Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China
The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain sh...
Saved in:
| Published in | Remote sensing of environment Vol. 152; pp. 291 - 301 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
01.09.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2014.07.004 |
Cover
| Abstract | The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites—Site 1 and Site 2—were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region.
•The aspect, DTM, and slope textures based on aspect direction are newly introduced.•Feature selection enhances the classification accuracy and reduces the feature set.•Forested landslides can be detected using a LiDAR DTM and supervised classification. |
|---|---|
| AbstractList | The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites-Site 1 and Site 2-were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region. The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites—Site 1 and Site 2—were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region. •The aspect, DTM, and slope textures based on aspect direction are newly introduced.•Feature selection enhances the classification accuracy and reduces the feature set.•Forested landslides can be detected using a LiDAR DTM and supervised classification. |
| Author | Chen, Weitao Li, Xianju Liu, Shengwei Wang, Yanxin Chen, Gang |
| Author_xml | – sequence: 1 givenname: Weitao surname: Chen fullname: Chen, Weitao organization: Faculty of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Xianju surname: Li fullname: Li, Xianju email: uandlixianju@gmail.com organization: Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China – sequence: 3 givenname: Yanxin surname: Wang fullname: Wang, Yanxin organization: Faculty of Environment Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China – sequence: 4 givenname: Gang surname: Chen fullname: Chen, Gang organization: Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China – sequence: 5 givenname: Shengwei surname: Liu fullname: Liu, Shengwei organization: Institute for Remote Sensing Method, China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28785369$$DView record in Pascal Francis |
| BookMark | eNqNkcFuGyEQQFGVSnWSfkBvXCr10N0MC7vLtifLbdJIlipFyRlhGGys9ZICjpS_D46jHnpIc4LDe2iYd0pOpjAhIZ8Y1AxYd7GtY8K6ASZq6GsA8Y7MmOyHCnoQJ2QGwEUlmrb_QE5T2gKwVvZsRh4uQ8SU0dJRTzaN3iK1mNFkHya6T35a06X_Mb-hVmdNC0PzBmksl7Cj7lmmelyH6PNm943OqdEJacp7-0iDe4ZvNxGRXoW4xvSVLjZ-0ufkvdNjwo8v5xm5u_x5u_hVLX9fXS_my8qIpsuVMAIMQ94Yw6yRDSAMK1hx6cTKImdWss51wkluwHTMcadbhJW0LYBtW8vPyJfju_cx_NmXWdXOJ4Nj-SyGfVINlE3wrpPwX5R1LRMgy1xvQPkwSGj7pqCfX1CdjB5dWZzxSd1Hv9PxUTWyly3vhsKxI2diSCmi-4swUIfCaqtKYXUorKBXpXBx-n8c47M-hMtR-_FV8_vRxLL7B49RJeNxMmh9LOmVDf4V-wlzf8Fq |
| CODEN | RSEEA7 |
| CitedBy_id | crossref_primary_10_1007_s10346_018_1004_2 crossref_primary_10_1080_10106049_2019_1585484 crossref_primary_10_1016_j_rse_2022_113226 crossref_primary_10_1007_s11629_018_4888_3 crossref_primary_10_3390_rs12030547 crossref_primary_10_3390_rs13183573 crossref_primary_10_1080_19475705_2020_1713913 crossref_primary_10_3390_rs11192300 crossref_primary_10_1007_s12665_023_11190_w crossref_primary_10_3390_rs14194685 crossref_primary_10_1016_j_rse_2018_02_070 crossref_primary_10_3390_rs16132265 crossref_primary_10_1016_j_catena_2018_12_018 crossref_primary_10_3390_rs9040333 crossref_primary_10_1007_s10346_022_01861_3 crossref_primary_10_3390_app7070730 crossref_primary_10_1109_TGRS_2024_3477910 crossref_primary_10_3390_rs14133216 crossref_primary_10_1007_s11676_018_0832_1 crossref_primary_10_1080_10106049_2017_1404141 crossref_primary_10_1007_s10661_021_09313_6 crossref_primary_10_3390_s19163451 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_1007_s12517_017_2961_9 crossref_primary_10_3390_rs11212530 crossref_primary_10_3390_rs12010082 crossref_primary_10_3390_ijgi6010005 crossref_primary_10_1016_j_jclepro_2020_124409 crossref_primary_10_1080_10106049_2021_1967464 crossref_primary_10_1109_JSTARS_2018_2803784 crossref_primary_10_1080_01431161_2019_1672904 crossref_primary_10_1080_19475705_2017_1345797 crossref_primary_10_3390_su16031238 crossref_primary_10_1016_j_pce_2022_103272 crossref_primary_10_3390_s25010273 crossref_primary_10_1016_j_jseaes_2017_05_005 crossref_primary_10_1016_j_knosys_2025_112979 crossref_primary_10_1007_s12665_016_5732_0 crossref_primary_10_3390_su132111773 crossref_primary_10_1007_s10712_020_09609_1 crossref_primary_10_1016_j_catena_2016_11_032 crossref_primary_10_1080_19475705_2023_2300823 crossref_primary_10_1016_j_rse_2016_01_003 crossref_primary_10_1007_s12665_021_09510_z crossref_primary_10_3390_ijgi8080321 crossref_primary_10_3390_w12020486 crossref_primary_10_1016_j_ecoinf_2020_101059 crossref_primary_10_1016_j_enggeo_2019_105264 crossref_primary_10_3390_rs8060514 crossref_primary_10_3390_app12189029 crossref_primary_10_1186_s13007_021_00796_5 crossref_primary_10_1007_s10346_020_01444_0 crossref_primary_10_1155_2018_8316918 crossref_primary_10_3390_app13010213 crossref_primary_10_1016_j_scitotenv_2018_06_389 crossref_primary_10_1016_j_scitotenv_2019_03_496 crossref_primary_10_3390_rs11030303 crossref_primary_10_1080_17538947_2024_2441920 crossref_primary_10_3390_rs11182156 crossref_primary_10_3390_rs11222716 crossref_primary_10_1016_j_asr_2022_04_055 crossref_primary_10_26833_ijeg_455595 crossref_primary_10_1016_j_scitotenv_2020_138595 crossref_primary_10_1016_j_petrol_2021_108678 crossref_primary_10_3390_rs8050396 crossref_primary_10_1016_j_rse_2016_10_008 crossref_primary_10_1155_2021_6475942 crossref_primary_10_1088_1755_1315_169_1_012048 crossref_primary_10_1088_1757_899X_603_2_022010 crossref_primary_10_26833_ijeg_440828 crossref_primary_10_1007_s00521_020_05529_8 crossref_primary_10_3390_rs13020199 crossref_primary_10_3390_rs15020531 crossref_primary_10_1016_j_isprsjprs_2015_12_002 crossref_primary_10_1080_07038992_2024_2418087 crossref_primary_10_1016_j_geomorph_2017_04_024 crossref_primary_10_1080_10106049_2018_1499816 crossref_primary_10_3389_fenvs_2022_840540 crossref_primary_10_5194_nhess_24_3991_2024 crossref_primary_10_3390_drones5030097 crossref_primary_10_1080_19475705_2017_1292560 crossref_primary_10_1016_j_asr_2024_06_048 crossref_primary_10_3788_LOP241024 crossref_primary_10_1002_ldr_3255 crossref_primary_10_1109_ACCESS_2019_2935761 crossref_primary_10_1109_ACCESS_2022_3220906 crossref_primary_10_1080_10106049_2024_2387087 crossref_primary_10_1016_j_catena_2025_108948 crossref_primary_10_1016_j_envsoft_2020_104692 crossref_primary_10_3390_f11080830 crossref_primary_10_1007_s10346_018_0986_0 crossref_primary_10_1111_tgis_70021 crossref_primary_10_3390_land13070928 crossref_primary_10_1007_s11069_022_05423_7 crossref_primary_10_3390_rs14225759 crossref_primary_10_1117_1_JRS_13_044529 crossref_primary_10_3390_rs12183054 crossref_primary_10_1016_j_rse_2016_07_018 crossref_primary_10_3390_rs10010023 crossref_primary_10_1080_19475705_2017_1391129 crossref_primary_10_3390_ijgi9040274 crossref_primary_10_1007_s11069_021_04503_4 crossref_primary_10_3390_app12083966 crossref_primary_10_1016_j_geomorph_2018_02_027 crossref_primary_10_2478_ctg_2018_0007 crossref_primary_10_1007_s10064_022_02905_7 crossref_primary_10_3390_rs12091446 crossref_primary_10_3390_app14031100 crossref_primary_10_1109_ACCESS_2020_3006914 crossref_primary_10_1007_s12583_021_1467_2 crossref_primary_10_1080_01431161_2023_2205982 crossref_primary_10_3390_rs16030534 crossref_primary_10_3390_rs70809705 crossref_primary_10_1016_j_geodrs_2017_02_001 crossref_primary_10_3390_rs14122884 crossref_primary_10_1016_j_enggeo_2019_105155 crossref_primary_10_3390_ijerph17124206 crossref_primary_10_1080_15481603_2024_2306740 crossref_primary_10_3390_rs14215490 crossref_primary_10_1016_j_geomorph_2022_108236 crossref_primary_10_1080_19475705_2017_1401013 crossref_primary_10_1007_s12145_022_00889_2 crossref_primary_10_1007_s12665_022_10375_z crossref_primary_10_3906_yer_1706_25 crossref_primary_10_36498_kbigdt_2017_2_2_95 crossref_primary_10_3390_rs10010015 crossref_primary_10_1109_LGRS_2020_3007183 crossref_primary_10_1007_s10346_024_02425_3 crossref_primary_10_1080_24751839_2019_1704114 crossref_primary_10_1016_j_catena_2018_04_038 crossref_primary_10_1080_15481603_2024_2416727 crossref_primary_10_1038_s41598_024_51917_8 crossref_primary_10_1080_15481603_2021_1947623 crossref_primary_10_1007_s12583_021_1525_9 crossref_primary_10_1007_s11042_016_4311_4 crossref_primary_10_1016_j_geoen_2023_211654 crossref_primary_10_1016_j_asr_2021_11_020 crossref_primary_10_3390_rs13051007 crossref_primary_10_3389_fevo_2023_1169028 crossref_primary_10_1016_j_envsoft_2024_106261 crossref_primary_10_3390_rs15153850 crossref_primary_10_1016_j_marpolbul_2020_111158 crossref_primary_10_3389_fenvs_2023_1132159 crossref_primary_10_3799_dqkx_2022_205 crossref_primary_10_1007_s11707_021_0884_y crossref_primary_10_3390_app10061952 crossref_primary_10_1007_s11069_022_05318_7 crossref_primary_10_3390_w10081019 crossref_primary_10_3390_ijerph20043538 crossref_primary_10_3390_rs14051182 crossref_primary_10_1007_s11629_018_4833_5 crossref_primary_10_3390_rs10071029 crossref_primary_10_1016_j_catena_2021_105189 crossref_primary_10_3390_rs11111377 crossref_primary_10_3390_rs13234782 crossref_primary_10_1016_j_isprsjprs_2016_01_011 crossref_primary_10_3390_ijgi7100394 |
| Cites_doi | 10.1016/j.rse.2005.10.014 10.1002/esp.1064 10.1016/j.geomorph.2012.05.024 10.1007/s10064-009-0204-3 10.1007/s11069-010-9634-2 10.1016/j.geomorph.2008.09.027 10.1016/S0004-3702(97)00043-X 10.14358/PERS.76.7.833 10.1016/j.earscirev.2012.02.001 10.1109/TGRS.2008.2009355 10.1016/j.enggeo.2006.09.019 10.1109/TGRS.1986.289563 10.1016/j.rse.2009.04.015 10.1016/j.rse.2005.08.004 10.1080/01431161.2011.649864 10.1016/j.geomorph.2005.07.006 10.1109/JSTARS.2008.2002869 10.5194/nhess-7-637-2007 10.1007/s00254-007-0882-8 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2 10.1016/j.geomorph.2009.09.025 10.1016/j.geomorph.2009.02.027 10.1002/esp.1417 10.1109/TSMC.1973.4309314 10.2113/8.4.279 10.1007/s12665-012-2151-8 10.1007/s11069-011-9929-y 10.18637/jss.v036.i11 10.1016/j.enggeo.2008.03.010 10.1016/j.geomorph.2011.01.013 10.1016/j.geomorph.2004.11.001 10.1186/1471-2105-7-3 10.2747/1548-1603.45.2.209 10.1016/j.geomorph.2009.06.004 10.1016/j.yqres.2011.02.006 10.1016/j.jseaes.2012.10.022 10.1007/s002679910020 10.1016/j.rse.2011.05.013 10.1016/j.geomorph.2007.02.020 10.1890/07-0539.1 10.1109/TPAMI.1986.4767851 10.1007/s12665-010-0724-y 10.1007/s00254-006-0491-y 10.1016/j.ecolmodel.2007.05.011 10.1016/S0169-555X(03)00164-8 10.1007/s10346-013-0400-x 10.1023/A:1010933404324 10.1016/j.patrec.2005.08.011 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SN 7ST 7UA C1K F1W H96 L.G SOI 7SU 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.rse.2014.07.004 |
| DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 301 |
| ExternalDocumentID | 28785369 10_1016_j_rse_2014_07_004 S0034425714002491 |
| GeographicLocations | Far East Asia China China, People's Rep., Sichuan Prov., Changjiang R., Three Gorges Dam China, People's Rep |
| GeographicLocations_xml | – name: China, People's Rep., Sichuan Prov., Changjiang R., Three Gorges Dam – name: China, People's Rep – name: China |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SN 7ST 7UA ABUFD C1K F1W H96 L.G SOI 7SU 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c426t-4c40c1e32cc1dc820e09b0b38f4bde31d816f64f83c0c61f3fa5e0b8d500d55d3 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Wed Oct 01 14:14:01 EDT 2025 Tue Oct 07 08:07:15 EDT 2025 Tue Oct 07 09:22:34 EDT 2025 Wed Apr 02 07:46:49 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Oct 01 02:18:10 EDT 2025 Fri Feb 23 02:30:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection Topographic analysis Random forest The Three Gorges Landslide mapping LiDAR news algorithms detection mountains surveys Shadow remote sensing vegetation Extract dams forests Random graph techniques landslides digital terrain models Lidar Plant cover Feasibility Synthetic aperture radar |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-4c40c1e32cc1dc820e09b0b38f4bde31d816f64f83c0c61f3fa5e0b8d500d55d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1639980572 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000136680 proquest_miscellaneous_1651408426 proquest_miscellaneous_1639980572 pascalfrancis_primary_28785369 crossref_primary_10_1016_j_rse_2014_07_004 crossref_citationtrail_10_1016_j_rse_2014_07_004 elsevier_sciencedirect_doi_10_1016_j_rse_2014_07_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Schulz (bb0210) 2007; 89 Guzzetti, Cardinali, Reichenbach, Carrara (bb0085) 2000; 25 Bai, Wang, Lue, Zhou, Hou, Xu (bb0015) 2010; 115 Jaboyedoff, Oppikofer, Abellan, Derron, Loye, Metzger (bb0120) 2012; 61 Diaz-Uriarte (bb0055) 2010 Van Den Eeckhaut, Moeyersons, Nyssen, Abraha, Poesen, Haile (bb0225) 2009; 105 Chen, Li, Wang, Liu (bb0040) 2013; 70 Duro, Franklin, Dube (bb0065) 2012; 33 Ardizzone, Cardinali, Galli, Guzzetti, Reichenbach (bb0010) 2007; 7 Kursa, Rudnicki (bb0135) 2010; 36 Van Den Eeckhaut, Poesen, Verstraeten, Vanacker, Nyssen, Moeyersons (bb0240) 2007; 32 Gislason, Benediktsson, Sveinsson (bb0075) 2006; 27 Glenn, Streutker, Chadwick, Thackray, Dorsch (bb0080) 2006; 73 Liaw, Wiener (bb0155) 2002; 2 Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (bb0090) 2012; 112 Maas (bb0170) 1999 McKean, Roering (bb0180) 2004; 57 Lawrence, Wood, Sheley (bb0145) 2006; 100 Pesaresi, Gerhardinger, Kayitakire (bb0195) 2008; 1 Van Den Eeckhaut, Poesen, Verstraeten, Vanacker, Moeyersons, Nyssen (bb0235) 2005; 67 Liu, Hsiao, Shih (bb0165) 2012; 20 Haugerud, Harding, Johnson, Harless, Weaver, Sherrod (bb0110) 2003; 13 Van den Eeckhaut, Poesen, Gullentops, Vandekerckhove, Hervas (bb0230) 2011; 75 van Westen, Castellanos, Kuriakose (bb0250) 2008; 102 Haralick, Shanmugam, Dinstein (bb0100) 1973; SMC 3 Cutler, Edwards, Beard, Cutler, Hess (bb0050) 2007; 88 Kasai, Ikeda, Asahina, Fujisawa (bb0125) 2009; 113 Im, Jensen, Hodgson (bb0115) 2008; 45 Wang, Joyce, Phillips, Shrestha, Carter (bb0255) 2013; 10 Wills, McCrink (bb0265) 2002; 8 Van Den Eeckhaut, Kerle, Poesen, Hervas (bb0245) 2012; 173 Akgun, Dag, Bulut (bb0005) 2008; 54 Booth, Roering, Perron (bb0020) 2009; 109 Lin, Tseng, Tseng, Fei, Hsieh, Tarolli (bb0160) 2013; 62 Stumpf, Kerle (bb0215) 2011; 115 Rau, Chang, Shao, Lau (bb0270) 2012; 61 Kohavi, John (bb0130) 1997; 97 Haneberg, Cole, Kasali (bb0095) 2009; 68 Peters, De Baets, Verhoest, Samson, Degroeve, De Becker (bb0200) 2007; 207 Metternicht, Hurni, Gogu (bb0185) 2005; 98 Watts, Lawrence, Miller, Montagne (bb0260) 2009; 113 Constantin, Bednarik, Jurchescu, Vlaicu (bb0045) 2011; 63 Lee (bb0150) 2007; 52 Fiorucci, Cardinali, Carla, Rossi, Mondini, Santurri (bb0070) 2011; 129 Breiman (bb0030) 2001; 45 Malamud, Turcotte, Guzzetti, Reichenbach (bb0175) 2004; 29 Diaz-Uriarte, de Andres (bb0060) 2006; 7 Haralick, Joo (bb0105) 1986; GE-24 R Development Core Team (bb0205) 2012 Thiery, Malet, Sterlacchini, Puissant, Maquaire (bb0220) 2007; 92 Borkowski, Perski, Wojciechowski, Jozkow, Wojcik (bb0025) 2011; 8 Na, Zhang, Li, Yu, Liu (bb0190) 2010; 76 Canny (bb0035) 1986; PAMI-8 Laliberte, Rango (bb0140) 2009; 47 Liu (10.1016/j.rse.2014.07.004_bb0165) 2012; 20 Metternicht (10.1016/j.rse.2014.07.004_bb0185) 2005; 98 Fiorucci (10.1016/j.rse.2014.07.004_bb0070) 2011; 129 Lin (10.1016/j.rse.2014.07.004_bb0160) 2013; 62 Diaz-Uriarte (10.1016/j.rse.2014.07.004_bb0060) 2006; 7 Watts (10.1016/j.rse.2014.07.004_bb0260) 2009; 113 Ardizzone (10.1016/j.rse.2014.07.004_bb0010) 2007; 7 Duro (10.1016/j.rse.2014.07.004_bb0065) 2012; 33 Lawrence (10.1016/j.rse.2014.07.004_bb0145) 2006; 100 Kursa (10.1016/j.rse.2014.07.004_bb0135) 2010; 36 Malamud (10.1016/j.rse.2014.07.004_bb0175) 2004; 29 Maas (10.1016/j.rse.2014.07.004_bb0170) 1999 Lee (10.1016/j.rse.2014.07.004_bb0150) 2007; 52 Laliberte (10.1016/j.rse.2014.07.004_bb0140) 2009; 47 Haneberg (10.1016/j.rse.2014.07.004_bb0095) 2009; 68 Wang (10.1016/j.rse.2014.07.004_bb0255) 2013; 10 Akgun (10.1016/j.rse.2014.07.004_bb0005) 2008; 54 Haugerud (10.1016/j.rse.2014.07.004_bb0110) 2003; 13 McKean (10.1016/j.rse.2014.07.004_bb0180) 2004; 57 Pesaresi (10.1016/j.rse.2014.07.004_bb0195) 2008; 1 Borkowski (10.1016/j.rse.2014.07.004_bb0025) 2011; 8 Canny (10.1016/j.rse.2014.07.004_bb0035) 1986; PAMI-8 Haralick (10.1016/j.rse.2014.07.004_bb0100) 1973; SMC 3 Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0225) 2009; 105 Jaboyedoff (10.1016/j.rse.2014.07.004_bb0120) 2012; 61 Na (10.1016/j.rse.2014.07.004_bb0190) 2010; 76 Peters (10.1016/j.rse.2014.07.004_bb0200) 2007; 207 Booth (10.1016/j.rse.2014.07.004_bb0020) 2009; 109 Cutler (10.1016/j.rse.2014.07.004_bb0050) 2007; 88 Diaz-Uriarte (10.1016/j.rse.2014.07.004_bb0055) Rau (10.1016/j.rse.2014.07.004_bb0270) 2012; 61 Liaw (10.1016/j.rse.2014.07.004_bb0155) 2002; 2 R Development Core Team (10.1016/j.rse.2014.07.004_bb0205) 2012 Chen (10.1016/j.rse.2014.07.004_bb0040) 2013; 70 Haralick (10.1016/j.rse.2014.07.004_bb0105) 1986; GE-24 Kasai (10.1016/j.rse.2014.07.004_bb0125) 2009; 113 Im (10.1016/j.rse.2014.07.004_bb0115) 2008; 45 van Westen (10.1016/j.rse.2014.07.004_bb0250) 2008; 102 Guzzetti (10.1016/j.rse.2014.07.004_bb0090) 2012; 112 Stumpf (10.1016/j.rse.2014.07.004_bb0215) 2011; 115 Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0235) 2005; 67 Gislason (10.1016/j.rse.2014.07.004_bb0075) 2006; 27 Van den Eeckhaut (10.1016/j.rse.2014.07.004_bb0230) 2011; 75 Guzzetti (10.1016/j.rse.2014.07.004_bb0085) 2000; 25 Wills (10.1016/j.rse.2014.07.004_bb0265) 2002; 8 Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0245) 2012; 173 Glenn (10.1016/j.rse.2014.07.004_bb0080) 2006; 73 Breiman (10.1016/j.rse.2014.07.004_bb0030) 2001; 45 Schulz (10.1016/j.rse.2014.07.004_bb0210) 2007; 89 Constantin (10.1016/j.rse.2014.07.004_bb0045) 2011; 63 Bai (10.1016/j.rse.2014.07.004_bb0015) 2010; 115 Kohavi (10.1016/j.rse.2014.07.004_bb0130) 1997; 97 Thiery (10.1016/j.rse.2014.07.004_bb0220) 2007; 92 Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0240) 2007; 32 |
| References_xml | – volume: 98 start-page: 284 year: 2005 end-page: 303 ident: bb0185 article-title: Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments publication-title: Remote Sensing of Environment – year: 2010 ident: bb0055 article-title: varSelRF: Variable selection using random forests. R package version 0.7–3 – volume: 62 start-page: 389 year: 2013 end-page: 400 ident: bb0160 article-title: Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography publication-title: Journal of Asian Earth Sciences – volume: 92 start-page: 38 year: 2007 end-page: 59 ident: bb0220 article-title: Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment publication-title: Geomorphology – volume: 115 start-page: 23 year: 2010 end-page: 31 ident: bb0015 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China publication-title: Geomorphology – volume: 129 start-page: 59 year: 2011 end-page: 70 ident: bb0070 article-title: Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images publication-title: Geomorphology – volume: 20 start-page: 629 year: 2012 end-page: 638 ident: bb0165 article-title: A geomorphological model for landslide detection using airborne LiDAR data publication-title: Journal of Marine Science and Technology-Taiwan – volume: 47 start-page: 761 year: 2009 end-page: 770 ident: bb0140 article-title: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 29 start-page: 687 year: 2004 end-page: 711 ident: bb0175 article-title: Landslide inventories and their statistical properties publication-title: Earth Surface Processes and Landforms – volume: 13 start-page: 4 year: 2003 end-page: 10 ident: bb0110 article-title: High-resolution LiDAR topography of the Puget Lowland, Washington — A bonanza for earth science publication-title: GSA Today – volume: 76 start-page: 833 year: 2010 end-page: 840 ident: bb0190 article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data publication-title: Photogrammetric Engineering and Remote Sensing – volume: 105 start-page: 239 year: 2009 end-page: 252 ident: bb0225 article-title: Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands publication-title: Geomorphology – volume: 88 start-page: 2783 year: 2007 end-page: 2792 ident: bb0050 article-title: Random forests for classification in ecology publication-title: Ecology – volume: 73 start-page: 131 year: 2006 end-page: 148 ident: bb0080 article-title: Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity publication-title: Geomorphology – volume: 7 start-page: 3 year: 2006 ident: bb0060 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics – volume: 173 start-page: 30 year: 2012 end-page: 42 ident: bb0245 article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data publication-title: Geomorphology – volume: SMC 3 start-page: 610 year: 1973 end-page: 621 ident: bb0100 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man and Cybernetics – start-page: 1 year: 2012 end-page: 1731 ident: bb0205 article-title: R: A language and environment for statistical computing – volume: 63 start-page: 397 year: 2011 end-page: 406 ident: bb0045 article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania) publication-title: Environmental Earth Sciences – volume: GE-24 start-page: 997 year: 1986 end-page: 1007 ident: bb0105 article-title: A context classifier publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 113 start-page: 57 year: 2009 end-page: 69 ident: bb0125 article-title: LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan publication-title: Geomorphology – volume: 57 start-page: 331 year: 2004 end-page: 351 ident: bb0180 article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry publication-title: Geomorphology – volume: 8 start-page: 325 year: 2011 end-page: 333 ident: bb0025 article-title: Landslides mapping in Roznow Lake vicinity, Poland using airborne laser scanning data publication-title: Acta Geodynamica et Geomaterialia – volume: 54 start-page: 1127 year: 2008 end-page: 1143 ident: bb0005 article-title: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models publication-title: Environmental Geology – volume: 89 start-page: 67 year: 2007 end-page: 87 ident: bb0210 article-title: Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington publication-title: Engineering Geology – volume: 115 start-page: 2564 year: 2011 end-page: 2577 ident: bb0215 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sensing of Environment – volume: 67 start-page: 351 year: 2005 end-page: 363 ident: bb0235 article-title: The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides publication-title: Geomorphology – volume: 33 start-page: 4502 year: 2012 end-page: 4526 ident: bb0065 article-title: Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests publication-title: International Journal of Remote Sensing – volume: 8 start-page: 279 year: 2002 end-page: 293 ident: bb0265 article-title: Comparing landslide inventories: The map depends on the method publication-title: Environmental & Engineering Geoscience – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0155 article-title: Classification and regression by randomForest publication-title: R News – start-page: 154 year: 1999 end-page: 161 ident: bb0170 article-title: The potential of height texture measures for the segmentation of airborne laser scanner data publication-title: Fourth international Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bb0075 article-title: Random forests for land cover classification publication-title: Pattern Recognition Letters – volume: 68 start-page: 263 year: 2009 end-page: 276 ident: bb0095 article-title: High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA publication-title: Bulletin of Engineering Geology and the Environment – volume: 109 start-page: 132 year: 2009 end-page: 147 ident: bb0020 article-title: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon publication-title: Geomorphology – volume: 32 start-page: 754 year: 2007 end-page: 769 ident: bb0240 article-title: Use of LIDAR-derived images for mapping old landslides under forest publication-title: Earth Surface Processes and Landforms – volume: 207 start-page: 304 year: 2007 end-page: 318 ident: bb0200 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecological Modelling – volume: 75 start-page: 721 year: 2011 end-page: 733 ident: bb0230 article-title: Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders publication-title: Quaternary Research – volume: 113 start-page: 1843 year: 2009 end-page: 1852 ident: bb0260 article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing publication-title: Remote Sensing of Environment – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0030 article-title: Random forests publication-title: Machine Learning – volume: 25 start-page: 247 year: 2000 end-page: 263 ident: bb0085 article-title: Comparing landslide maps: A case study in the Upper Tiber River basin, central Italy publication-title: Environmental Management – volume: 61 start-page: 5 year: 2012 end-page: 28 ident: bb0120 article-title: Use of LIDAR in landslide investigations: A review publication-title: Natural Hazards – volume: 1 start-page: 180 year: 2008 end-page: 192 ident: bb0195 article-title: A robust built-up area presence index by anisotropic rotation-invariant textural measure publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: PAMI-8 start-page: 679 year: 1986 end-page: 698 ident: bb0035 article-title: A computational approach to edge detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 112 start-page: 42 year: 2012 end-page: 66 ident: bb0090 article-title: Landslide inventory maps: New tools for an old problem publication-title: Earth-Science Reviews – volume: 52 start-page: 615 year: 2007 end-page: 623 ident: bb0150 article-title: Application and verification of fuzzy algebraic operators to landslide susceptibility mapping publication-title: Environmental Geology – volume: 10 start-page: 503 year: 2013 end-page: 513 ident: bb0255 article-title: Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data publication-title: Landslides – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bb0130 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence – volume: 61 start-page: 469 year: 2012 end-page: 480 ident: bb0270 article-title: Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data publication-title: Natural Hazards – volume: 102 start-page: 112 year: 2008 end-page: 131 ident: bb0250 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview publication-title: Engineering Geology – volume: 45 start-page: 209 year: 2008 end-page: 228 ident: bb0115 article-title: Object-based land cover classification using high-posting-density LiDAR data publication-title: GIScience & Remote Sensing – volume: 100 start-page: 356 year: 2006 end-page: 362 ident: bb0145 article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest) publication-title: Remote Sensing of Environment – volume: 7 start-page: 637 year: 2007 end-page: 650 ident: bb0010 article-title: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR publication-title: Natural Hazards and Earth System Sciences – volume: 70 start-page: 673 year: 2013 end-page: 685 ident: bb0040 article-title: Landslide susceptibility mapping using LiDAR and DMC data: A case study in the Three Gorges area, China publication-title: Environmental Earth Sciences – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: bb0135 article-title: Feature selection with the Boruta package publication-title: Journal of Statistical Software – volume: 100 start-page: 356 year: 2006 ident: 10.1016/j.rse.2014.07.004_bb0145 article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest) publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.014 – volume: 29 start-page: 687 year: 2004 ident: 10.1016/j.rse.2014.07.004_bb0175 article-title: Landslide inventories and their statistical properties publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1064 – volume: 173 start-page: 30 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0245 article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.024 – volume: 68 start-page: 263 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0095 article-title: High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-009-0204-3 – volume: 61 start-page: 5 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0120 article-title: Use of LIDAR in landslide investigations: A review publication-title: Natural Hazards doi: 10.1007/s11069-010-9634-2 – volume: 105 start-page: 239 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0225 article-title: Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.09.027 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.rse.2014.07.004_bb0130 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – ident: 10.1016/j.rse.2014.07.004_bb0055 – volume: 76 start-page: 833 year: 2010 ident: 10.1016/j.rse.2014.07.004_bb0190 article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data publication-title: Photogrammetric Engineering and Remote Sensing doi: 10.14358/PERS.76.7.833 – volume: 112 start-page: 42 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0090 article-title: Landslide inventory maps: New tools for an old problem publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2012.02.001 – volume: 47 start-page: 761 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0140 article-title: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2008.2009355 – volume: 20 start-page: 629 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0165 article-title: A geomorphological model for landslide detection using airborne LiDAR data publication-title: Journal of Marine Science and Technology-Taiwan – start-page: 1 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0205 – volume: 89 start-page: 67 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0210 article-title: Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington publication-title: Engineering Geology doi: 10.1016/j.enggeo.2006.09.019 – volume: GE-24 start-page: 997 issue: 6 year: 1986 ident: 10.1016/j.rse.2014.07.004_bb0105 article-title: A context classifier publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.1986.289563 – volume: 113 start-page: 1843 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0260 article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.04.015 – start-page: 154 year: 1999 ident: 10.1016/j.rse.2014.07.004_bb0170 article-title: The potential of height texture measures for the segmentation of airborne laser scanner data – volume: 98 start-page: 284 year: 2005 ident: 10.1016/j.rse.2014.07.004_bb0185 article-title: Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.08.004 – volume: 33 start-page: 4502 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0065 article-title: Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2011.649864 – volume: 73 start-page: 131 year: 2006 ident: 10.1016/j.rse.2014.07.004_bb0080 article-title: Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.07.006 – volume: 1 start-page: 180 year: 2008 ident: 10.1016/j.rse.2014.07.004_bb0195 article-title: A robust built-up area presence index by anisotropic rotation-invariant textural measure publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2008.2002869 – volume: 7 start-page: 637 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0010 article-title: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-7-637-2007 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.rse.2014.07.004_bb0155 article-title: Classification and regression by randomForest publication-title: R News – volume: 54 start-page: 1127 year: 2008 ident: 10.1016/j.rse.2014.07.004_bb0005 article-title: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models publication-title: Environmental Geology doi: 10.1007/s00254-007-0882-8 – volume: 13 start-page: 4 year: 2003 ident: 10.1016/j.rse.2014.07.004_bb0110 article-title: High-resolution LiDAR topography of the Puget Lowland, Washington — A bonanza for earth science publication-title: GSA Today doi: 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2 – volume: 115 start-page: 23 year: 2010 ident: 10.1016/j.rse.2014.07.004_bb0015 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 109 start-page: 132 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0020 article-title: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.027 – volume: 32 start-page: 754 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0240 article-title: Use of LIDAR-derived images for mapping old landslides under forest publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1417 – volume: SMC 3 start-page: 610 issue: 6 year: 1973 ident: 10.1016/j.rse.2014.07.004_bb0100 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1973.4309314 – volume: 8 start-page: 279 year: 2002 ident: 10.1016/j.rse.2014.07.004_bb0265 article-title: Comparing landslide inventories: The map depends on the method publication-title: Environmental & Engineering Geoscience doi: 10.2113/8.4.279 – volume: 70 start-page: 673 issue: 2 year: 2013 ident: 10.1016/j.rse.2014.07.004_bb0040 article-title: Landslide susceptibility mapping using LiDAR and DMC data: A case study in the Three Gorges area, China publication-title: Environmental Earth Sciences doi: 10.1007/s12665-012-2151-8 – volume: 61 start-page: 469 year: 2012 ident: 10.1016/j.rse.2014.07.004_bb0270 article-title: Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data publication-title: Natural Hazards doi: 10.1007/s11069-011-9929-y – volume: 36 start-page: 1 issue: 11 year: 2010 ident: 10.1016/j.rse.2014.07.004_bb0135 article-title: Feature selection with the Boruta package publication-title: Journal of Statistical Software doi: 10.18637/jss.v036.i11 – volume: 102 start-page: 112 year: 2008 ident: 10.1016/j.rse.2014.07.004_bb0250 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview publication-title: Engineering Geology doi: 10.1016/j.enggeo.2008.03.010 – volume: 129 start-page: 59 year: 2011 ident: 10.1016/j.rse.2014.07.004_bb0070 article-title: Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.01.013 – volume: 67 start-page: 351 year: 2005 ident: 10.1016/j.rse.2014.07.004_bb0235 article-title: The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.11.001 – volume: 8 start-page: 325 year: 2011 ident: 10.1016/j.rse.2014.07.004_bb0025 article-title: Landslides mapping in Roznow Lake vicinity, Poland using airborne laser scanning data publication-title: Acta Geodynamica et Geomaterialia – volume: 7 start-page: 3 year: 2006 ident: 10.1016/j.rse.2014.07.004_bb0060 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 45 start-page: 209 year: 2008 ident: 10.1016/j.rse.2014.07.004_bb0115 article-title: Object-based land cover classification using high-posting-density LiDAR data publication-title: GIScience & Remote Sensing doi: 10.2747/1548-1603.45.2.209 – volume: 113 start-page: 57 year: 2009 ident: 10.1016/j.rse.2014.07.004_bb0125 article-title: LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.06.004 – volume: 75 start-page: 721 year: 2011 ident: 10.1016/j.rse.2014.07.004_bb0230 article-title: Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders publication-title: Quaternary Research doi: 10.1016/j.yqres.2011.02.006 – volume: 62 start-page: 389 year: 2013 ident: 10.1016/j.rse.2014.07.004_bb0160 article-title: Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2012.10.022 – volume: 25 start-page: 247 year: 2000 ident: 10.1016/j.rse.2014.07.004_bb0085 article-title: Comparing landslide maps: A case study in the Upper Tiber River basin, central Italy publication-title: Environmental Management doi: 10.1007/s002679910020 – volume: 115 start-page: 2564 year: 2011 ident: 10.1016/j.rse.2014.07.004_bb0215 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.05.013 – volume: 92 start-page: 38 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0220 article-title: Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.02.020 – volume: 88 start-page: 2783 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0050 article-title: Random forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – volume: PAMI-8 start-page: 679 issue: 6 year: 1986 ident: 10.1016/j.rse.2014.07.004_bb0035 article-title: A computational approach to edge detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1986.4767851 – volume: 63 start-page: 397 year: 2011 ident: 10.1016/j.rse.2014.07.004_bb0045 article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania) publication-title: Environmental Earth Sciences doi: 10.1007/s12665-010-0724-y – volume: 52 start-page: 615 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0150 article-title: Application and verification of fuzzy algebraic operators to landslide susceptibility mapping publication-title: Environmental Geology doi: 10.1007/s00254-006-0491-y – volume: 207 start-page: 304 year: 2007 ident: 10.1016/j.rse.2014.07.004_bb0200 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2007.05.011 – volume: 57 start-page: 331 year: 2004 ident: 10.1016/j.rse.2014.07.004_bb0180 article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry publication-title: Geomorphology doi: 10.1016/S0169-555X(03)00164-8 – volume: 10 start-page: 503 year: 2013 ident: 10.1016/j.rse.2014.07.004_bb0255 article-title: Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data publication-title: Landslides doi: 10.1007/s10346-013-0400-x – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rse.2014.07.004_bb0030 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.rse.2014.07.004_bb0075 article-title: Random forests for land cover classification publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.08.011 |
| SSID | ssj0015871 |
| Score | 2.5315225 |
| Snippet | The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 291 |
| SubjectTerms | Accuracy Algorithms Animal, plant and microbial ecology Applied geophysics autocorrelation Biological and medical sciences case studies China Classification Earth sciences Earth, ocean, space Exact sciences and technology Feature selection Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics Landslide mapping Landslides LiDAR Random forest remote sensing Slopes Surface layer surveys synthetic aperture radar Teledetection and vegetation maps Texture The Three Gorges Topographic analysis Training vegetation cover |
| Title | Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China |
| URI | https://dx.doi.org/10.1016/j.rse.2014.07.004 https://www.proquest.com/docview/1639980572 https://www.proquest.com/docview/1651408426 https://www.proquest.com/docview/2000136680 |
| Volume | 152 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbRQSrptSPpYVOip1I1kyVq5tyWv7SuHkkBuxtYjcdnYy9op5NLf3hnZ3hDS7qFH2yNsa6SZT9LMfIS8gzmUp7nykTRcRFjiPEpjXUQFVo7xjpmJwwTn7ydqdia_nCfnG2R_yIXBsMre9nc2PVjr_s5e35t7i7LEHF8hccTBEgHr3oUMdjlBFoOPv1dhHjzRk441T8gIpYeTzRDjtWywUiaXoX5nz9X2F9_0ZJE30GO-o7q4Z7WDKzraIk97DEmn3Wc-IxuuGpHtw9uUNXjYz9lmRB71POeXNyPy8DgQ-d48J7-QkxO3OmlI9p2X1lHr2hCYVVGMhr-g38qD6Q-KMaQUZChARQrfZusr6kNjms8v6mXZXl59olNqwB_SUK2W1j4In8I4cfQYN92bDzQwdb8gZ0eHp_uzqOdgiAz47hZUKJnhTsTGcGsALjiWFqwQ2svCOsGt5sor6bUwzCjuhc8TxwptE8ZsklixTTarunI7hGLlemMU87BIknaSps4WSoN9SD2PlZG7hA29n5m-QDnyZMyzIRLtZwYKy1BhGcNjc2jyftVk0VXnWCcsB5Vmd4ZYBt5jXbPxHfWvXgRrTcA6Kt0lb4fxkMHcxAOXvHL1dZNxhH8aEHG8TgYgK9PQ2f-WiQNSV0qzl__3D6_IY7zqYuNek812ee3eAJhqi3GYLWPyYPr56-zkD1nLHbU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlQkhGCh6gOKkTghQu3E8TrcVqXtAtse0FbqzUr8aIO22dUmReqF386MkyyqgD1wTcZK4rFnvoln5iPkLeyhPMulj4ThSYQtzqMsVkVUYOcY75gZOixwPjuX4wvx5TK93CBHfS0MplV2tr-16cFad1cOu9k8XJQl1vgmAlcchAjY9w5CoAcijYcYgX34ucrz4KkatrR5iYhQvD_aDEleyxpbZXIRGnh2ZG1_cU6PF3kNU-Zbros_zHbwRSdPyZMORNJR-57PyIarBmT7-HfNGtzsNm09IFsd0fn13YA8PA1MvnfPyQ8k5cR_nTRU-85K66h1TcjMqiimw1_RSflp9I1iEikFGQpYkcK72fkN9WEwzWdX82XZXN98pCNqwCHS0K6Wzn0QnsJCcfQU_7rX72mg6n5BLk6Op0fjqCNhiAw47wZ0KJjhLomN4dYAXnAsK1iRKC8K6xJuFZdeCq8Sw4zkPvF56lihbMqYTVObbJPNal65HUKxdb0xknmIkoQdZpmzhVRgIDLPY2nELmH97GvTdShHooyZ7lPRvmtQmEaFaYbn5jDk3WrIom3PsU5Y9CrV99aYBvexbtjBPfWvHgTBJoAdme2SN_160LA58cQlr9z8ttYc8Z8CSByvkwHMyhRM9r9l4gDVpVRs7_--4TXZGk_PJnry-fzrPnmEd9pEuZdks1neuleArJriIOycX8NOH0o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forested+landslide+detection+using+LiDAR+data+and+the+random+forest+algorithm%3A+A+case+study+of+the+Three+Gorges%2C+China&rft.jtitle=Remote+sensing+of+environment&rft.au=WEITAO+CHEN&rft.au=XIANJU+LI&rft.au=YANXIN+WANG&rft.au=GANG+CHEN&rft.date=2014-09-01&rft.pub=Elsevier&rft.issn=0034-4257&rft.volume=152&rft.spage=291&rft.epage=301&rft_id=info:doi/10.1016%2Fj.rse.2014.07.004&rft.externalDBID=n%2Fa&rft.externalDocID=28785369 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |