Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime
We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s)...
Saved in:
Published in | Physics letters. B Vol. 777; pp. 184 - 190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0370-2693 1873-2445 |
DOI | 10.1016/j.physletb.2017.12.027 |
Cover
Abstract | We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars. |
---|---|
AbstractList | We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars. Keywords: Neutron stars, Nuclear matter aspects of neutron stars, Quark deconfinement quark–gluon, Plasma production phase-transition We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars. |
Author | Ouyed, Amir Ouyed, Rachid Jaikumar, Prashanth |
Author_xml | – sequence: 1 givenname: Amir surname: Ouyed fullname: Ouyed, Amir email: ahouyedh@ucalgary.ca organization: Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada – sequence: 2 givenname: Rachid surname: Ouyed fullname: Ouyed, Rachid organization: Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada – sequence: 3 givenname: Prashanth surname: Jaikumar fullname: Jaikumar, Prashanth organization: Department of Physics and Astronomy, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA |
BookMark | eNqFkcluFDEQhi0UJCaBV0B-gW689SZxAEUskaLkAmerbFfPeOhuD7Ybad4epydcuORUUlV9fy3_NblawoKEvOes5oy3H4716XBOE2ZTC8a7mouaie4V2fG-k5VQqrkiOyY7Vol2kG_IdUpHxhhvWLsj08M6Y_QWJpr8vE6QfVhoGGk-ID2cXQzuvMC8NdgwmzVtDTnQlCMse6S_V4i_6Aw5Y6R-2cBSOp3Q0QXXHP0SaMS9n_EteT3ClPDdc7whP79--XH7vbp__HZ3-_m-skq0uVIW2AB9Y8uKjrdGDb3pm1Y0bQM9tw4YA2udAofCwsgHDqMapOCNtEaikzfk7qLrAhz1KfoZ4lkH8HpLhLjXELO3E2rRGemGrjFMorJmNKqVxjGFhiNXCEXr40XLxpBSxFFbn7cvlSP9pDnTTy7oMufZBf3kguZCFxcK3v6H_1vnRfDTBcTyqD8eo07W42LR-Yg2l0v8SxJ_AfmjrEo |
CitedBy_id | crossref_primary_10_1088_1674_4527_20_2_27 crossref_primary_10_1093_mnras_staa3511 crossref_primary_10_1103_PhysRevD_97_123010 crossref_primary_10_3390_universe8060322 crossref_primary_10_3390_universe5060136 crossref_primary_10_1103_PhysRevC_103_055816 crossref_primary_10_3390_universe4030051 |
Cites_doi | 10.1086/164405 10.1086/159157 10.1103/PhysRevD.4.1601 10.1088/0067-0049/194/2/39 10.1086/304063 10.1103/PhysRevLett.63.716 10.1103/PhysRevD.84.083002 10.1088/1674-4527/13/10/006 10.1103/PhysRevD.30.272 10.1111/j.1365-2966.2008.13465.x 10.1016/0003-4916(82)90271-8 10.1051/0004-6361/201322231 10.1086/512112 10.1088/0954-3899/31/6/079 10.1103/PhysRevD.58.083001 10.1142/S0217751X89000108 10.1103/PhysRevLett.102.081101 10.1007/s13538-015-0332-0 10.1088/1674-4527/16/5/080 10.1103/PhysRevC.91.055804 10.1051/0004-6361:20020982 10.1103/PhysRevC.82.062801 10.1016/0370-2693(87)91144-0 10.1088/0954-3899/37/9/094066 10.1103/PhysRevC.92.045801 |
ContentType | Journal Article |
Copyright | 2017 The Authors |
Copyright_xml | – notice: 2017 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.physletb.2017.12.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2445 |
EndPage | 190 |
ExternalDocumentID | oai_doaj_org_article_27b3d975b03e4cbfb463bd04eb1e14ea 10_1016_j_physletb_2017_12_027 S0370269317310043 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 ER. FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HME IXB J1W KOM KQ8 LZ4 M41 MO0 N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 ~G- 186 29O 6TJ 8WZ A6W AAEDT AAFWJ AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFPKN AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ IHE IPNFZ MVM R2- SEW SHN SSH WUQ XJT ZCG EFKBS |
ID | FETCH-LOGICAL-c426t-4ca09a85c150d16b498b8562565a81cda00accd4ade2caf191af4932153cb3ed3 |
IEDL.DBID | IXB |
ISSN | 0370-2693 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 01:23:58 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neutron stars Nuclear matter aspects of neutron stars Plasma production phase-transition Quark deconfinement quark–gluon |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-4ca09a85c150d16b498b8562565a81cda00accd4ade2caf191af4932153cb3ed3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0370269317310043 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_27b3d975b03e4cbfb463bd04eb1e14ea crossref_citationtrail_10_1016_j_physletb_2017_12_027 crossref_primary_10_1016_j_physletb_2017_12_027 elsevier_sciencedirect_doi_10_1016_j_physletb_2017_12_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-10 |
PublicationDateYYYYMMDD | 2018-02-10 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Physics letters. B |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fischer, Sagert, Pagliara, Hempel, Schaffner-Bielich, Rauscher, Thielemann, Käppeli, Martínez-Pinedo, Liebendörfer (br0100) 2011; 194 Alford, Han, Schwenzer (br0270) 2015; 91 Benvenuto, Horvath (br0120) 1989; 63 Niebergal, Ouyed, Jaikumar (br0160) 2010; 82 Bodmer (br0010) 1971; 4 br0280 Staff, Niebergal, Ouyed (br0050) 2008; 391 Ouyed, Leahy (br0060) 2013; 13 Manrique, Lugones (br0190) 2015; 45 Lugones, Benvenuto (br0220) 1998; 58 Benvenuto, Horvath, Vucetich (br0130) 1989; 4 Witten (br0030) 1984; 30 Vidana, Bombaci, Parenti (br0210) 2005; 31 Mintz, Fraga, Schaffner-Bielich, Pagliara (br0230) 2010; 37 Levermore, Pomraning (br0250) 1981; 248 Drago, Lavagno, Parenti (br0170) 2007; 659 Terazawa (br0020) 1989; 58 Shand, Ouyed, Koning, Ouyed (br0070) 2016; 16 Olinto (br0140) 1987; 192 Ouyed, Dey, Dey Quark-nova (br0040) 2002; 390 Herzog, Röpke (br0180) 2011; 84 Furusawa, Sanada, Yamada (br0150) 2016; 93 Iwamoto (br0240) 1982; 141 Drago, Pagliara (br0290) 2015; 92 Anand, Goyal, Gupta, Singh (br0110) 1997; 481 Nakazato, Sumiyoshi, Yamada (br0080) 2013; 558 Sagert, Fischer, Hempel, Pagliara, Schaffner-Bielich, Mezzacappa, Thielemann, Liebendörfer (br0090) 2009; 102 Burrows, Lattimer (br0260) 1986; 307 Herzog (10.1016/j.physletb.2017.12.027_br0180) 2011; 84 Ouyed (10.1016/j.physletb.2017.12.027_br0040) 2002; 390 Burrows (10.1016/j.physletb.2017.12.027_br0260) 1986; 307 Fischer (10.1016/j.physletb.2017.12.027_br0100) 2011; 194 Niebergal (10.1016/j.physletb.2017.12.027_br0160) 2010; 82 Lugones (10.1016/j.physletb.2017.12.027_br0220) 1998; 58 Shand (10.1016/j.physletb.2017.12.027_br0070) 2016; 16 Anand (10.1016/j.physletb.2017.12.027_br0110) 1997; 481 Alford (10.1016/j.physletb.2017.12.027_br0270) 2015; 91 Benvenuto (10.1016/j.physletb.2017.12.027_br0120) 1989; 63 Benvenuto (10.1016/j.physletb.2017.12.027_br0130) 1989; 4 Sagert (10.1016/j.physletb.2017.12.027_br0090) 2009; 102 Levermore (10.1016/j.physletb.2017.12.027_br0250) 1981; 248 Witten (10.1016/j.physletb.2017.12.027_br0030) 1984; 30 Mintz (10.1016/j.physletb.2017.12.027_br0230) 2010; 37 Furusawa (10.1016/j.physletb.2017.12.027_br0150) 2016; 93 Drago (10.1016/j.physletb.2017.12.027_br0290) 2015; 92 Iwamoto (10.1016/j.physletb.2017.12.027_br0240) 1982; 141 Nakazato (10.1016/j.physletb.2017.12.027_br0080) 2013; 558 Drago (10.1016/j.physletb.2017.12.027_br0170) 2007; 659 Terazawa (10.1016/j.physletb.2017.12.027_br0020) 1989 Vidana (10.1016/j.physletb.2017.12.027_br0210) 2005; 31 Staff (10.1016/j.physletb.2017.12.027_br0050) 2008; 391 Ouyed (10.1016/j.physletb.2017.12.027_br0060) 2013; 13 Bodmer (10.1016/j.physletb.2017.12.027_br0010) 1971; 4 Olinto (10.1016/j.physletb.2017.12.027_br0140) 1987; 192 Manrique (10.1016/j.physletb.2017.12.027_br0190) 2015; 45 |
References_xml | – volume: 4 start-page: 1601 year: 1971 ident: br0010 article-title: Collapsed nuclei publication-title: Phys. Rev. D – volume: 58 year: 1998 ident: br0220 article-title: Effect of trapped neutrinos in the hadron matter to quark matter transition publication-title: Phys. Rev. D – volume: 37 year: 2010 ident: br0230 article-title: On thermal nucleation of quark matter in compact stars publication-title: J. Phys. G, Nucl. Part. Phys. – volume: 192 start-page: 71 year: 1987 end-page: 75 ident: br0140 article-title: On the conversion of neutron stars into strange stars publication-title: Phys. Lett. B – volume: 91 year: 2015 ident: br0270 article-title: Phase conversion dissipation in multicomponent compact stars publication-title: Phys. Rev. C – volume: 13 start-page: 1202 year: 2013 ident: br0060 article-title: The peculiar case of the “double-humped” super-luminous supernova SN 2006oz publication-title: Res. Astron. Astrophys. – volume: 391 start-page: 178 year: 2008 end-page: 182 ident: br0050 article-title: Gamma-ray burst engine activity within the quark nova scenario: prompt emission, x-ray plateau and sharp drop-off publication-title: Mon. Not. R. Astron. Soc. – volume: 481 start-page: 954 year: 1997 ident: br0110 article-title: Burning of two-flavor quark matter into strange matter in neutron stars and in supernova cores publication-title: Astrophys. J. – volume: 102 year: 2009 ident: br0090 article-title: Signals of the QCD phase transition in core-collapse supernovae publication-title: Phys. Rev. Lett. – volume: 141 start-page: 1 year: 1982 end-page: 49 ident: br0240 article-title: Neutrino emissivities and mean free paths of degenerate quark matter publication-title: Ann. Phys. – volume: 558 start-page: A50 year: 2013 ident: br0080 article-title: Stellar core collapse with hadron-quark phase transition publication-title: Astron. Astrophys. – volume: 307 start-page: 178 year: 1986 end-page: 196 ident: br0260 article-title: The birth of neutron stars publication-title: Astrophys. J. – volume: 58 start-page: 1989 year: 1989 ident: br0020 publication-title: J. Phys. Soc. Jpn. – volume: 30 start-page: 272 year: 1984 ident: br0030 article-title: Cosmic separation of phases publication-title: Phys. Rev. D – volume: 4 start-page: 257 year: 1989 end-page: 265 ident: br0130 article-title: Strange matter, detonations and supernovae publication-title: Int. J. Mod. Phys. A – volume: 82 year: 2010 ident: br0160 article-title: Numerical simulation of the hydrodynamical combustion to strange quark matter publication-title: Phys. Rev. C – volume: 63 start-page: 716 year: 1989 ident: br0120 article-title: Evidence for strange matter in supernovae? publication-title: Phys. Rev. Lett. – volume: 84 year: 2011 ident: br0180 article-title: Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star publication-title: Phys. Rev. D – volume: 248 start-page: 321 year: 1981 end-page: 334 ident: br0250 article-title: A flux-limited diffusion theory publication-title: Astrophys. J. – volume: 92 year: 2015 ident: br0290 article-title: Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes publication-title: Phys. Rev. C – volume: 45 start-page: 457 year: 2015 end-page: 466 ident: br0190 article-title: Hydrodynamic simulations of the combustion of dense hadronic matter into quark matter publication-title: Braz. J. Phys. – volume: 16 year: 2016 ident: br0070 article-title: Quark nova model for fast radio bursts publication-title: Res. Astron. Astrophys. – ident: br0280 – volume: 194 start-page: 39 year: 2011 ident: br0100 article-title: Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase publication-title: Astrophys. J. Suppl. Ser. – volume: 31 year: 2005 ident: br0210 article-title: Quark deconfinement and neutrino trapping in compact stars publication-title: J. Phys. G, Nucl. Part. Phys. – volume: 390 start-page: L39 year: 2002 end-page: L42 ident: br0040 publication-title: Astron. Astrophys. – volume: 93 year: 2016 ident: br0150 article-title: Hydrodynamical study on the conversion of hadronic matter to quark matter. ii. Diffusion-induced conversion publication-title: Phys. Rev. D – volume: 659 start-page: 1519 year: 2007 ident: br0170 article-title: Burning of a hadronic star into a quark or a hybrid star publication-title: Astrophys. J. – volume: 307 start-page: 178 year: 1986 ident: 10.1016/j.physletb.2017.12.027_br0260 article-title: The birth of neutron stars publication-title: Astrophys. J. doi: 10.1086/164405 – volume: 248 start-page: 321 year: 1981 ident: 10.1016/j.physletb.2017.12.027_br0250 article-title: A flux-limited diffusion theory publication-title: Astrophys. J. doi: 10.1086/159157 – volume: 4 start-page: 1601 issue: 6 year: 1971 ident: 10.1016/j.physletb.2017.12.027_br0010 article-title: Collapsed nuclei publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.4.1601 – year: 1989 ident: 10.1016/j.physletb.2017.12.027_br0020 – volume: 194 start-page: 39 issue: 2 year: 2011 ident: 10.1016/j.physletb.2017.12.027_br0100 article-title: Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/194/2/39 – volume: 481 start-page: 954 issue: 2 year: 1997 ident: 10.1016/j.physletb.2017.12.027_br0110 article-title: Burning of two-flavor quark matter into strange matter in neutron stars and in supernova cores publication-title: Astrophys. J. doi: 10.1086/304063 – volume: 63 start-page: 716 issue: 7 year: 1989 ident: 10.1016/j.physletb.2017.12.027_br0120 article-title: Evidence for strange matter in supernovae? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.716 – volume: 84 issue: 8 year: 2011 ident: 10.1016/j.physletb.2017.12.027_br0180 article-title: Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.083002 – volume: 13 start-page: 1202 issue: 10 year: 2013 ident: 10.1016/j.physletb.2017.12.027_br0060 article-title: The peculiar case of the “double-humped” super-luminous supernova SN 2006oz publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/13/10/006 – volume: 30 start-page: 272 issue: 2 year: 1984 ident: 10.1016/j.physletb.2017.12.027_br0030 article-title: Cosmic separation of phases publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.30.272 – volume: 391 start-page: 178 issue: 1 year: 2008 ident: 10.1016/j.physletb.2017.12.027_br0050 article-title: Gamma-ray burst engine activity within the quark nova scenario: prompt emission, x-ray plateau and sharp drop-off publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2008.13465.x – volume: 141 start-page: 1 issue: 1 year: 1982 ident: 10.1016/j.physletb.2017.12.027_br0240 article-title: Neutrino emissivities and mean free paths of degenerate quark matter publication-title: Ann. Phys. doi: 10.1016/0003-4916(82)90271-8 – volume: 558 start-page: A50 year: 2013 ident: 10.1016/j.physletb.2017.12.027_br0080 article-title: Stellar core collapse with hadron-quark phase transition publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201322231 – volume: 659 start-page: 1519 issue: 2 year: 2007 ident: 10.1016/j.physletb.2017.12.027_br0170 article-title: Burning of a hadronic star into a quark or a hybrid star publication-title: Astrophys. J. doi: 10.1086/512112 – volume: 31 issue: 6 year: 2005 ident: 10.1016/j.physletb.2017.12.027_br0210 article-title: Quark deconfinement and neutrino trapping in compact stars publication-title: J. Phys. G, Nucl. Part. Phys. doi: 10.1088/0954-3899/31/6/079 – volume: 58 issue: 8 year: 1998 ident: 10.1016/j.physletb.2017.12.027_br0220 article-title: Effect of trapped neutrinos in the hadron matter to quark matter transition publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.083001 – volume: 4 start-page: 257 issue: 01 year: 1989 ident: 10.1016/j.physletb.2017.12.027_br0130 article-title: Strange matter, detonations and supernovae publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X89000108 – volume: 102 issue: 8 year: 2009 ident: 10.1016/j.physletb.2017.12.027_br0090 article-title: Signals of the QCD phase transition in core-collapse supernovae publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.081101 – volume: 45 start-page: 457 issue: 4 year: 2015 ident: 10.1016/j.physletb.2017.12.027_br0190 article-title: Hydrodynamic simulations of the combustion of dense hadronic matter into quark matter publication-title: Braz. J. Phys. doi: 10.1007/s13538-015-0332-0 – volume: 16 issue: 5 year: 2016 ident: 10.1016/j.physletb.2017.12.027_br0070 article-title: Quark nova model for fast radio bursts publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/16/5/080 – volume: 91 issue: 5 year: 2015 ident: 10.1016/j.physletb.2017.12.027_br0270 article-title: Phase conversion dissipation in multicomponent compact stars publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.91.055804 – volume: 390 start-page: L39 issue: 3 year: 2002 ident: 10.1016/j.physletb.2017.12.027_br0040 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20020982 – volume: 82 issue: 6 year: 2010 ident: 10.1016/j.physletb.2017.12.027_br0160 article-title: Numerical simulation of the hydrodynamical combustion to strange quark matter publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.062801 – volume: 192 start-page: 71 issue: 1–2 year: 1987 ident: 10.1016/j.physletb.2017.12.027_br0140 article-title: On the conversion of neutron stars into strange stars publication-title: Phys. Lett. B doi: 10.1016/0370-2693(87)91144-0 – volume: 37 issue: 9 year: 2010 ident: 10.1016/j.physletb.2017.12.027_br0230 article-title: On thermal nucleation of quark matter in compact stars publication-title: J. Phys. G, Nucl. Part. Phys. doi: 10.1088/0954-3899/37/9/094066 – volume: 92 issue: 4 year: 2015 ident: 10.1016/j.physletb.2017.12.027_br0290 article-title: Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.92.045801 – volume: 93 issue: 4 year: 2016 ident: 10.1016/j.physletb.2017.12.027_br0150 article-title: Hydrodynamical study on the conversion of hadronic matter to quark matter. ii. Diffusion-induced conversion publication-title: Phys. Rev. D |
SSID | ssj0001506 |
Score | 2.3338869 |
Snippet | We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 184 |
SubjectTerms | Neutron stars Nuclear matter aspects of neutron stars Plasma production phase-transition Quark deconfinement quark–gluon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4inKSx5YQ53YTuIREAghwQQSm-VXoKVNC20H_j13ToKydWFNfJF1vtzDPn8fIZepkjI4niWOyyIRvAgJQowg3F3OjTJKMryN_PScP7yKxzf51qP6wp6wBh64UdwwKyz3qpCW8SCcrazIufVMgI8JqQgxNWKKdcVU64MRNy-eHxQsyXLFe3eDx1e4ZwBKsdjYVcTNQOSU6YWliN7fi069iHO_S3baVJFeN1PcIxuh3idbsWXTLQ7I5HnVnLZM6GI0bVm46KyikNLRjx8PnrFhm4cBYFYWabtgwHJGcXejfg_0C8zjk04jwiYd1VEQXs3nwdM6IEx_PaPI3DANh-T1_u7l9iFpuRMSBzF3mQhnmDKldKAJn-ZWqNKWWOzk0pSp84Yx45wXxofMmQqqNlMJyOXAATrLg-dHZLOe1eGYUJNXrDJQVlgVhHcSRApZBPjRs9zwyg-I7FSnXQssjvwWE911kI11p3KNKtdppkHlAzL8k5s30BprJW5wZf5GIzR2fAAGo1uD0esMZkBUt666zTKa7AE-NVozgZP_mMAp2YZPltj6nbIzsrn8XoVzyGyW9iIa8S9j9_nA priority: 102 providerName: Directory of Open Access Journals |
Title | Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime |
URI | https://dx.doi.org/10.1016/j.physletb.2017.12.027 https://doaj.org/article/27b3d975b03e4cbfb463bd04eb1e14ea |
Volume | 777 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSBAG6FG2aoO7D4JBVMWWSojgmQQO3Rb2kAbwRfClRaktu4gxd-tt7R0mGO2XoKIonUEfiXrz7jpDTXEsZPZ9mnkuVCa5ihhAjCHdXcKutlgyrkb_Pi9mN-LqQiz1yOdTCYFplL_s7mZ6kdT8y6bk5Wdf15JpxBQ6EBgWIQWqBiJ9YVYpFfIuLrTRGBL10k6BYhrN3qoTvzzB6AOxxmOKlUlgQu8vsKKiE47-jp3Z0z9Vr8qo3Gul5t643ZC82R-QwJW_6x7dkOX_q7l2W9LFe9f24aFtRMO7o3e8AMrLrOw8T4D8dNvCCCZuWYpyjuY30FxyUn3SVsDZp3SRCeLVex0CbiID9TUuxh8MqHpObq88_LmdZ30Uh86B9N5nwlmlbSg-cCHnhhC5diW5PIW2Z-2AZs94HYUOceluB_2YrAVYdiELveAz8hOw3bRPfEWqLilUWHAynowheAomSKpa4D5ZXYUTkwDrje4hx7HSxNEMu2b0ZWG6Q5SafGmD5iEy2dOsOZONZigvcme1sBMlOA-3DrelPiZkqx4NW0jEehXeVEwV3gQlQTzEX0Y6IHvbV_HPm4FP1Mwt4_x-0H8hLeCox9ztnH8n-5uEpfgLTZuPG5MXZn3xMDs6_fJvNxylAME7n-S8u1v5O |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSB0W7FOkLdds0HLqqpkxSFMc0aOC8vDQBshF8KVViS27iDP33vZMow50ydCV5AnU83IvH7wj5mmspo-fTzHOpMsFVzBBiBOHuCm611ZLha-SLeTG7EqfX8nqHHA1vYbCsMun-Xqd32jqNTBI3J6u6nvxkXEEAocEAYpJa8GdkV2BT6xHZPTw5m803ChlB9LrLBMUyJNh6KHz7DRMIwCGHVV6qywxig5ktG9VB-W-Zqi3zc7xHXiW_kR72W3tNdmLzhjzv6jf9w1uymD_2Vy8L-lAvU0su2lYU_Dv6608ANdm3nocF8KsOe3jBgnVLMdXR3ET6G2Tlji47uE1aNx0hTK1WMdAmImZ_01Js47CM78jV8Y_Lo1mWGilkHgzwOhPeMm1L6YETIS-c0KUrMfIppC1zHyxj1vsgbIhTbysI4WwlwLEDbegdj4G_J6OmbeIHQm1RscpCjOF0FMFLIFFSxRKPwvIqjIkcWGd8QhnHZhcLM5ST3ZqB5QZZbvKpAZaPyWRDt-pxNp6k-I4ns1mNONndQHt_Y5KgmKlyPGglHeNReFc5UXAXmAALFXMR7Zjo4VzNP2IHn6qf2MDH_6A9IC9mlxfn5vxkfvaJvISZEkvBc_aZjNb3j3EfPJ21-5Ik-S_PcP7- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+hydrodynamical+combustion+to+strange+quark+matter+in+the+trapped+neutrino+regime&rft.jtitle=Physics+letters.+B&rft.au=Ouyed%2C+Amir&rft.au=Ouyed%2C+Rachid&rft.au=Jaikumar%2C+Prashanth&rft.date=2018-02-10&rft.issn=0370-2693&rft.volume=777&rft.spage=184&rft.epage=190&rft_id=info:doi/10.1016%2Fj.physletb.2017.12.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physletb_2017_12_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |