Fireworks explosion boosted Harris Hawks optimization for numerical optimization: Case of classifying the severity of COVID-19
Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks...
Saved in:
| Published in | Frontiers in neuroinformatics Vol. 16; p. 1055241 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
25.01.2023
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5196 1662-5196 |
| DOI | 10.3389/fninf.2022.1055241 |
Cover
| Abstract | Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis. |
|---|---|
| AbstractList | Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis. Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis. Harris hawks optimization (HHO) is a swarm optimization technique that is capable of solving a wide variety of optimization problems. HHO, on the other hand, frequently suffers from insufficient exploitation and a slow rate of convergence for some numerical optimization. To solve this problem, this paper integrates the fireworks algorithm's explosion search mechanism into HHO and presents a framework for fireworks explosion-based harris hawks optimization (FWHHO). More precisely, the suggested FWHHO structure is divided into two search stages: harris hawk search and fireworks explosion search. A search for fireworks explosions is conducted in order to identify suitable places for developing improved hawk solutions. On the CEC2014 benchmark functions, the FWHHO method beats the existing state-of-the-art algorithms. Additionally, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis. |
| Author | Chen, Long Heidari, Ali Asghar Chen, Huiling Wang, Mingjing |
| AuthorAffiliation | 2 The Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education , Nanjing , China 4 College of Computer Science and Artificial Intelligence, Wenzhou University , Wenzhou , China 3 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran , Tehran , Iran 1 School of Computer Science and Engineering, Southeast University , Nanjing , China |
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Engineering, Southeast University , Nanjing , China – name: 3 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran , Tehran , Iran – name: 4 College of Computer Science and Artificial Intelligence, Wenzhou University , Wenzhou , China – name: 2 The Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education , Nanjing , China |
| Author_xml | – sequence: 1 givenname: Mingjing surname: Wang fullname: Wang, Mingjing – sequence: 2 givenname: Long surname: Chen fullname: Chen, Long – sequence: 3 givenname: Ali Asghar surname: Heidari fullname: Heidari, Ali Asghar – sequence: 4 givenname: Huiling surname: Chen fullname: Chen, Huiling |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36760338$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNURD_gD3BAkbhw2cV2EjvhgIQWSleq1EvF1bKd8daLYwc76bIc-O04u0vV7QEhH8byvPNoxu-cZyfOO8iy1xjNi6Ju3mtnnJ4TRMgco6oiJX6WnWFKyazCDT15dD_NzmNcI0QJrdiL7LSgjKLEOMt-X5oAGx--xxx-9tZH410uvY8DtPmVCMHEFDYp7fvBdOaXGCaF9iF3YwfBKGGPUh_yhYiQe50rK2I0emvcKh_uII9wn_TDdsotbr4tP89w8zJ7roWN8OoQL7Lbyy-3i6vZ9c3X5eLT9UyVhA6zUrWtolg2gmgFKB1KAYqqLgluCi2hQlgyJEvJlBRE6LauQTItKC0bkMVFttxjWy_WvA-mE2HLvTB89-DDioswGGWBJ17NQCiKdFsWBEnWtpQVlEosWt2gxCr2rNH1YrsR1j4AMeKTMXxnDJ-M4QdjUtXHfVU_yg5aBW4Iwh61cpxx5o6v_D1vGlSxhibAuwMg-B8jxIF3JiqwVjjwY-SEsYriMjmcpG-fSNd-DC7976QiqKL1DvjmcUcPrfzdjSQge4EKPsYA-v_mrJ8UKTPsFiNNZey_Sv8Aa97jKg |
| CitedBy_id | crossref_primary_10_1016_j_asej_2024_103185 |
| Cites_doi | 10.1007/s11721-007-0002-0 10.1007/s00158-020-02587-3 10.1016/j.knosys.2019.105285 10.1016/j.eswa.2020.114529 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2019.2921545 10.1016/j.knosys.2015.12.022 10.1109/TEVC.2008.927706 10.1016/j.apm.2020.03.024 10.1016/j.enconman.2019.112461 10.1016/j.swevo.2019.100575 10.1016/j.energy.2020.117804 10.1109/TEVC.2016.2589821 10.1109/TEVC.2005.857610 10.1016/j.advengsoft.2017.07.002 10.1016/j.ins.2009.03.004 10.1016/j.asoc.2020.106347 10.1016/j.asoc.2021.107574 10.1109/4235.585893 10.1109/ICCAKM46823.2020.9051509 10.1007/s00500-020-04834-7 10.1016/j.asoc.2017.10.046 10.1016/j.future.2020.04.008 10.1016/j.ins.2017.07.011 10.1109/TEVC.2017.2787042 10.1007/978-3-642-30504-7_8 10.1016/j.enconman.2020.112660 10.1016/j.eswa.2020.113510 10.1007/s00521-021-05720-5 10.1016/j.future.2019.02.028 10.1016/j.compbiomed.2021.104698 10.1109/ACCESS.2020.2966582 10.1109/ICPS48983.2019.9067679 10.1016/j.jclepro.2019.118778 10.1016/j.asoc.2019.106018 10.3139/120.111478 10.1016/j.enconman.2020.112470 10.1109/CEC.2014.6900289 10.3139/120.111378 10.1016/j.knosys.2020.106425 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Wang, Chen, Heidari and Chen. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Wang, Chen, Heidari and Chen. 2023 Wang, Chen, Heidari and Chen |
| Copyright_xml | – notice: Copyright © 2023 Wang, Chen, Heidari and Chen. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Wang, Chen, Heidari and Chen. 2023 Wang, Chen, Heidari and Chen |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fninf.2022.1055241 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90 10.3389/fninf.2022.1055241 PMC9905796 36760338 10_3389_fninf_2022_1055241 |
| Genre | Journal Article |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK COVID PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c426t-4cddc61b9a2fce0e0e66ee35842193fbe501b70b4b7cba2afd88eb7fa6649eb3 |
| IEDL.DBID | M48 |
| ISSN | 1662-5196 |
| IngestDate | Tue Oct 14 19:08:50 EDT 2025 Sun Oct 26 04:08:24 EDT 2025 Tue Sep 30 17:16:20 EDT 2025 Thu Oct 02 11:26:42 EDT 2025 Fri Jul 25 11:56:36 EDT 2025 Mon Jul 21 06:09:38 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Wed Oct 01 01:58:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 CEC2014 benchmark functions Harris Hawks optimization fireworks algorithm numerical optimization |
| Language | English |
| License | Copyright © 2023 Wang, Chen, Heidari and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-4cddc61b9a2fce0e0e66ee35842193fbe501b70b4b7cba2afd88eb7fa6649eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Yongquan Zhou, Guangxi University for Nationalities, China; Essam Halim Houssein, Minia University, Egypt Edited by: Daniel Haehn, University of Massachusetts Boston, United States |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2022.1055241 |
| PMID | 36760338 |
| PQID | 2772056896 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90 unpaywall_primary_10_3389_fninf_2022_1055241 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9905796 proquest_miscellaneous_2775614626 proquest_journals_2772056896 pubmed_primary_36760338 crossref_primary_10_3389_fninf_2022_1055241 crossref_citationtrail_10_3389_fninf_2022_1055241 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-25 |
| PublicationDateYYYYMMDD | 2023-01-25 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2023 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Bao (B3) 2019; 7 Fu (B11); 8 Jiao (B16) 2020; 203 Mirjalili (B28) 2017; 114 Song (B38) 2021; 215 Paniri (B30) 2020; 192 Mirjalili (B27) 2016; 96 Kamboj (B17) 2020; 89 Zheng-Ming (B44) 2019 He (B14) 2019; 51 Qin (B33) 2008; 13 Dehkordi (B7) 2021; 2021 Gupta (B13) 2020; 158 Qu (B34) 2020; 84 Chen (B5); 244 Li (B20) 2017; 22 Fan (B10) 2020; 24 Li (B19) 2021; 171 Tan (B39) 2010 Fu (B12); 205 Price (B32) 2013 Chen (B4); 111 Li (B22) 2016; 21 Rashedi (B35) 2009; 179 Dhawale (B9) 2020 Li (B21) 2018; 62 Mathew (B26) 2012 Wolpert (B40) 1997; 1 Devarapalli (B8) 2019 Liang (B24) 2006; 10 Poli (B31) 2007; 1 Zhong (B45) 2020; 62 Ridha (B36) 2020; 209 Alabool (B2) 2021; 33 Yıldız (B41) 2019; 61 Liang (B25) 2013 Abd Elaziz (B1) 2020; 95 Heidari (B15) 2019; 97 Li (B23) 2021 Kurtuluş (B18) 2020; 62 Mirjalili (B29) 2014; 69 Yousri (B42) 2020; 206 Shi (B37) 2021; 136 Cui (B6) 2017; 417 Zhang (B43) 2014 |
| References_xml | – volume: 1 start-page: 33 year: 2007 ident: B31 article-title: Particle swarm optimization publication-title: Swarm Intell doi: 10.1007/s11721-007-0002-0 – volume: 62 start-page: 1951 year: 2020 ident: B45 article-title: First-order reliability method based on Harris Hawks optimization for high-dimensional reliability analysis publication-title: Struct. Multidisc. Optim doi: 10.1007/s00158-020-02587-3 – volume: 192 start-page: 105285 year: 2020 ident: B30 article-title: Mlaco: a multi-label feature selection algorithm based on ant colony optimization publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2019.105285 – volume: 171 start-page: 114529 year: 2021 ident: B19 article-title: Memetic Harris Hawks optimization: developments and perspectives on project scheduling and qos-aware web service composition publication-title: Expert. Syst. Appl doi: 10.1016/j.eswa.2020.114529 – volume: 69 start-page: 46 year: 2014 ident: B29 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 7 start-page: 76529 year: 2019 ident: B3 article-title: A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921545 – year: 2013 ident: B25 publication-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization – start-page: 441 volume-title: International Conference on Swarm Intelligence year: 2021 ident: B23 article-title: “Fireworks harris hawk algorithm based on dynamic competition mechanism for numerical optimization,” – volume: 96 start-page: 120 year: 2016 ident: B27 article-title: Sca: a sine cosine algorithm for solving optimization problems publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 13 start-page: 398 year: 2008 ident: B33 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evolution. Comput doi: 10.1109/TEVC.2008.927706 – volume: 84 start-page: 52 year: 2020 ident: B34 article-title: Harris Hawks optimization with information exchange publication-title: Appl. Math. Model doi: 10.1016/j.apm.2020.03.024 – volume: 205 start-page: 112461 ident: B12 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Conversi. Manag doi: 10.1016/j.enconman.2019.112461 – volume: 51 start-page: 100575 year: 2019 ident: B14 article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times publication-title: Swarm Evolution. Comput doi: 10.1016/j.swevo.2019.100575 – volume: 203 start-page: 117804 year: 2020 ident: B16 article-title: Orthogonally adapted Harris Hawks optimization for parameter estimation of photovoltaic models publication-title: Energy doi: 10.1016/j.energy.2020.117804 – volume: 21 start-page: 153 year: 2016 ident: B22 article-title: The effect of information utilization: Introducing a novel guiding spark in the fireworks algorithm publication-title: IEEE Trans. Evolution. Comput doi: 10.1109/TEVC.2016.2589821 – volume: 10 start-page: 281 year: 2006 ident: B24 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evolution. Comput doi: 10.1109/TEVC.2005.857610 – volume: 114 start-page: 163 year: 2017 ident: B28 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 179 start-page: 2232 year: 2009 ident: B35 article-title: Gsa: a gravitational search algorithm publication-title: Inf. Sci doi: 10.1016/j.ins.2009.03.004 – start-page: 355 volume-title: International Conference in Swarm Intelligence year: 2010 ident: B39 article-title: “Fireworks algorithm for optimization,” – volume: 95 start-page: 106347 year: 2020 ident: B1 article-title: A competitive chain-based Harris Hawks optimizer for global optimization and multi-level image thresholding problems publication-title: Appl. Soft. Comput doi: 10.1016/j.asoc.2020.106347 – volume: 2021 start-page: 107574 year: 2021 ident: B7 article-title: Nonlinear-based chaotic Harris Hawks optimizer: Algorithm and internet of vehicles application publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2021.107574 – start-page: 336 volume-title: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE) year: 2019 ident: B44 article-title: “The improved harris hawk optimization algorithm with the tent map,” – volume: 1 start-page: 67 year: 1997 ident: B40 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evolution. Comput doi: 10.1109/4235.585893 – start-page: 52 volume-title: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) year: 2020 ident: B9 article-title: “Hhho-igwo: a new hybrid Harris Hawks optimizer for solving global optimization problems,” doi: 10.1109/ICCAKM46823.2020.9051509 – volume: 24 start-page: 14825 year: 2020 ident: B10 article-title: A novel quasi-reflected Harris Hawks optimization algorithm for global optimization problems publication-title: Soft Comput doi: 10.1007/s00500-020-04834-7 – volume: 62 start-page: 454 year: 2018 ident: B21 article-title: The bare bones fireworks algorithm: a minimalist global optimizer publication-title: Appl. Soft. Comput doi: 10.1016/j.asoc.2017.10.046 – volume: 111 start-page: 175 ident: B4 article-title: Multi-population differential evolution-assisted Harris Hawks optimization: framework and case studies publication-title: Future Generat. Comput. Syst doi: 10.1016/j.future.2020.04.008 – volume: 417 start-page: 169 year: 2017 ident: B6 article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization publication-title: Inf. Sci doi: 10.1016/j.ins.2017.07.011 – volume: 22 start-page: 679 year: 2017 ident: B20 article-title: Loser-out tournament-based fireworks algorithm for multimodal function optimization publication-title: IEEE Trans. Evolut. Comput doi: 10.1109/TEVC.2017.2787042 – start-page: 187 volume-title: Handbook of Optimization year: 2013 ident: B32 article-title: “Differential evolution,” doi: 10.1007/978-3-642-30504-7_8 – volume: 209 start-page: 112660 year: 2020 ident: B36 article-title: Boosted mutation-based Harris Hawks optimizer for parameters identification of single-diode solar cell models publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2020.112660 – volume-title: Genetic Algorithm year: 2012 ident: B26 – volume: 158 start-page: 113510 year: 2020 ident: B13 article-title: Opposition-based learning Harris Hawks optimization with advanced transition rules: principles and analysis publication-title: Expert. Syst. Appl doi: 10.1016/j.eswa.2020.113510 – volume: 33 start-page: 8939 year: 2021 ident: B2 article-title: Harris Hawks optimization: a comprehensive review of recent variants and applications publication-title: Neural Comput. Appl doi: 10.1007/s00521-021-05720-5 – volume: 97 start-page: 849 year: 2019 ident: B15 article-title: Harris Hawks optimization: algorithm and applications publication-title: Future Generat. Comput. Syst doi: 10.1016/j.future.2019.02.028 – volume: 136 start-page: 104698 year: 2021 ident: B37 article-title: Evolutionary warning system for COVID-19 severity: colony predation algorithm enhanced extreme learning machine publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2021.104698 – volume: 8 start-page: 13086 ident: B11 article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966582 – start-page: 1 volume-title: 2019 8th International Conference on Power Systems (ICPS) year: 2019 ident: B8 article-title: “Application of modified Harris Hawks optimization in power system oscillations damping controller design,” doi: 10.1109/ICPS48983.2019.9067679 – volume: 244 start-page: 118778 ident: B5 article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris Hawks optimization with chaotic drifts publication-title: J. Clean Prod doi: 10.1016/j.jclepro.2019.118778 – volume: 89 start-page: 106018 year: 2020 ident: B17 article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems publication-title: Appl. Soft. Comput doi: 10.1016/j.asoc.2019.106018 – volume: 62 start-page: 251 year: 2020 ident: B18 article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails publication-title: Mater. Test doi: 10.3139/120.111478 – volume: 206 start-page: 112470 year: 2020 ident: B42 article-title: Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified Harris Hawks optimizer publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2020.112470 – start-page: 3200 volume-title: 2014 IEEE Congress on Evolutionary Computation (CEC) year: 2014 ident: B43 article-title: “A hybrid biogeography-based optimization and fireworks algorithm,” doi: 10.1109/CEC.2014.6900289 – volume: 61 start-page: 735 year: 2019 ident: B41 article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems publication-title: Mater. Test doi: 10.3139/120.111378 – volume: 215 start-page: 106425 year: 2021 ident: B38 article-title: Dimension decided Harris Hawks optimization with gaussian mutation: balance analysis and diversity patterns publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2020.106425 |
| SSID | ssj0062657 |
| Score | 2.2956405 |
| Snippet | Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is... Harris hawks optimization (HHO) is a swarm optimization technique that is capable of solving a wide variety of optimization problems. HHO, on the other hand,... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1055241 |
| SubjectTerms | Algorithms CEC2014 benchmark functions Coronaviruses COVID-19 Exploitation Explosions fireworks algorithm Harris Hawks optimization Heuristic Hybridization Medical research Neuroscience numerical optimization Optimization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXuCCgPJIaZGREBeImjiO7fRWFlYLB7gU1Ftkx7aotPVW7a6qXvjtzDjZqBEIOKAcImWcyPK8vnHGMwCvjCqcUtrkWliRC9qy0lzJnAtjO6kr03Qp2-KzXHwVn07r01utvignrC8P3C_cIQIMrdA6yCI4UfHCKucoF0na0rjQpGi90M02mOptMKL0WvVHZDAEaw5DRHZhMMg59bWtuSgnbihV6_8dxPw1U_LuJl6Ym2uzXN5yQ_MHcH_Aj-y4n_dDuOPjI9g9jhg7n9-w1yxldKat8l34MUd7RolXV8xTqh1tjDFE1bTDyRbmEvUbb9dIXqHhOB9OZDKEsSxu-j85ywnpiM3Q6bFVYB2B7rN0RoohhGToXz21wSPa7Mu3j-_zsnkMJ_MPJ7NFPvRbyDv00-tcdM51srSN4aHzBV5Sel8hREGzVgXr66K0qrDCqs4aboLT2lsVjJSiwaD8CezEVfTPgIXSu9LIEtUbSYjgCLhJVxWNQcPMQwbldvXbbqhFTi0xli3GJMSxNnGsJY61A8cyeDO-c9FX4vjj6HfE1HEkVdFOD1C22kG22r_JVgb7W5FoB9W-ajnGI4gadSMzeDmSUSnpT4uJfrVJY6jCKophBk97CRpnQiXyCpx1BmoiW5OpTinx7Hsq_I3IgY4OZ_B2lMJ_WIq9_7EUz-EefpNS73Je78PO-nLjDxCOre2LpHk_AaGSNKQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gFeEDBgYQMZCfEC0RInsRMkhLayqvBQEBpob5Ed2zCpS7qu1bQX_nbunA-oQBPqQ6WeKzm5r9-dz3cAL5SMjJS5CvNUp2FKKaucSxHyVOlK5IkqKl9tMRPTr-nH0-x0C2b9XRgqq-xtojfUpqkoR37AEQais84L8W5xEdLUKDpd7UdoqG60gnnrW4zdgm1OnbFGsH10PPv8pbfNiN4z2V6dwdCsOHA1shGDRM5p3m3G03jDPfku_v-Cnn9XUN5e1wt1faXm8z_c0-Qe3O1wJTtsBeE-bNn6Aewc1hhTn1-zl8xXevoU-g78nKCdo4KsS2apBI8SZgzRNmU-2VQtUe_x6wrJDRqU8-6mJkN4y-p1e8Iz3yC9YWN0hqxxrCIwfubvTjGElgz9rqXxeEQbf_r24X0YFw_hZHJ8Mp6G3RyGsEL_vQrTyphKxLpQ3FU2wo8Q1iYIXdDcJU7bLIq1jHSqZaUVV87kudXSKSHSAoP1RzCqm9ruAnOxNbESMao9khDZEaATJokKhQabuwDi_u2XVdejnEZlzEuMVYhjpedYSRwrO44F8Gr4z6Lt0HHj6iNi6rCSumv7H5rl97JT1hKfKpfokUTkTJrwSEtjqP5N6FgZV0QB7PciUXYqf1n-FtAAng9kVFY6gVG1bdZ-DXVeRTEM4HErQcNOqHVehLsOQG7I1sZWNyn12Q_fEBwRBV0pDuD1IIX_8Sqe3PwUe3AHV1OxXcizfRitlmv7FAHYSj_rtOoX56YyoQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAXXoViKGiREBdw6-euzS0EosChcGhROVn7FBHpJmpjVeXAb2fGdizMSyCUQ5TMrrQ7O575Zj0PgCdSREaIQoZFprIwoyurIhE8TDKpNC9SWeom2uKQz46ztyf5yRZMNrkwFFbpKHWfGkHPfVspuAsRoyccParywHnkPvp2SUJtanM0Qgcr467ANs8RkI9g-_jw_fgjuVqco6uFQtamy_xm8sAkNZX7fwU3f46avFr7lby8kIvFdyZpegPMZjNtJMrn_Xqt9vWXH-o8_udub8L1DrKycTvjFmxZfxt2xh7d9dNL9pQ1QaTN7fwOfJ2iCqVYr3NmKbqP7uIYAnm6VGUzeYYqBb8ukLxEXXXaJYEyRM7M1-3Lo8WA9IJN0M6ypWOacP68SctiiFoZmnRLnfeINnn34c2rMC7vwNH09dFkFnYtHkKN0GAdZtoYzWNVysRpG-GHc2tTREWoSVOnbB7FSkQqU0IrmUhnisIq4STnWWlVehdGfuntPWAutiaWPMbDRhKCRsKK3KRRKdEWJC6AeHPIle7Kn1MXjkWFbhDxuWr4XBGfq47PATzr56za4h9_HP2SZKcfSYW7mz_wVKvuVCvcVSHQ2PHImSxNIiWModA6rmJpXBkFsLeRvKrTJudVgi4QAtWi5AE87smoB-jljvR2WTdjqKgr-qcB7LaC2q-EqvJFuOoAxECEB0sdUvz8U1NrHMEKZSsH8LwX9r9gxf1_G_4AruFPiusLk3wPRuuz2j5ErLdWj7pn-Rvv_lO4 priority: 102 providerName: Unpaywall |
| Title | Fireworks explosion boosted Harris Hawks optimization for numerical optimization: Case of classifying the severity of COVID-19 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36760338 https://www.proquest.com/docview/2772056896 https://www.proquest.com/docview/2775614626 https://pubmed.ncbi.nlm.nih.gov/PMC9905796 https://www.frontiersin.org/articles/10.3389/fninf.2022.1055241/pdf https://doaj.org/article/19387eac60fd4320b7dd67366b1adf90 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: Pubmed customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals Open Access customDbUrl: eissn: 1662-5196 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELem7QFeEDA-wkZlJMQLBBLHsRMkhLqyUpAoE1pReYrsxIZJWbJ1rUZf-Nu5c9KIiIF4QJVaqedUrn3n-935Pgh5rGRQSJkoP-Ga-xxdVgmTwmdc6VwkkUpzF20xFZMZfz-P51tk0-6oXcCLK0077Cc1W5TPv5-vX4PAv0KLE_TtC1sBGUw9xrBrbcwwj30HNFWKrRw-8O5WAbB7LJvEmT8811NOrob_VcDz9_jJa6vqTK0vVVn-opzGN8mNFlXSYcMGt8iWqW6T3WEFFvXpmj6hLs7TOdB3yY8xnHIYjnVBDQbgobuMAtZGvyedqAVIPXxcArmG4-S0zdOkAG5ptWrud8oe6SUdgSqktaU5QvETlzlFAVhS0LoGm-MhbfTx87s3fpjeIcfjw-PRxG-7MPg5aO-lz_OiyEWoU8VsbgJ4CWFMBMAFDrvIahMHoZaB5lrmWjFliyQxWlolBE_BVL9Ltqu6MvcJtaEpQiVCEHogAa5DOCeKKEgVHNfMeiTcrH6WtxXKsVFGmYGlgjuWuR3LcMeydsc88rR75qypz_HX0Qe4qd1IrK3tvqgXX7NWVDP4V4kEfSQCW_CIBVoWBUa_CR2qwqaBR_Y3LJFt-DVjYKUAlkxS4ZFHHRlEFe9fVGXqlRuDdVeBDT1yr-GgbiZYOC-AWXtE9nirN9U-pTr55sqBA57AhGKPPOu48B-W4sH_WIo9ch1-EwPyfBbvk-3lYmUeAkhb6gHZOTicHn0aOCcHvL-dhwMnjUCZTY-GX34CMD1CQg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEDA-AgOMBLxAtMRx7QRpQlu3qmWjIFSmvVl27MCkLin9UNUX_jP-N-7cpFCBJl6mPFTKOZWTO9_9zr4PQl5oGVkpUx2m3PCQ45ZVyqQIGdcmF2mis9xHW_RF9wt_f9463yA_m1wYDKtsdKJX1LbKcY98jwEMBGOdZuLd6HuIXaPwdLVpoaHr1gp235cYqxM7TtxiDi7cZL93BPx-yVjneNDuhnWXgTAH6zQNeW5tLmKTaVbkLoJLCOcSMMywmJPCuFYUGxkZbmRuNNOFTVNnZKGF4Bm4ovC3N8gWT3gGvt_W4XH_0-fGFICz0JLLTB3wBLO9ogSpAZ-UMWyv22I8XrOGvmnAv5Du3wGb27NypBdzPRz-YQ07t8mtGsbSg6Xc3SEbrrxLdg5KcOEvF_QV9YGlfsd-h_zogFrF-K8JdRjxh_tzFMA9brTSrh6DmoGfOZAr0F-XdWIoBTRNy9nyQGm4RnpL22B7aVXQHLH_hU_VooBkKZh5h934kNb-eNY7CuPsHhlcB0Puk82yKt1DQovY2ViLGLQMkABIIn4UNokyDfaBFQGJm6-v8rokOnbmGCpwjZBjynNMIcdUzbGAvF49M1oWBLly9CEydTUSi3n7G9X4q6p1g4K3SiUYQBEVlicsMtJaDLcTJta2yKKA7DYioWoNM1G_10NAnq_IoBvwwEeXrpr5MVjoFcQwIA-WErSaCVbqi2DWAZFrsrU21XVKefHN1x8HAIMZzAF5s5LC__gUj65-i2dkuzv4cKpOe_2Tx-QmPIlxfiFr7ZLN6XjmngD2m5qn9QqjRF3zmv4FipxxiQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbBLwgYFwCA4wEvEDUxE3sBGlCW7uqZahMaKC9WXZsw6QuKb2o6gv_x19xTuoUKtDEy5SHSjlO5eTcj8-FkBdKREaITIVZopMwwZBVxgQPWaJ0wbO2yos622LI-5-T92fp2Rb52dTCYFplIxNrQW2qAmPkLQZmICjrLOct59MiTrq9d-PvIU6QwpPWZpyG8mMWzH7dbswXeRzb5QLcuen-oAu4f8lY7-i00w_9xIGwAE01C5PCmILHOlfMFTaCi3Nr26CkgbHbTts0irWIdKJFoRVTzmSZ1cIpzpMc3FL422tkB8--QEbsHB4NTz41agEch1SsqnbAK8xbrgQKAv-UMRy1m7Ik3tCM9QCBf1m9fydv3piXY7VcqNHoD83Yu01ueZOWHqxo8A7ZsuVdsntQgjt_saSvaJ1kWkfvd8mPHohYzAWbUovZfxiro2DoY9CV9tUERA78LABcgSy78EWiFCxrWs5Xh0ujDdBb2gE9TCtHC_QDzuuyLQpWLQWVb3EyH8I6H78MumGc3yOnV4GQ-2S7rEr7kFAXWxMrHoPEARAYlWhLctOOcgW6grmAxM3Xl4Vvj45TOkYS3CTEmKwxJhFj0mMsIK_Xz4xXzUEuXX2ISF2vxMbe9Y1q8lV6OSHhrTIBypBHziRtFmlhDKbecR0r4_IoIHsNSUgvbabyN28E5PkaDHICD39Uaat5vQabvgIZBuTBioLWO8GufRHsOiBig7Y2troJKc-_1b3IwZjBauaAvFlT4X98ikeXv8Uzch14W34YDI8fk5vwIKb8hSzdI9uzydw-ATNwpp96BqNEXjFL_wJtMnW4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAXXoViKGiREBdw6-euzS0EosChcGhROVn7FBHpJmpjVeXAb2fGdizMSyCUQ5TMrrQ7O575Zj0PgCdSREaIQoZFprIwoyurIhE8TDKpNC9SWeom2uKQz46ztyf5yRZMNrkwFFbpKHWfGkHPfVspuAsRoyccParywHnkPvp2SUJtanM0Qgcr467ANs8RkI9g-_jw_fgjuVqco6uFQtamy_xm8sAkNZX7fwU3f46avFr7lby8kIvFdyZpegPMZjNtJMrn_Xqt9vWXH-o8_udub8L1DrKycTvjFmxZfxt2xh7d9dNL9pQ1QaTN7fwOfJ2iCqVYr3NmKbqP7uIYAnm6VGUzeYYqBb8ukLxEXXXaJYEyRM7M1-3Lo8WA9IJN0M6ypWOacP68SctiiFoZmnRLnfeINnn34c2rMC7vwNH09dFkFnYtHkKN0GAdZtoYzWNVysRpG-GHc2tTREWoSVOnbB7FSkQqU0IrmUhnisIq4STnWWlVehdGfuntPWAutiaWPMbDRhKCRsKK3KRRKdEWJC6AeHPIle7Kn1MXjkWFbhDxuWr4XBGfq47PATzr56za4h9_HP2SZKcfSYW7mz_wVKvuVCvcVSHQ2PHImSxNIiWModA6rmJpXBkFsLeRvKrTJudVgi4QAtWi5AE87smoB-jljvR2WTdjqKgr-qcB7LaC2q-EqvJFuOoAxECEB0sdUvz8U1NrHMEKZSsH8LwX9r9gxf1_G_4AruFPiusLk3wPRuuz2j5ErLdWj7pn-Rvv_lO4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fireworks+explosion+boosted+Harris+Hawks+optimization+for+numerical+optimization%3A+Case+of+classifying+the+severity+of+COVID-19&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Mingjing+Wang&rft.au=Mingjing+Wang&rft.au=Long+Chen&rft.au=Long+Chen&rft.date=2023-01-25&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=16&rft_id=info:doi/10.3389%2Ffninf.2022.1055241&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19387eac60fd4320b7dd67366b1adf90 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |