Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime

We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s)...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 777; pp. 184 - 190
Main Authors Ouyed, Amir, Ouyed, Rachid, Jaikumar, Prashanth
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.02.2018
Elsevier
Subjects
Online AccessGet full text
ISSN0370-2693
1873-2445
DOI10.1016/j.physletb.2017.12.027

Cover

Abstract We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.
AbstractList We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars. Keywords: Neutron stars, Nuclear matter aspects of neutron stars, Quark deconfinement quark–gluon, Plasma production phase-transition
We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction–diffusion–advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001–0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB≤0.35 fm−3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.
Author Ouyed, Amir
Ouyed, Rachid
Jaikumar, Prashanth
Author_xml – sequence: 1
  givenname: Amir
  surname: Ouyed
  fullname: Ouyed, Amir
  email: ahouyedh@ucalgary.ca
  organization: Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
– sequence: 2
  givenname: Rachid
  surname: Ouyed
  fullname: Ouyed, Rachid
  organization: Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
– sequence: 3
  givenname: Prashanth
  surname: Jaikumar
  fullname: Jaikumar, Prashanth
  organization: Department of Physics and Astronomy, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
BookMark eNqFkcluFDEQhi0UJCaBV0B-gW689SZxAEUskaLkAmerbFfPeOhuD7Ybad4epydcuORUUlV9fy3_NblawoKEvOes5oy3H4716XBOE2ZTC8a7mouaie4V2fG-k5VQqrkiOyY7Vol2kG_IdUpHxhhvWLsj08M6Y_QWJpr8vE6QfVhoGGk-ID2cXQzuvMC8NdgwmzVtDTnQlCMse6S_V4i_6Aw5Y6R-2cBSOp3Q0QXXHP0SaMS9n_EteT3ClPDdc7whP79--XH7vbp__HZ3-_m-skq0uVIW2AB9Y8uKjrdGDb3pm1Y0bQM9tw4YA2udAofCwsgHDqMapOCNtEaikzfk7qLrAhz1KfoZ4lkH8HpLhLjXELO3E2rRGemGrjFMorJmNKqVxjGFhiNXCEXr40XLxpBSxFFbn7cvlSP9pDnTTy7oMufZBf3kguZCFxcK3v6H_1vnRfDTBcTyqD8eo07W42LR-Yg2l0v8SxJ_AfmjrEo
CitedBy_id crossref_primary_10_1088_1674_4527_20_2_27
crossref_primary_10_1093_mnras_staa3511
crossref_primary_10_1103_PhysRevD_97_123010
crossref_primary_10_3390_universe8060322
crossref_primary_10_3390_universe5060136
crossref_primary_10_1103_PhysRevC_103_055816
crossref_primary_10_3390_universe4030051
Cites_doi 10.1086/164405
10.1086/159157
10.1103/PhysRevD.4.1601
10.1088/0067-0049/194/2/39
10.1086/304063
10.1103/PhysRevLett.63.716
10.1103/PhysRevD.84.083002
10.1088/1674-4527/13/10/006
10.1103/PhysRevD.30.272
10.1111/j.1365-2966.2008.13465.x
10.1016/0003-4916(82)90271-8
10.1051/0004-6361/201322231
10.1086/512112
10.1088/0954-3899/31/6/079
10.1103/PhysRevD.58.083001
10.1142/S0217751X89000108
10.1103/PhysRevLett.102.081101
10.1007/s13538-015-0332-0
10.1088/1674-4527/16/5/080
10.1103/PhysRevC.91.055804
10.1051/0004-6361:20020982
10.1103/PhysRevC.82.062801
10.1016/0370-2693(87)91144-0
10.1088/0954-3899/37/9/094066
10.1103/PhysRevC.92.045801
ContentType Journal Article
Copyright 2017 The Authors
Copyright_xml – notice: 2017 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.physletb.2017.12.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2445
EndPage 190
ExternalDocumentID oai_doaj_org_article_27b3d975b03e4cbfb463bd04eb1e14ea
10_1016_j_physletb_2017_12_027
S0370269317310043
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HME
IXB
J1W
KOM
KQ8
LZ4
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
WH7
~G-
186
29O
6TJ
8WZ
A6W
AAEDT
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
IPNFZ
MVM
R2-
SEW
SHN
SSH
WUQ
XJT
ZCG
EFKBS
ID FETCH-LOGICAL-c426t-4ca09a85c150d16b498b8562565a81cda00accd4ade2caf191af4932153cb3ed3
IEDL.DBID IXB
ISSN 0370-2693
IngestDate Wed Aug 27 01:28:08 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Tue Jul 01 01:23:58 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neutron stars
Nuclear matter aspects of neutron stars
Plasma production phase-transition
Quark deconfinement quark–gluon
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-4ca09a85c150d16b498b8562565a81cda00accd4ade2caf191af4932153cb3ed3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0370269317310043
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_27b3d975b03e4cbfb463bd04eb1e14ea
crossref_citationtrail_10_1016_j_physletb_2017_12_027
crossref_primary_10_1016_j_physletb_2017_12_027
elsevier_sciencedirect_doi_10_1016_j_physletb_2017_12_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-10
PublicationDateYYYYMMDD 2018-02-10
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-10
  day: 10
PublicationDecade 2010
PublicationTitle Physics letters. B
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fischer, Sagert, Pagliara, Hempel, Schaffner-Bielich, Rauscher, Thielemann, Käppeli, Martínez-Pinedo, Liebendörfer (br0100) 2011; 194
Alford, Han, Schwenzer (br0270) 2015; 91
Benvenuto, Horvath (br0120) 1989; 63
Niebergal, Ouyed, Jaikumar (br0160) 2010; 82
Bodmer (br0010) 1971; 4
br0280
Staff, Niebergal, Ouyed (br0050) 2008; 391
Ouyed, Leahy (br0060) 2013; 13
Manrique, Lugones (br0190) 2015; 45
Lugones, Benvenuto (br0220) 1998; 58
Benvenuto, Horvath, Vucetich (br0130) 1989; 4
Witten (br0030) 1984; 30
Vidana, Bombaci, Parenti (br0210) 2005; 31
Mintz, Fraga, Schaffner-Bielich, Pagliara (br0230) 2010; 37
Levermore, Pomraning (br0250) 1981; 248
Drago, Lavagno, Parenti (br0170) 2007; 659
Terazawa (br0020) 1989; 58
Shand, Ouyed, Koning, Ouyed (br0070) 2016; 16
Olinto (br0140) 1987; 192
Ouyed, Dey, Dey Quark-nova (br0040) 2002; 390
Herzog, Röpke (br0180) 2011; 84
Furusawa, Sanada, Yamada (br0150) 2016; 93
Iwamoto (br0240) 1982; 141
Drago, Pagliara (br0290) 2015; 92
Anand, Goyal, Gupta, Singh (br0110) 1997; 481
Nakazato, Sumiyoshi, Yamada (br0080) 2013; 558
Sagert, Fischer, Hempel, Pagliara, Schaffner-Bielich, Mezzacappa, Thielemann, Liebendörfer (br0090) 2009; 102
Burrows, Lattimer (br0260) 1986; 307
Herzog (10.1016/j.physletb.2017.12.027_br0180) 2011; 84
Ouyed (10.1016/j.physletb.2017.12.027_br0040) 2002; 390
Burrows (10.1016/j.physletb.2017.12.027_br0260) 1986; 307
Fischer (10.1016/j.physletb.2017.12.027_br0100) 2011; 194
Niebergal (10.1016/j.physletb.2017.12.027_br0160) 2010; 82
Lugones (10.1016/j.physletb.2017.12.027_br0220) 1998; 58
Shand (10.1016/j.physletb.2017.12.027_br0070) 2016; 16
Anand (10.1016/j.physletb.2017.12.027_br0110) 1997; 481
Alford (10.1016/j.physletb.2017.12.027_br0270) 2015; 91
Benvenuto (10.1016/j.physletb.2017.12.027_br0120) 1989; 63
Benvenuto (10.1016/j.physletb.2017.12.027_br0130) 1989; 4
Sagert (10.1016/j.physletb.2017.12.027_br0090) 2009; 102
Levermore (10.1016/j.physletb.2017.12.027_br0250) 1981; 248
Witten (10.1016/j.physletb.2017.12.027_br0030) 1984; 30
Mintz (10.1016/j.physletb.2017.12.027_br0230) 2010; 37
Furusawa (10.1016/j.physletb.2017.12.027_br0150) 2016; 93
Drago (10.1016/j.physletb.2017.12.027_br0290) 2015; 92
Iwamoto (10.1016/j.physletb.2017.12.027_br0240) 1982; 141
Nakazato (10.1016/j.physletb.2017.12.027_br0080) 2013; 558
Drago (10.1016/j.physletb.2017.12.027_br0170) 2007; 659
Terazawa (10.1016/j.physletb.2017.12.027_br0020) 1989
Vidana (10.1016/j.physletb.2017.12.027_br0210) 2005; 31
Staff (10.1016/j.physletb.2017.12.027_br0050) 2008; 391
Ouyed (10.1016/j.physletb.2017.12.027_br0060) 2013; 13
Bodmer (10.1016/j.physletb.2017.12.027_br0010) 1971; 4
Olinto (10.1016/j.physletb.2017.12.027_br0140) 1987; 192
Manrique (10.1016/j.physletb.2017.12.027_br0190) 2015; 45
References_xml – volume: 4
  start-page: 1601
  year: 1971
  ident: br0010
  article-title: Collapsed nuclei
  publication-title: Phys. Rev. D
– volume: 58
  year: 1998
  ident: br0220
  article-title: Effect of trapped neutrinos in the hadron matter to quark matter transition
  publication-title: Phys. Rev. D
– volume: 37
  year: 2010
  ident: br0230
  article-title: On thermal nucleation of quark matter in compact stars
  publication-title: J. Phys. G, Nucl. Part. Phys.
– volume: 192
  start-page: 71
  year: 1987
  end-page: 75
  ident: br0140
  article-title: On the conversion of neutron stars into strange stars
  publication-title: Phys. Lett. B
– volume: 91
  year: 2015
  ident: br0270
  article-title: Phase conversion dissipation in multicomponent compact stars
  publication-title: Phys. Rev. C
– volume: 13
  start-page: 1202
  year: 2013
  ident: br0060
  article-title: The peculiar case of the “double-humped” super-luminous supernova SN 2006oz
  publication-title: Res. Astron. Astrophys.
– volume: 391
  start-page: 178
  year: 2008
  end-page: 182
  ident: br0050
  article-title: Gamma-ray burst engine activity within the quark nova scenario: prompt emission, x-ray plateau and sharp drop-off
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 481
  start-page: 954
  year: 1997
  ident: br0110
  article-title: Burning of two-flavor quark matter into strange matter in neutron stars and in supernova cores
  publication-title: Astrophys. J.
– volume: 102
  year: 2009
  ident: br0090
  article-title: Signals of the QCD phase transition in core-collapse supernovae
  publication-title: Phys. Rev. Lett.
– volume: 141
  start-page: 1
  year: 1982
  end-page: 49
  ident: br0240
  article-title: Neutrino emissivities and mean free paths of degenerate quark matter
  publication-title: Ann. Phys.
– volume: 558
  start-page: A50
  year: 2013
  ident: br0080
  article-title: Stellar core collapse with hadron-quark phase transition
  publication-title: Astron. Astrophys.
– volume: 307
  start-page: 178
  year: 1986
  end-page: 196
  ident: br0260
  article-title: The birth of neutron stars
  publication-title: Astrophys. J.
– volume: 58
  start-page: 1989
  year: 1989
  ident: br0020
  publication-title: J. Phys. Soc. Jpn.
– volume: 30
  start-page: 272
  year: 1984
  ident: br0030
  article-title: Cosmic separation of phases
  publication-title: Phys. Rev. D
– volume: 4
  start-page: 257
  year: 1989
  end-page: 265
  ident: br0130
  article-title: Strange matter, detonations and supernovae
  publication-title: Int. J. Mod. Phys. A
– volume: 82
  year: 2010
  ident: br0160
  article-title: Numerical simulation of the hydrodynamical combustion to strange quark matter
  publication-title: Phys. Rev. C
– volume: 63
  start-page: 716
  year: 1989
  ident: br0120
  article-title: Evidence for strange matter in supernovae?
  publication-title: Phys. Rev. Lett.
– volume: 84
  year: 2011
  ident: br0180
  article-title: Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star
  publication-title: Phys. Rev. D
– volume: 248
  start-page: 321
  year: 1981
  end-page: 334
  ident: br0250
  article-title: A flux-limited diffusion theory
  publication-title: Astrophys. J.
– volume: 92
  year: 2015
  ident: br0290
  article-title: Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes
  publication-title: Phys. Rev. C
– volume: 45
  start-page: 457
  year: 2015
  end-page: 466
  ident: br0190
  article-title: Hydrodynamic simulations of the combustion of dense hadronic matter into quark matter
  publication-title: Braz. J. Phys.
– volume: 16
  year: 2016
  ident: br0070
  article-title: Quark nova model for fast radio bursts
  publication-title: Res. Astron. Astrophys.
– ident: br0280
– volume: 194
  start-page: 39
  year: 2011
  ident: br0100
  article-title: Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase
  publication-title: Astrophys. J. Suppl. Ser.
– volume: 31
  year: 2005
  ident: br0210
  article-title: Quark deconfinement and neutrino trapping in compact stars
  publication-title: J. Phys. G, Nucl. Part. Phys.
– volume: 390
  start-page: L39
  year: 2002
  end-page: L42
  ident: br0040
  publication-title: Astron. Astrophys.
– volume: 93
  year: 2016
  ident: br0150
  article-title: Hydrodynamical study on the conversion of hadronic matter to quark matter. ii. Diffusion-induced conversion
  publication-title: Phys. Rev. D
– volume: 659
  start-page: 1519
  year: 2007
  ident: br0170
  article-title: Burning of a hadronic star into a quark or a hybrid star
  publication-title: Astrophys. J.
– volume: 307
  start-page: 178
  year: 1986
  ident: 10.1016/j.physletb.2017.12.027_br0260
  article-title: The birth of neutron stars
  publication-title: Astrophys. J.
  doi: 10.1086/164405
– volume: 248
  start-page: 321
  year: 1981
  ident: 10.1016/j.physletb.2017.12.027_br0250
  article-title: A flux-limited diffusion theory
  publication-title: Astrophys. J.
  doi: 10.1086/159157
– volume: 4
  start-page: 1601
  issue: 6
  year: 1971
  ident: 10.1016/j.physletb.2017.12.027_br0010
  article-title: Collapsed nuclei
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.4.1601
– year: 1989
  ident: 10.1016/j.physletb.2017.12.027_br0020
– volume: 194
  start-page: 39
  issue: 2
  year: 2011
  ident: 10.1016/j.physletb.2017.12.027_br0100
  article-title: Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/194/2/39
– volume: 481
  start-page: 954
  issue: 2
  year: 1997
  ident: 10.1016/j.physletb.2017.12.027_br0110
  article-title: Burning of two-flavor quark matter into strange matter in neutron stars and in supernova cores
  publication-title: Astrophys. J.
  doi: 10.1086/304063
– volume: 63
  start-page: 716
  issue: 7
  year: 1989
  ident: 10.1016/j.physletb.2017.12.027_br0120
  article-title: Evidence for strange matter in supernovae?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.716
– volume: 84
  issue: 8
  year: 2011
  ident: 10.1016/j.physletb.2017.12.027_br0180
  article-title: Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.083002
– volume: 13
  start-page: 1202
  issue: 10
  year: 2013
  ident: 10.1016/j.physletb.2017.12.027_br0060
  article-title: The peculiar case of the “double-humped” super-luminous supernova SN 2006oz
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/13/10/006
– volume: 30
  start-page: 272
  issue: 2
  year: 1984
  ident: 10.1016/j.physletb.2017.12.027_br0030
  article-title: Cosmic separation of phases
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.30.272
– volume: 391
  start-page: 178
  issue: 1
  year: 2008
  ident: 10.1016/j.physletb.2017.12.027_br0050
  article-title: Gamma-ray burst engine activity within the quark nova scenario: prompt emission, x-ray plateau and sharp drop-off
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2008.13465.x
– volume: 141
  start-page: 1
  issue: 1
  year: 1982
  ident: 10.1016/j.physletb.2017.12.027_br0240
  article-title: Neutrino emissivities and mean free paths of degenerate quark matter
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(82)90271-8
– volume: 558
  start-page: A50
  year: 2013
  ident: 10.1016/j.physletb.2017.12.027_br0080
  article-title: Stellar core collapse with hadron-quark phase transition
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201322231
– volume: 659
  start-page: 1519
  issue: 2
  year: 2007
  ident: 10.1016/j.physletb.2017.12.027_br0170
  article-title: Burning of a hadronic star into a quark or a hybrid star
  publication-title: Astrophys. J.
  doi: 10.1086/512112
– volume: 31
  issue: 6
  year: 2005
  ident: 10.1016/j.physletb.2017.12.027_br0210
  article-title: Quark deconfinement and neutrino trapping in compact stars
  publication-title: J. Phys. G, Nucl. Part. Phys.
  doi: 10.1088/0954-3899/31/6/079
– volume: 58
  issue: 8
  year: 1998
  ident: 10.1016/j.physletb.2017.12.027_br0220
  article-title: Effect of trapped neutrinos in the hadron matter to quark matter transition
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.083001
– volume: 4
  start-page: 257
  issue: 01
  year: 1989
  ident: 10.1016/j.physletb.2017.12.027_br0130
  article-title: Strange matter, detonations and supernovae
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X89000108
– volume: 102
  issue: 8
  year: 2009
  ident: 10.1016/j.physletb.2017.12.027_br0090
  article-title: Signals of the QCD phase transition in core-collapse supernovae
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.081101
– volume: 45
  start-page: 457
  issue: 4
  year: 2015
  ident: 10.1016/j.physletb.2017.12.027_br0190
  article-title: Hydrodynamic simulations of the combustion of dense hadronic matter into quark matter
  publication-title: Braz. J. Phys.
  doi: 10.1007/s13538-015-0332-0
– volume: 16
  issue: 5
  year: 2016
  ident: 10.1016/j.physletb.2017.12.027_br0070
  article-title: Quark nova model for fast radio bursts
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/16/5/080
– volume: 91
  issue: 5
  year: 2015
  ident: 10.1016/j.physletb.2017.12.027_br0270
  article-title: Phase conversion dissipation in multicomponent compact stars
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.91.055804
– volume: 390
  start-page: L39
  issue: 3
  year: 2002
  ident: 10.1016/j.physletb.2017.12.027_br0040
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20020982
– volume: 82
  issue: 6
  year: 2010
  ident: 10.1016/j.physletb.2017.12.027_br0160
  article-title: Numerical simulation of the hydrodynamical combustion to strange quark matter
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.062801
– volume: 192
  start-page: 71
  issue: 1–2
  year: 1987
  ident: 10.1016/j.physletb.2017.12.027_br0140
  article-title: On the conversion of neutron stars into strange stars
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(87)91144-0
– volume: 37
  issue: 9
  year: 2010
  ident: 10.1016/j.physletb.2017.12.027_br0230
  article-title: On thermal nucleation of quark matter in compact stars
  publication-title: J. Phys. G, Nucl. Part. Phys.
  doi: 10.1088/0954-3899/37/9/094066
– volume: 92
  issue: 4
  year: 2015
  ident: 10.1016/j.physletb.2017.12.027_br0290
  article-title: Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.92.045801
– volume: 93
  issue: 4
  year: 2016
  ident: 10.1016/j.physletb.2017.12.027_br0150
  article-title: Hydrodynamical study on the conversion of hadronic matter to quark matter. ii. Diffusion-induced conversion
  publication-title: Phys. Rev. D
SSID ssj0001506
Score 2.3338869
Snippet We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 184
SubjectTerms Neutron stars
Nuclear matter aspects of neutron stars
Plasma production phase-transition
Quark deconfinement quark–gluon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4inKSx5YQ53YTuIREAghwQQSm-VXoKVNC20H_j13ToKydWFNfJF1vtzDPn8fIZepkjI4niWOyyIRvAgJQowg3F3OjTJKMryN_PScP7yKxzf51qP6wp6wBh64UdwwKyz3qpCW8SCcrazIufVMgI8JqQgxNWKKdcVU64MRNy-eHxQsyXLFe3eDx1e4ZwBKsdjYVcTNQOSU6YWliN7fi069iHO_S3baVJFeN1PcIxuh3idbsWXTLQ7I5HnVnLZM6GI0bVm46KyikNLRjx8PnrFhm4cBYFYWabtgwHJGcXejfg_0C8zjk04jwiYd1VEQXs3nwdM6IEx_PaPI3DANh-T1_u7l9iFpuRMSBzF3mQhnmDKldKAJn-ZWqNKWWOzk0pSp84Yx45wXxofMmQqqNlMJyOXAATrLg-dHZLOe1eGYUJNXrDJQVlgVhHcSRApZBPjRs9zwyg-I7FSnXQssjvwWE911kI11p3KNKtdppkHlAzL8k5s30BprJW5wZf5GIzR2fAAGo1uD0esMZkBUt666zTKa7AE-NVozgZP_mMAp2YZPltj6nbIzsrn8XoVzyGyW9iIa8S9j9_nA
  priority: 102
  providerName: Directory of Open Access Journals
Title Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime
URI https://dx.doi.org/10.1016/j.physletb.2017.12.027
https://doaj.org/article/27b3d975b03e4cbfb463bd04eb1e14ea
Volume 777
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSBAG6FG2aoO7D4JBVMWWSojgmQQO3Rb2kAbwRfClRaktu4gxd-tt7R0mGO2XoKIonUEfiXrz7jpDTXEsZPZ9mnkuVCa5ihhAjCHdXcKutlgyrkb_Pi9mN-LqQiz1yOdTCYFplL_s7mZ6kdT8y6bk5Wdf15JpxBQ6EBgWIQWqBiJ9YVYpFfIuLrTRGBL10k6BYhrN3qoTvzzB6AOxxmOKlUlgQu8vsKKiE47-jp3Z0z9Vr8qo3Gul5t643ZC82R-QwJW_6x7dkOX_q7l2W9LFe9f24aFtRMO7o3e8AMrLrOw8T4D8dNvCCCZuWYpyjuY30FxyUn3SVsDZp3SRCeLVex0CbiID9TUuxh8MqHpObq88_LmdZ30Uh86B9N5nwlmlbSg-cCHnhhC5diW5PIW2Z-2AZs94HYUOceluB_2YrAVYdiELveAz8hOw3bRPfEWqLilUWHAynowheAomSKpa4D5ZXYUTkwDrje4hx7HSxNEMu2b0ZWG6Q5SafGmD5iEy2dOsOZONZigvcme1sBMlOA-3DrelPiZkqx4NW0jEehXeVEwV3gQlQTzEX0Y6IHvbV_HPm4FP1Mwt4_x-0H8hLeCox9ztnH8n-5uEpfgLTZuPG5MXZn3xMDs6_fJvNxylAME7n-S8u1v5O
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSB0W7FOkLdds0HLqqpkxSFMc0aOC8vDQBshF8KVViS27iDP33vZMow50ydCV5AnU83IvH7wj5mmspo-fTzHOpMsFVzBBiBOHuCm611ZLha-SLeTG7EqfX8nqHHA1vYbCsMun-Xqd32jqNTBI3J6u6nvxkXEEAocEAYpJa8GdkV2BT6xHZPTw5m803ChlB9LrLBMUyJNh6KHz7DRMIwCGHVV6qywxig5ktG9VB-W-Zqi3zc7xHXiW_kR72W3tNdmLzhjzv6jf9w1uymD_2Vy8L-lAvU0su2lYU_Dv6608ANdm3nocF8KsOe3jBgnVLMdXR3ET6G2Tlji47uE1aNx0hTK1WMdAmImZ_01Js47CM78jV8Y_Lo1mWGilkHgzwOhPeMm1L6YETIS-c0KUrMfIppC1zHyxj1vsgbIhTbysI4WwlwLEDbegdj4G_J6OmbeIHQm1RscpCjOF0FMFLIFFSxRKPwvIqjIkcWGd8QhnHZhcLM5ST3ZqB5QZZbvKpAZaPyWRDt-pxNp6k-I4ns1mNONndQHt_Y5KgmKlyPGglHeNReFc5UXAXmAALFXMR7Zjo4VzNP2IHn6qf2MDH_6A9IC9mlxfn5vxkfvaJvISZEkvBc_aZjNb3j3EfPJ21-5Ik-S_PcP7-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+hydrodynamical+combustion+to+strange+quark+matter+in+the+trapped+neutrino+regime&rft.jtitle=Physics+letters.+B&rft.au=Ouyed%2C+Amir&rft.au=Ouyed%2C+Rachid&rft.au=Jaikumar%2C+Prashanth&rft.date=2018-02-10&rft.issn=0370-2693&rft.volume=777&rft.spage=184&rft.epage=190&rft_id=info:doi/10.1016%2Fj.physletb.2017.12.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physletb_2017_12_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon