Fireworks explosion boosted Harris Hawks optimization for numerical optimization: Case of classifying the severity of COVID-19

Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 16; p. 1055241
Main Authors Wang, Mingjing, Chen, Long, Heidari, Ali Asghar, Chen, Huiling
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 25.01.2023
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2022.1055241

Cover

Abstract Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.
AbstractList Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.
Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.
Harris hawks optimization (HHO) is a swarm optimization technique that is capable of solving a wide variety of optimization problems. HHO, on the other hand, frequently suffers from insufficient exploitation and a slow rate of convergence for some numerical optimization. To solve this problem, this paper integrates the fireworks algorithm's explosion search mechanism into HHO and presents a framework for fireworks explosion-based harris hawks optimization (FWHHO). More precisely, the suggested FWHHO structure is divided into two search stages: harris hawk search and fireworks explosion search. A search for fireworks explosions is conducted in order to identify suitable places for developing improved hawk solutions. On the CEC2014 benchmark functions, the FWHHO method beats the existing state-of-the-art algorithms. Additionally, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.
Author Chen, Long
Heidari, Ali Asghar
Chen, Huiling
Wang, Mingjing
AuthorAffiliation 2 The Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education , Nanjing , China
4 College of Computer Science and Artificial Intelligence, Wenzhou University , Wenzhou , China
3 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran , Tehran , Iran
1 School of Computer Science and Engineering, Southeast University , Nanjing , China
AuthorAffiliation_xml – name: 1 School of Computer Science and Engineering, Southeast University , Nanjing , China
– name: 3 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran , Tehran , Iran
– name: 4 College of Computer Science and Artificial Intelligence, Wenzhou University , Wenzhou , China
– name: 2 The Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education , Nanjing , China
Author_xml – sequence: 1
  givenname: Mingjing
  surname: Wang
  fullname: Wang, Mingjing
– sequence: 2
  givenname: Long
  surname: Chen
  fullname: Chen, Long
– sequence: 3
  givenname: Ali Asghar
  surname: Heidari
  fullname: Heidari, Ali Asghar
– sequence: 4
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36760338$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gD3BAkbhw2cV2EjvhgIQWSleq1EvF1bKd8daLYwc76bIc-O04u0vV7QEhH8byvPNoxu-cZyfOO8iy1xjNi6Ju3mtnnJ4TRMgco6oiJX6WnWFKyazCDT15dD_NzmNcI0QJrdiL7LSgjKLEOMt-X5oAGx--xxx-9tZH410uvY8DtPmVCMHEFDYp7fvBdOaXGCaF9iF3YwfBKGGPUh_yhYiQe50rK2I0emvcKh_uII9wn_TDdsotbr4tP89w8zJ7roWN8OoQL7Lbyy-3i6vZ9c3X5eLT9UyVhA6zUrWtolg2gmgFKB1KAYqqLgluCi2hQlgyJEvJlBRE6LauQTItKC0bkMVFttxjWy_WvA-mE2HLvTB89-DDioswGGWBJ17NQCiKdFsWBEnWtpQVlEosWt2gxCr2rNH1YrsR1j4AMeKTMXxnDJ-M4QdjUtXHfVU_yg5aBW4Iwh61cpxx5o6v_D1vGlSxhibAuwMg-B8jxIF3JiqwVjjwY-SEsYriMjmcpG-fSNd-DC7976QiqKL1DvjmcUcPrfzdjSQge4EKPsYA-v_mrJ8UKTPsFiNNZey_Sv8Aa97jKg
CitedBy_id crossref_primary_10_1016_j_asej_2024_103185
Cites_doi 10.1007/s11721-007-0002-0
10.1007/s00158-020-02587-3
10.1016/j.knosys.2019.105285
10.1016/j.eswa.2020.114529
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2019.2921545
10.1016/j.knosys.2015.12.022
10.1109/TEVC.2008.927706
10.1016/j.apm.2020.03.024
10.1016/j.enconman.2019.112461
10.1016/j.swevo.2019.100575
10.1016/j.energy.2020.117804
10.1109/TEVC.2016.2589821
10.1109/TEVC.2005.857610
10.1016/j.advengsoft.2017.07.002
10.1016/j.ins.2009.03.004
10.1016/j.asoc.2020.106347
10.1016/j.asoc.2021.107574
10.1109/4235.585893
10.1109/ICCAKM46823.2020.9051509
10.1007/s00500-020-04834-7
10.1016/j.asoc.2017.10.046
10.1016/j.future.2020.04.008
10.1016/j.ins.2017.07.011
10.1109/TEVC.2017.2787042
10.1007/978-3-642-30504-7_8
10.1016/j.enconman.2020.112660
10.1016/j.eswa.2020.113510
10.1007/s00521-021-05720-5
10.1016/j.future.2019.02.028
10.1016/j.compbiomed.2021.104698
10.1109/ACCESS.2020.2966582
10.1109/ICPS48983.2019.9067679
10.1016/j.jclepro.2019.118778
10.1016/j.asoc.2019.106018
10.3139/120.111478
10.1016/j.enconman.2020.112470
10.1109/CEC.2014.6900289
10.3139/120.111378
10.1016/j.knosys.2020.106425
ContentType Journal Article
Copyright Copyright © 2023 Wang, Chen, Heidari and Chen.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Wang, Chen, Heidari and Chen. 2023 Wang, Chen, Heidari and Chen
Copyright_xml – notice: Copyright © 2023 Wang, Chen, Heidari and Chen.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Wang, Chen, Heidari and Chen. 2023 Wang, Chen, Heidari and Chen
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fninf.2022.1055241
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90
10.3389/fninf.2022.1055241
PMC9905796
36760338
10_3389_fninf_2022_1055241
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
COVID
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-4cddc61b9a2fce0e0e66ee35842193fbe501b70b4b7cba2afd88eb7fa6649eb3
IEDL.DBID M48
ISSN 1662-5196
IngestDate Tue Oct 14 19:08:50 EDT 2025
Sun Oct 26 04:08:24 EDT 2025
Tue Sep 30 17:16:20 EDT 2025
Thu Oct 02 11:26:42 EDT 2025
Fri Jul 25 11:56:36 EDT 2025
Mon Jul 21 06:09:38 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Wed Oct 01 01:58:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
CEC2014 benchmark functions
Harris Hawks optimization
fireworks algorithm
numerical optimization
Language English
License Copyright © 2023 Wang, Chen, Heidari and Chen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-4cddc61b9a2fce0e0e66ee35842193fbe501b70b4b7cba2afd88eb7fa6649eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Yongquan Zhou, Guangxi University for Nationalities, China; Essam Halim Houssein, Minia University, Egypt
Edited by: Daniel Haehn, University of Massachusetts Boston, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2022.1055241
PMID 36760338
PQID 2772056896
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90
unpaywall_primary_10_3389_fninf_2022_1055241
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9905796
proquest_miscellaneous_2775614626
proquest_journals_2772056896
pubmed_primary_36760338
crossref_primary_10_3389_fninf_2022_1055241
crossref_citationtrail_10_3389_fninf_2022_1055241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-25
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Bao (B3) 2019; 7
Fu (B11); 8
Jiao (B16) 2020; 203
Mirjalili (B28) 2017; 114
Song (B38) 2021; 215
Paniri (B30) 2020; 192
Mirjalili (B27) 2016; 96
Kamboj (B17) 2020; 89
Zheng-Ming (B44) 2019
He (B14) 2019; 51
Qin (B33) 2008; 13
Dehkordi (B7) 2021; 2021
Gupta (B13) 2020; 158
Qu (B34) 2020; 84
Chen (B5); 244
Li (B20) 2017; 22
Fan (B10) 2020; 24
Li (B19) 2021; 171
Tan (B39) 2010
Fu (B12); 205
Price (B32) 2013
Chen (B4); 111
Li (B22) 2016; 21
Rashedi (B35) 2009; 179
Dhawale (B9) 2020
Li (B21) 2018; 62
Mathew (B26) 2012
Wolpert (B40) 1997; 1
Devarapalli (B8) 2019
Liang (B24) 2006; 10
Poli (B31) 2007; 1
Zhong (B45) 2020; 62
Ridha (B36) 2020; 209
Alabool (B2) 2021; 33
Yıldız (B41) 2019; 61
Liang (B25) 2013
Abd Elaziz (B1) 2020; 95
Heidari (B15) 2019; 97
Li (B23) 2021
Kurtuluş (B18) 2020; 62
Mirjalili (B29) 2014; 69
Yousri (B42) 2020; 206
Shi (B37) 2021; 136
Cui (B6) 2017; 417
Zhang (B43) 2014
References_xml – volume: 1
  start-page: 33
  year: 2007
  ident: B31
  article-title: Particle swarm optimization
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0002-0
– volume: 62
  start-page: 1951
  year: 2020
  ident: B45
  article-title: First-order reliability method based on Harris Hawks optimization for high-dimensional reliability analysis
  publication-title: Struct. Multidisc. Optim
  doi: 10.1007/s00158-020-02587-3
– volume: 192
  start-page: 105285
  year: 2020
  ident: B30
  article-title: Mlaco: a multi-label feature selection algorithm based on ant colony optimization
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2019.105285
– volume: 171
  start-page: 114529
  year: 2021
  ident: B19
  article-title: Memetic Harris Hawks optimization: developments and perspectives on project scheduling and qos-aware web service composition
  publication-title: Expert. Syst. Appl
  doi: 10.1016/j.eswa.2020.114529
– volume: 69
  start-page: 46
  year: 2014
  ident: B29
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 7
  start-page: 76529
  year: 2019
  ident: B3
  article-title: A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921545
– year: 2013
  ident: B25
  publication-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization
– start-page: 441
  volume-title: International Conference on Swarm Intelligence
  year: 2021
  ident: B23
  article-title: “Fireworks harris hawk algorithm based on dynamic competition mechanism for numerical optimization,”
– volume: 96
  start-page: 120
  year: 2016
  ident: B27
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 13
  start-page: 398
  year: 2008
  ident: B33
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evolution. Comput
  doi: 10.1109/TEVC.2008.927706
– volume: 84
  start-page: 52
  year: 2020
  ident: B34
  article-title: Harris Hawks optimization with information exchange
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2020.03.024
– volume: 205
  start-page: 112461
  ident: B12
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Conversi. Manag
  doi: 10.1016/j.enconman.2019.112461
– volume: 51
  start-page: 100575
  year: 2019
  ident: B14
  article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times
  publication-title: Swarm Evolution. Comput
  doi: 10.1016/j.swevo.2019.100575
– volume: 203
  start-page: 117804
  year: 2020
  ident: B16
  article-title: Orthogonally adapted Harris Hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117804
– volume: 21
  start-page: 153
  year: 2016
  ident: B22
  article-title: The effect of information utilization: Introducing a novel guiding spark in the fireworks algorithm
  publication-title: IEEE Trans. Evolution. Comput
  doi: 10.1109/TEVC.2016.2589821
– volume: 10
  start-page: 281
  year: 2006
  ident: B24
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evolution. Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 114
  start-page: 163
  year: 2017
  ident: B28
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 179
  start-page: 2232
  year: 2009
  ident: B35
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2009.03.004
– start-page: 355
  volume-title: International Conference in Swarm Intelligence
  year: 2010
  ident: B39
  article-title: “Fireworks algorithm for optimization,”
– volume: 95
  start-page: 106347
  year: 2020
  ident: B1
  article-title: A competitive chain-based Harris Hawks optimizer for global optimization and multi-level image thresholding problems
  publication-title: Appl. Soft. Comput
  doi: 10.1016/j.asoc.2020.106347
– volume: 2021
  start-page: 107574
  year: 2021
  ident: B7
  article-title: Nonlinear-based chaotic Harris Hawks optimizer: Algorithm and internet of vehicles application
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2021.107574
– start-page: 336
  volume-title: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE)
  year: 2019
  ident: B44
  article-title: “The improved harris hawk optimization algorithm with the tent map,”
– volume: 1
  start-page: 67
  year: 1997
  ident: B40
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evolution. Comput
  doi: 10.1109/4235.585893
– start-page: 52
  volume-title: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM)
  year: 2020
  ident: B9
  article-title: “Hhho-igwo: a new hybrid Harris Hawks optimizer for solving global optimization problems,”
  doi: 10.1109/ICCAKM46823.2020.9051509
– volume: 24
  start-page: 14825
  year: 2020
  ident: B10
  article-title: A novel quasi-reflected Harris Hawks optimization algorithm for global optimization problems
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04834-7
– volume: 62
  start-page: 454
  year: 2018
  ident: B21
  article-title: The bare bones fireworks algorithm: a minimalist global optimizer
  publication-title: Appl. Soft. Comput
  doi: 10.1016/j.asoc.2017.10.046
– volume: 111
  start-page: 175
  ident: B4
  article-title: Multi-population differential evolution-assisted Harris Hawks optimization: framework and case studies
  publication-title: Future Generat. Comput. Syst
  doi: 10.1016/j.future.2020.04.008
– volume: 417
  start-page: 169
  year: 2017
  ident: B6
  article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2017.07.011
– volume: 22
  start-page: 679
  year: 2017
  ident: B20
  article-title: Loser-out tournament-based fireworks algorithm for multimodal function optimization
  publication-title: IEEE Trans. Evolut. Comput
  doi: 10.1109/TEVC.2017.2787042
– start-page: 187
  volume-title: Handbook of Optimization
  year: 2013
  ident: B32
  article-title: “Differential evolution,”
  doi: 10.1007/978-3-642-30504-7_8
– volume: 209
  start-page: 112660
  year: 2020
  ident: B36
  article-title: Boosted mutation-based Harris Hawks optimizer for parameters identification of single-diode solar cell models
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2020.112660
– volume-title: Genetic Algorithm
  year: 2012
  ident: B26
– volume: 158
  start-page: 113510
  year: 2020
  ident: B13
  article-title: Opposition-based learning Harris Hawks optimization with advanced transition rules: principles and analysis
  publication-title: Expert. Syst. Appl
  doi: 10.1016/j.eswa.2020.113510
– volume: 33
  start-page: 8939
  year: 2021
  ident: B2
  article-title: Harris Hawks optimization: a comprehensive review of recent variants and applications
  publication-title: Neural Comput. Appl
  doi: 10.1007/s00521-021-05720-5
– volume: 97
  start-page: 849
  year: 2019
  ident: B15
  article-title: Harris Hawks optimization: algorithm and applications
  publication-title: Future Generat. Comput. Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 136
  start-page: 104698
  year: 2021
  ident: B37
  article-title: Evolutionary warning system for COVID-19 severity: colony predation algorithm enhanced extreme learning machine
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2021.104698
– volume: 8
  start-page: 13086
  ident: B11
  article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966582
– start-page: 1
  volume-title: 2019 8th International Conference on Power Systems (ICPS)
  year: 2019
  ident: B8
  article-title: “Application of modified Harris Hawks optimization in power system oscillations damping controller design,”
  doi: 10.1109/ICPS48983.2019.9067679
– volume: 244
  start-page: 118778
  ident: B5
  article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris Hawks optimization with chaotic drifts
  publication-title: J. Clean Prod
  doi: 10.1016/j.jclepro.2019.118778
– volume: 89
  start-page: 106018
  year: 2020
  ident: B17
  article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems
  publication-title: Appl. Soft. Comput
  doi: 10.1016/j.asoc.2019.106018
– volume: 62
  start-page: 251
  year: 2020
  ident: B18
  article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails
  publication-title: Mater. Test
  doi: 10.3139/120.111478
– volume: 206
  start-page: 112470
  year: 2020
  ident: B42
  article-title: Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified Harris Hawks optimizer
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2020.112470
– start-page: 3200
  volume-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
  year: 2014
  ident: B43
  article-title: “A hybrid biogeography-based optimization and fireworks algorithm,”
  doi: 10.1109/CEC.2014.6900289
– volume: 61
  start-page: 735
  year: 2019
  ident: B41
  article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems
  publication-title: Mater. Test
  doi: 10.3139/120.111378
– volume: 215
  start-page: 106425
  year: 2021
  ident: B38
  article-title: Dimension decided Harris Hawks optimization with gaussian mutation: balance analysis and diversity patterns
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2020.106425
SSID ssj0062657
Score 2.2956405
Snippet Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is...
Harris hawks optimization (HHO) is a swarm optimization technique that is capable of solving a wide variety of optimization problems. HHO, on the other hand,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1055241
SubjectTerms Algorithms
CEC2014 benchmark functions
Coronaviruses
COVID-19
Exploitation
Explosions
fireworks algorithm
Harris Hawks optimization
Heuristic
Hybridization
Medical research
Neuroscience
numerical optimization
Optimization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXuCCgPJIaZGREBeImjiO7fRWFlYLB7gU1Ftkx7aotPVW7a6qXvjtzDjZqBEIOKAcImWcyPK8vnHGMwCvjCqcUtrkWliRC9qy0lzJnAtjO6kr03Qp2-KzXHwVn07r01utvignrC8P3C_cIQIMrdA6yCI4UfHCKucoF0na0rjQpGi90M02mOptMKL0WvVHZDAEaw5DRHZhMMg59bWtuSgnbihV6_8dxPw1U_LuJl6Ym2uzXN5yQ_MHcH_Aj-y4n_dDuOPjI9g9jhg7n9-w1yxldKat8l34MUd7RolXV8xTqh1tjDFE1bTDyRbmEvUbb9dIXqHhOB9OZDKEsSxu-j85ywnpiM3Q6bFVYB2B7rN0RoohhGToXz21wSPa7Mu3j-_zsnkMJ_MPJ7NFPvRbyDv00-tcdM51srSN4aHzBV5Sel8hREGzVgXr66K0qrDCqs4aboLT2lsVjJSiwaD8CezEVfTPgIXSu9LIEtUbSYjgCLhJVxWNQcPMQwbldvXbbqhFTi0xli3GJMSxNnGsJY61A8cyeDO-c9FX4vjj6HfE1HEkVdFOD1C22kG22r_JVgb7W5FoB9W-ajnGI4gadSMzeDmSUSnpT4uJfrVJY6jCKophBk97CRpnQiXyCpx1BmoiW5OpTinx7Hsq_I3IgY4OZ_B2lMJ_WIq9_7EUz-EefpNS73Je78PO-nLjDxCOre2LpHk_AaGSNKQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gFeEDBgYQMZCfEC0RInsRMkhLayqvBQEBpob5Ed2zCpS7qu1bQX_nbunA-oQBPqQ6WeKzm5r9-dz3cAL5SMjJS5CvNUp2FKKaucSxHyVOlK5IkqKl9tMRPTr-nH0-x0C2b9XRgqq-xtojfUpqkoR37AEQais84L8W5xEdLUKDpd7UdoqG60gnnrW4zdgm1OnbFGsH10PPv8pbfNiN4z2V6dwdCsOHA1shGDRM5p3m3G03jDPfku_v-Cnn9XUN5e1wt1faXm8z_c0-Qe3O1wJTtsBeE-bNn6Aewc1hhTn1-zl8xXevoU-g78nKCdo4KsS2apBI8SZgzRNmU-2VQtUe_x6wrJDRqU8-6mJkN4y-p1e8Iz3yC9YWN0hqxxrCIwfubvTjGElgz9rqXxeEQbf_r24X0YFw_hZHJ8Mp6G3RyGsEL_vQrTyphKxLpQ3FU2wo8Q1iYIXdDcJU7bLIq1jHSqZaUVV87kudXSKSHSAoP1RzCqm9ruAnOxNbESMao9khDZEaATJokKhQabuwDi_u2XVdejnEZlzEuMVYhjpedYSRwrO44F8Gr4z6Lt0HHj6iNi6rCSumv7H5rl97JT1hKfKpfokUTkTJrwSEtjqP5N6FgZV0QB7PciUXYqf1n-FtAAng9kVFY6gVG1bdZ-DXVeRTEM4HErQcNOqHVehLsOQG7I1sZWNyn12Q_fEBwRBV0pDuD1IIX_8Sqe3PwUe3AHV1OxXcizfRitlmv7FAHYSj_rtOoX56YyoQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAXXoViKGiREBdw6-euzS0EosChcGhROVn7FBHpJmpjVeXAb2fGdizMSyCUQ5TMrrQ7O575Zj0PgCdSREaIQoZFprIwoyurIhE8TDKpNC9SWeom2uKQz46ztyf5yRZMNrkwFFbpKHWfGkHPfVspuAsRoyccParywHnkPvp2SUJtanM0Qgcr467ANs8RkI9g-_jw_fgjuVqco6uFQtamy_xm8sAkNZX7fwU3f46avFr7lby8kIvFdyZpegPMZjNtJMrn_Xqt9vWXH-o8_udub8L1DrKycTvjFmxZfxt2xh7d9dNL9pQ1QaTN7fwOfJ2iCqVYr3NmKbqP7uIYAnm6VGUzeYYqBb8ukLxEXXXaJYEyRM7M1-3Lo8WA9IJN0M6ypWOacP68SctiiFoZmnRLnfeINnn34c2rMC7vwNH09dFkFnYtHkKN0GAdZtoYzWNVysRpG-GHc2tTREWoSVOnbB7FSkQqU0IrmUhnisIq4STnWWlVehdGfuntPWAutiaWPMbDRhKCRsKK3KRRKdEWJC6AeHPIle7Kn1MXjkWFbhDxuWr4XBGfq47PATzr56za4h9_HP2SZKcfSYW7mz_wVKvuVCvcVSHQ2PHImSxNIiWModA6rmJpXBkFsLeRvKrTJudVgi4QAtWi5AE87smoB-jljvR2WTdjqKgr-qcB7LaC2q-EqvJFuOoAxECEB0sdUvz8U1NrHMEKZSsH8LwX9r9gxf1_G_4AruFPiusLk3wPRuuz2j5ErLdWj7pn-Rvv_lO4
  priority: 102
  providerName: Unpaywall
Title Fireworks explosion boosted Harris Hawks optimization for numerical optimization: Case of classifying the severity of COVID-19
URI https://www.ncbi.nlm.nih.gov/pubmed/36760338
https://www.proquest.com/docview/2772056896
https://www.proquest.com/docview/2775614626
https://pubmed.ncbi.nlm.nih.gov/PMC9905796
https://www.frontiersin.org/articles/10.3389/fninf.2022.1055241/pdf
https://doaj.org/article/19387eac60fd4320b7dd67366b1adf90
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: Pubmed
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELem7QFeEDA-wkZlJMQLBBLHsRMkhLqyUpAoE1pReYrsxIZJWbJ1rUZf-Nu5c9KIiIF4QJVaqedUrn3n-935Pgh5rGRQSJkoP-Ga-xxdVgmTwmdc6VwkkUpzF20xFZMZfz-P51tk0-6oXcCLK0077Cc1W5TPv5-vX4PAv0KLE_TtC1sBGUw9xrBrbcwwj30HNFWKrRw-8O5WAbB7LJvEmT8811NOrob_VcDz9_jJa6vqTK0vVVn-opzGN8mNFlXSYcMGt8iWqW6T3WEFFvXpmj6hLs7TOdB3yY8xnHIYjnVBDQbgobuMAtZGvyedqAVIPXxcArmG4-S0zdOkAG5ptWrud8oe6SUdgSqktaU5QvETlzlFAVhS0LoGm-MhbfTx87s3fpjeIcfjw-PRxG-7MPg5aO-lz_OiyEWoU8VsbgJ4CWFMBMAFDrvIahMHoZaB5lrmWjFliyQxWlolBE_BVL9Ltqu6MvcJtaEpQiVCEHogAa5DOCeKKEgVHNfMeiTcrH6WtxXKsVFGmYGlgjuWuR3LcMeydsc88rR75qypz_HX0Qe4qd1IrK3tvqgXX7NWVDP4V4kEfSQCW_CIBVoWBUa_CR2qwqaBR_Y3LJFt-DVjYKUAlkxS4ZFHHRlEFe9fVGXqlRuDdVeBDT1yr-GgbiZYOC-AWXtE9nirN9U-pTr55sqBA57AhGKPPOu48B-W4sH_WIo9ch1-EwPyfBbvk-3lYmUeAkhb6gHZOTicHn0aOCcHvL-dhwMnjUCZTY-GX34CMD1CQg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEDA-AgOMBLxAtMRx7QRpQlu3qmWjIFSmvVl27MCkLin9UNUX_jP-N-7cpFCBJl6mPFTKOZWTO9_9zr4PQl5oGVkpUx2m3PCQ45ZVyqQIGdcmF2mis9xHW_RF9wt_f9463yA_m1wYDKtsdKJX1LbKcY98jwEMBGOdZuLd6HuIXaPwdLVpoaHr1gp235cYqxM7TtxiDi7cZL93BPx-yVjneNDuhnWXgTAH6zQNeW5tLmKTaVbkLoJLCOcSMMywmJPCuFYUGxkZbmRuNNOFTVNnZKGF4Bm4ovC3N8gWT3gGvt_W4XH_0-fGFICz0JLLTB3wBLO9ogSpAZ-UMWyv22I8XrOGvmnAv5Du3wGb27NypBdzPRz-YQ07t8mtGsbSg6Xc3SEbrrxLdg5KcOEvF_QV9YGlfsd-h_zogFrF-K8JdRjxh_tzFMA9brTSrh6DmoGfOZAr0F-XdWIoBTRNy9nyQGm4RnpL22B7aVXQHLH_hU_VooBkKZh5h934kNb-eNY7CuPsHhlcB0Puk82yKt1DQovY2ViLGLQMkABIIn4UNokyDfaBFQGJm6-v8rokOnbmGCpwjZBjynNMIcdUzbGAvF49M1oWBLly9CEydTUSi3n7G9X4q6p1g4K3SiUYQBEVlicsMtJaDLcTJta2yKKA7DYioWoNM1G_10NAnq_IoBvwwEeXrpr5MVjoFcQwIA-WErSaCVbqi2DWAZFrsrU21XVKefHN1x8HAIMZzAF5s5LC__gUj65-i2dkuzv4cKpOe_2Tx-QmPIlxfiFr7ZLN6XjmngD2m5qn9QqjRF3zmv4FipxxiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbBLwgYFwCA4wEvEDUxE3sBGlCW7uqZahMaKC9WXZsw6QuKb2o6gv_x19xTuoUKtDEy5SHSjlO5eTcj8-FkBdKREaITIVZopMwwZBVxgQPWaJ0wbO2yos622LI-5-T92fp2Rb52dTCYFplIxNrQW2qAmPkLQZmICjrLOct59MiTrq9d-PvIU6QwpPWZpyG8mMWzH7dbswXeRzb5QLcuen-oAu4f8lY7-i00w_9xIGwAE01C5PCmILHOlfMFTaCi3Nr26CkgbHbTts0irWIdKJFoRVTzmSZ1cIpzpMc3FL422tkB8--QEbsHB4NTz41agEch1SsqnbAK8xbrgQKAv-UMRy1m7Ik3tCM9QCBf1m9fydv3piXY7VcqNHoD83Yu01ueZOWHqxo8A7ZsuVdsntQgjt_saSvaJ1kWkfvd8mPHohYzAWbUovZfxiro2DoY9CV9tUERA78LABcgSy78EWiFCxrWs5Xh0ujDdBb2gE9TCtHC_QDzuuyLQpWLQWVb3EyH8I6H78MumGc3yOnV4GQ-2S7rEr7kFAXWxMrHoPEARAYlWhLctOOcgW6grmAxM3Xl4Vvj45TOkYS3CTEmKwxJhFj0mMsIK_Xz4xXzUEuXX2ISF2vxMbe9Y1q8lV6OSHhrTIBypBHziRtFmlhDKbecR0r4_IoIHsNSUgvbabyN28E5PkaDHICD39Uaat5vQabvgIZBuTBioLWO8GufRHsOiBig7Y2troJKc-_1b3IwZjBauaAvFlT4X98ikeXv8Uzch14W34YDI8fk5vwIKb8hSzdI9uzydw-ATNwpp96BqNEXjFL_wJtMnW4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAXXoViKGiREBdw6-euzS0EosChcGhROVn7FBHpJmpjVeXAb2fGdizMSyCUQ5TMrrQ7O575Zj0PgCdSREaIQoZFprIwoyurIhE8TDKpNC9SWeom2uKQz46ztyf5yRZMNrkwFFbpKHWfGkHPfVspuAsRoyccParywHnkPvp2SUJtanM0Qgcr467ANs8RkI9g-_jw_fgjuVqco6uFQtamy_xm8sAkNZX7fwU3f46avFr7lby8kIvFdyZpegPMZjNtJMrn_Xqt9vWXH-o8_udub8L1DrKycTvjFmxZfxt2xh7d9dNL9pQ1QaTN7fwOfJ2iCqVYr3NmKbqP7uIYAnm6VGUzeYYqBb8ukLxEXXXaJYEyRM7M1-3Lo8WA9IJN0M6ypWOacP68SctiiFoZmnRLnfeINnn34c2rMC7vwNH09dFkFnYtHkKN0GAdZtoYzWNVysRpG-GHc2tTREWoSVOnbB7FSkQqU0IrmUhnisIq4STnWWlVehdGfuntPWAutiaWPMbDRhKCRsKK3KRRKdEWJC6AeHPIle7Kn1MXjkWFbhDxuWr4XBGfq47PATzr56za4h9_HP2SZKcfSYW7mz_wVKvuVCvcVSHQ2PHImSxNIiWModA6rmJpXBkFsLeRvKrTJudVgi4QAtWi5AE87smoB-jljvR2WTdjqKgr-qcB7LaC2q-EqvJFuOoAxECEB0sdUvz8U1NrHMEKZSsH8LwX9r9gxf1_G_4AruFPiusLk3wPRuuz2j5ErLdWj7pn-Rvv_lO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fireworks+explosion+boosted+Harris+Hawks+optimization+for+numerical+optimization%3A+Case+of+classifying+the+severity+of+COVID-19&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Mingjing+Wang&rft.au=Mingjing+Wang&rft.au=Long+Chen&rft.au=Long+Chen&rft.date=2023-01-25&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=16&rft_id=info:doi/10.3389%2Ffninf.2022.1055241&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon