iblIrANe_2wz3XGMU6uLMmvmGrHMWnVklFdG6si4A2-GQ65bgo2_DX6FChvGETX2Iv2Q0TYqywpxLvXNd-Ck12fWGWSdUVsbRHcySRx4OexGU6L4iKrMZkdjJBcNu5EDp_17sHeKP1_V6fCq_Psejv_r3M_hXkAFFx79JTyBg-3NzrxAGLTNJzDi3nuU8RzlOE2XF0tcvputzj9OGpMgKaeT5jcDyrMfM5TrANfH69V5-vknvsUJIg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cSgceFcYCiwILlRW_dhd24cKldIqpWmEoJV6c9f7UCtFTtokVP1z_DZmnLUJB8qpR9vj58zOwzPzDcB7Lgjj3NlQWyFCaoUMK5fEYcZlUqHFRxPWoH0OZO-Efz0Vp0vwq-2FobLKVic2itqMNP0j36K5JGieZVF8Gl-GNDWKsqvtCA3lRyuY7QZizDd2HNqbawzhJtsHX5DfH5Jkf-94txf6KQOhRus0DYXhkXNOmMqYxGqnC5EZiXeLYxU7w11amMipXBeuyiudZs5JqaME6R2N6UrxusuwylNeYPC3-nlv8O17J9G5aAbztNsYe0XpAsAd5xmlAXlrOwTSNvlZiUtfxJn0edg4l1uTGEmpiIz-APA05H9Z0uVzquNccJK7vO59WJvVY3VzrYbDBdO5_wgeeJ-X7cyF9DEs2foJPPT-L_PaZfIUzn40dd2oc4bsiFCz2K66Go6Yu6CUPiODa9ioZm0RJJtMW6ALhr43U4ygqXD32FIiwHeYMk0BwoVD-_8MTu6EN-uwUo9q-xyYTLRVCj94FlU8l7FSVVQ5kyttcy4KF0DUfs1Se3h0mtIxLJswKZflnAEllcQRA0oewMfulPEcG-Q24nfIoo6OUL17O_2S9lFHWYph4M84gI2Wg6XXJZPyj-QH8LY7jFqAUjuqtqMZ0aAYNcBMAWy2nF-4xL-farMTjv-_w4vbH-8NrPWOj_pl_2Bw-BLuJSSqTeHPBqxMr2b2Fbpv0-q1XyMMzu56Wf4GPIxQ-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61ReJx4I0IFFgQXKis-LG7tg8IVS0hpaVCgkq9uet9iEqWHeqEqn-NX8eM4zXhQDn1GGf8iOedmfkG4DUXhHHubKCtEAGNQgali6Mg5TIu0eOjC-vQPg_l9Ih_OhbHa_DLz8JQW6W3iZ2hNo2m_8jHtJcE3bPM87Hr2yK-7E7ez34EtEGKKq1-ncZSRPbtxTmmb-27vV3k9Zs4nnz4tjMN-g0DgUbPNA-E4aFzTpjSmNhqp3ORGol3iiIVOcNdkpvQqUznrsxKnaTOSanDGOkdrehK8LrrcC0lFHeaUp98HGQ5E91KHv8Zs64wWYG24zylAiD3XkMgbVeZlaj0IkplX4GNMjluIySl9jHK_XkS8L986Pp36uBcCY-Hiu4tuLGoZ-riXFXVitOc3IXbfbTLtpfieQ_WbH0f7vSRL-vtSvsATr52Hd1obSr2mfCy2I46qxrmTqmYz8jVGtbUzLc_snbuIS4YRt1MMQKlwsMzSyWAfraUaUoNTh16_odwdCWceQQbdVPbx8BkrK1S-MLTsOSZjJQqw9KZTGmbcZG7EYT-bRa6B0an_RxV0SVImSyWDCioGY4YUPARvB1OmS1RQS4jfoUsGugIz3u6fVDQMZolSzAB_BmNYNNzsOitSFv8kfkRvBy-Rv2noo6qbbMgGhSjDpJpBFue8yuX-PdTbQ3C8f_f8OTyx3sB11EZi4O9w_2ncDMmSe06fjZhY362sM8wbpuXzzsFYXBy1Rr5G_GGTpI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB612wfgoeUUKQUZxBNVtjlsJ3lcVVQrBBUIVipPwfGhLo2yUY4i-PV4cmlBHELiLXImUWyPPd9kxt8APKcMOc6NdqVmzMWjkG5mAt-NKA8ya_GtCevYPs_5ckVfXbCLHXg3noX5vL4uXd1Wol6Xw2jW8zFEiQWlut27qYS8OimV6Rd9zE9qP-SYqOijf0xDl-7CHmcWns9gb3X-dvERHS9uFxTzu4Jz_XUQ-0Ok85fv-MFW7V5ipuQWDJ0ip7fgRluU4usXkedbxunsAKqxW31OytW8bbK5_PYT4-N_7fdt2B-gLFn0uncHdnRxFw4GWEuGTaO-B5_ed-nadivJyRskwyKnoso3xKwxUk_QjiqyKciY20jqZuSvIBZSE0GQcco2lxr_7w8HR4lE3L821qzfh9XZyw-nS3co7OBKCwgalynqGWOYypQKtDQyYZHiscUyvvCNoiZMlGdELBOTxZkMI2M4l15g5Q1WRgsfwKzYFPohEB5ILQSlUeRlNOa-EJmXGRULqWPKEuOAN05hKgfWcyy-kaed9xPztB_BFDPdcART6sCL6ZGyp_z4k_AzqxeTHJJ1LxevU2zDg2Kh9e6ufQeORrVJx8lNsdCOxZs8SRx4Ot22ixsjNqLQmxZlOGUd35IDx6M2bL3i9191PGnk3_tw-E_Sj-BmgOrWpfQcwaypWv3YArMmezIste-AKTCt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Monte+Carlo+filter+based+on+multiple+strategies+for+a+scene+specialization+classifier&rft.jtitle=EURASIP+journal+on+image+and+video+processing&rft.au=Ma%C3%A2matou%2C+Houda&rft.au=Chateau%2C+Thierry&rft.au=Gazzah%2C+Sami&rft.au=Goyat%2C+Yann&rft.date=2016-12-01&rft.pub=Springer+International+Publishing&rft.eissn=1687-5281&rft.volume=2016&rft.issue=1&rft_id=info:doi/10.1186%2Fs13640-016-0143-4&rft.externalDocID=10_1186_s13640_016_0143_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5281&client=summon