Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China

The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain sh...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 152; pp. 291 - 301
Main Authors Chen, Weitao, Li, Xianju, Wang, Yanxin, Chen, Gang, Liu, Shengwei
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2014.07.004

Cover

Abstract The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites—Site 1 and Site 2—were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region. •The aspect, DTM, and slope textures based on aspect direction are newly introduced.•Feature selection enhances the classification accuracy and reduces the feature set.•Forested landslides can be detected using a LiDAR DTM and supervised classification.
AbstractList The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites-Site 1 and Site 2-were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region.
The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys and optical remote sensing and synthetic aperture radar (SAR) techniques remains difficult owing to the dense vegetation cover and mountain shadow. In the present study, an area of Zigui County in the Three Gorges region was selected to test the feasibility of detecting landslides by employing novel features extracted from a LiDAR-derived DTM. Additionally, two small sites—Site 1 and Site 2—were selected for training and were used to classify each other. In addition to the aspect, DTM, and slope images, the following feature sets were proposed to improve the accuracy of landslide detection: (1) the mean aspect, DTM, and slope textures based on four texture directions; (2) aspect, DTM, and slope textures based on aspect; and (3) the moving average and standard deviation (stdev) filter of aspect, DTM, and slope. By combining a feature selection method and the RF algorithm, the classification accuracy was evaluated and landslide boundaries were determined. The results can be summarized as follows. (1) The feature selection method demonstrated that the proposed features provided information useful for effective landslide identification. (2) Feature selection achieved an improvement of about 0.44% in the overall classification accuracy, with the feature set reduced by 74%, from 39 to 10; this can speed up the training of the RF model. (3) When fifty randomly selected 20% of landslide pixels (PLS) and 20% of non-landslide pixels (PNLS) (i.e., 20% of PLS and PNLS) were utilized in addition to the selected feature subsets for training, the test sets (i.e., the remaining 80% of PLS and PNLS) yielded an average overall classification accuracy of 78.24%. The cross training and classification for Site 1 and Site 2 provided overall classification accuracies of 62.65% and 64.50%, respectively. This shows that the random sampling design (which suffered some of the effects of spatial auto-correlation) and the proposed method in this present study contribute jointly to the classification accuracy. (4) Using the Canny operator to delineate landslide boundaries based on the classification results of PLS and PNLS, we obtained results consistent with the referenced landslide inventory maps. Thus, the proposed procedure, which combines LiDAR data, a feature selection method, and the RF algorithm, can identify forested landslides effectively in the Three Gorges region. •The aspect, DTM, and slope textures based on aspect direction are newly introduced.•Feature selection enhances the classification accuracy and reduces the feature set.•Forested landslides can be detected using a LiDAR DTM and supervised classification.
Author Chen, Weitao
Li, Xianju
Liu, Shengwei
Wang, Yanxin
Chen, Gang
Author_xml – sequence: 1
  givenname: Weitao
  surname: Chen
  fullname: Chen, Weitao
  organization: Faculty of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Xianju
  surname: Li
  fullname: Li, Xianju
  email: uandlixianju@gmail.com
  organization: Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Yanxin
  surname: Wang
  fullname: Wang, Yanxin
  organization: Faculty of Environment Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
– sequence: 4
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Shengwei
  surname: Liu
  fullname: Liu, Shengwei
  organization: Institute for Remote Sensing Method, China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28785369$$DView record in Pascal Francis
BookMark eNqNkcFuGyEQQFGVSnWSfkBvXCr10N0MC7vLtifLbdJIlipFyRlhGGys9ZICjpS_D46jHnpIc4LDe2iYd0pOpjAhIZ8Y1AxYd7GtY8K6ASZq6GsA8Y7MmOyHCnoQJ2QGwEUlmrb_QE5T2gKwVvZsRh4uQ8SU0dJRTzaN3iK1mNFkHya6T35a06X_Mb-hVmdNC0PzBmksl7Cj7lmmelyH6PNm943OqdEJacp7-0iDe4ZvNxGRXoW4xvSVLjZ-0ufkvdNjwo8v5xm5u_x5u_hVLX9fXS_my8qIpsuVMAIMQ94Yw6yRDSAMK1hx6cTKImdWss51wkluwHTMcadbhJW0LYBtW8vPyJfju_cx_NmXWdXOJ4Nj-SyGfVINlE3wrpPwX5R1LRMgy1xvQPkwSGj7pqCfX1CdjB5dWZzxSd1Hv9PxUTWyly3vhsKxI2diSCmi-4swUIfCaqtKYXUorKBXpXBx-n8c47M-hMtR-_FV8_vRxLL7B49RJeNxMmh9LOmVDf4V-wlzf8Fq
CODEN RSEEA7
CitedBy_id crossref_primary_10_1007_s10346_018_1004_2
crossref_primary_10_1080_10106049_2019_1585484
crossref_primary_10_1016_j_rse_2022_113226
crossref_primary_10_1007_s11629_018_4888_3
crossref_primary_10_3390_rs12030547
crossref_primary_10_3390_rs13183573
crossref_primary_10_1080_19475705_2020_1713913
crossref_primary_10_3390_rs11192300
crossref_primary_10_1007_s12665_023_11190_w
crossref_primary_10_3390_rs14194685
crossref_primary_10_1016_j_rse_2018_02_070
crossref_primary_10_3390_rs16132265
crossref_primary_10_1016_j_catena_2018_12_018
crossref_primary_10_3390_rs9040333
crossref_primary_10_1007_s10346_022_01861_3
crossref_primary_10_3390_app7070730
crossref_primary_10_1109_TGRS_2024_3477910
crossref_primary_10_3390_rs14133216
crossref_primary_10_1007_s11676_018_0832_1
crossref_primary_10_1080_10106049_2017_1404141
crossref_primary_10_1007_s10661_021_09313_6
crossref_primary_10_3390_s19163451
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_1007_s12517_017_2961_9
crossref_primary_10_3390_rs11212530
crossref_primary_10_3390_rs12010082
crossref_primary_10_3390_ijgi6010005
crossref_primary_10_1016_j_jclepro_2020_124409
crossref_primary_10_1080_10106049_2021_1967464
crossref_primary_10_1109_JSTARS_2018_2803784
crossref_primary_10_1080_01431161_2019_1672904
crossref_primary_10_1080_19475705_2017_1345797
crossref_primary_10_3390_su16031238
crossref_primary_10_1016_j_pce_2022_103272
crossref_primary_10_3390_s25010273
crossref_primary_10_1016_j_jseaes_2017_05_005
crossref_primary_10_1016_j_knosys_2025_112979
crossref_primary_10_1007_s12665_016_5732_0
crossref_primary_10_3390_su132111773
crossref_primary_10_1007_s10712_020_09609_1
crossref_primary_10_1016_j_catena_2016_11_032
crossref_primary_10_1080_19475705_2023_2300823
crossref_primary_10_1016_j_rse_2016_01_003
crossref_primary_10_1007_s12665_021_09510_z
crossref_primary_10_3390_ijgi8080321
crossref_primary_10_3390_w12020486
crossref_primary_10_1016_j_ecoinf_2020_101059
crossref_primary_10_1016_j_enggeo_2019_105264
crossref_primary_10_3390_rs8060514
crossref_primary_10_3390_app12189029
crossref_primary_10_1186_s13007_021_00796_5
crossref_primary_10_1007_s10346_020_01444_0
crossref_primary_10_1155_2018_8316918
crossref_primary_10_3390_app13010213
crossref_primary_10_1016_j_scitotenv_2018_06_389
crossref_primary_10_1016_j_scitotenv_2019_03_496
crossref_primary_10_3390_rs11030303
crossref_primary_10_1080_17538947_2024_2441920
crossref_primary_10_3390_rs11182156
crossref_primary_10_3390_rs11222716
crossref_primary_10_1016_j_asr_2022_04_055
crossref_primary_10_26833_ijeg_455595
crossref_primary_10_1016_j_scitotenv_2020_138595
crossref_primary_10_1016_j_petrol_2021_108678
crossref_primary_10_3390_rs8050396
crossref_primary_10_1016_j_rse_2016_10_008
crossref_primary_10_1155_2021_6475942
crossref_primary_10_1088_1755_1315_169_1_012048
crossref_primary_10_1088_1757_899X_603_2_022010
crossref_primary_10_26833_ijeg_440828
crossref_primary_10_1007_s00521_020_05529_8
crossref_primary_10_3390_rs13020199
crossref_primary_10_3390_rs15020531
crossref_primary_10_1016_j_isprsjprs_2015_12_002
crossref_primary_10_1080_07038992_2024_2418087
crossref_primary_10_1016_j_geomorph_2017_04_024
crossref_primary_10_1080_10106049_2018_1499816
crossref_primary_10_3389_fenvs_2022_840540
crossref_primary_10_5194_nhess_24_3991_2024
crossref_primary_10_3390_drones5030097
crossref_primary_10_1080_19475705_2017_1292560
crossref_primary_10_1016_j_asr_2024_06_048
crossref_primary_10_3788_LOP241024
crossref_primary_10_1002_ldr_3255
crossref_primary_10_1109_ACCESS_2019_2935761
crossref_primary_10_1109_ACCESS_2022_3220906
crossref_primary_10_1080_10106049_2024_2387087
crossref_primary_10_1016_j_catena_2025_108948
crossref_primary_10_1016_j_envsoft_2020_104692
crossref_primary_10_3390_f11080830
crossref_primary_10_1007_s10346_018_0986_0
crossref_primary_10_1111_tgis_70021
crossref_primary_10_3390_land13070928
crossref_primary_10_1007_s11069_022_05423_7
crossref_primary_10_3390_rs14225759
crossref_primary_10_1117_1_JRS_13_044529
crossref_primary_10_3390_rs12183054
crossref_primary_10_1016_j_rse_2016_07_018
crossref_primary_10_3390_rs10010023
crossref_primary_10_1080_19475705_2017_1391129
crossref_primary_10_3390_ijgi9040274
crossref_primary_10_1007_s11069_021_04503_4
crossref_primary_10_3390_app12083966
crossref_primary_10_1016_j_geomorph_2018_02_027
crossref_primary_10_2478_ctg_2018_0007
crossref_primary_10_1007_s10064_022_02905_7
crossref_primary_10_3390_rs12091446
crossref_primary_10_3390_app14031100
crossref_primary_10_1109_ACCESS_2020_3006914
crossref_primary_10_1007_s12583_021_1467_2
crossref_primary_10_1080_01431161_2023_2205982
crossref_primary_10_3390_rs16030534
crossref_primary_10_3390_rs70809705
crossref_primary_10_1016_j_geodrs_2017_02_001
crossref_primary_10_3390_rs14122884
crossref_primary_10_1016_j_enggeo_2019_105155
crossref_primary_10_3390_ijerph17124206
crossref_primary_10_1080_15481603_2024_2306740
crossref_primary_10_3390_rs14215490
crossref_primary_10_1016_j_geomorph_2022_108236
crossref_primary_10_1080_19475705_2017_1401013
crossref_primary_10_1007_s12145_022_00889_2
crossref_primary_10_1007_s12665_022_10375_z
crossref_primary_10_3906_yer_1706_25
crossref_primary_10_36498_kbigdt_2017_2_2_95
crossref_primary_10_3390_rs10010015
crossref_primary_10_1109_LGRS_2020_3007183
crossref_primary_10_1007_s10346_024_02425_3
crossref_primary_10_1080_24751839_2019_1704114
crossref_primary_10_1016_j_catena_2018_04_038
crossref_primary_10_1080_15481603_2024_2416727
crossref_primary_10_1038_s41598_024_51917_8
crossref_primary_10_1080_15481603_2021_1947623
crossref_primary_10_1007_s12583_021_1525_9
crossref_primary_10_1007_s11042_016_4311_4
crossref_primary_10_1016_j_geoen_2023_211654
crossref_primary_10_1016_j_asr_2021_11_020
crossref_primary_10_3390_rs13051007
crossref_primary_10_3389_fevo_2023_1169028
crossref_primary_10_1016_j_envsoft_2024_106261
crossref_primary_10_3390_rs15153850
crossref_primary_10_1016_j_marpolbul_2020_111158
crossref_primary_10_3389_fenvs_2023_1132159
crossref_primary_10_3799_dqkx_2022_205
crossref_primary_10_1007_s11707_021_0884_y
crossref_primary_10_3390_app10061952
crossref_primary_10_1007_s11069_022_05318_7
crossref_primary_10_3390_w10081019
crossref_primary_10_3390_ijerph20043538
crossref_primary_10_3390_rs14051182
crossref_primary_10_1007_s11629_018_4833_5
crossref_primary_10_3390_rs10071029
crossref_primary_10_1016_j_catena_2021_105189
crossref_primary_10_3390_rs11111377
crossref_primary_10_3390_rs13234782
crossref_primary_10_1016_j_isprsjprs_2016_01_011
crossref_primary_10_3390_ijgi7100394
Cites_doi 10.1016/j.rse.2005.10.014
10.1002/esp.1064
10.1016/j.geomorph.2012.05.024
10.1007/s10064-009-0204-3
10.1007/s11069-010-9634-2
10.1016/j.geomorph.2008.09.027
10.1016/S0004-3702(97)00043-X
10.14358/PERS.76.7.833
10.1016/j.earscirev.2012.02.001
10.1109/TGRS.2008.2009355
10.1016/j.enggeo.2006.09.019
10.1109/TGRS.1986.289563
10.1016/j.rse.2009.04.015
10.1016/j.rse.2005.08.004
10.1080/01431161.2011.649864
10.1016/j.geomorph.2005.07.006
10.1109/JSTARS.2008.2002869
10.5194/nhess-7-637-2007
10.1007/s00254-007-0882-8
10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
10.1016/j.geomorph.2009.09.025
10.1016/j.geomorph.2009.02.027
10.1002/esp.1417
10.1109/TSMC.1973.4309314
10.2113/8.4.279
10.1007/s12665-012-2151-8
10.1007/s11069-011-9929-y
10.18637/jss.v036.i11
10.1016/j.enggeo.2008.03.010
10.1016/j.geomorph.2011.01.013
10.1016/j.geomorph.2004.11.001
10.1186/1471-2105-7-3
10.2747/1548-1603.45.2.209
10.1016/j.geomorph.2009.06.004
10.1016/j.yqres.2011.02.006
10.1016/j.jseaes.2012.10.022
10.1007/s002679910020
10.1016/j.rse.2011.05.013
10.1016/j.geomorph.2007.02.020
10.1890/07-0539.1
10.1109/TPAMI.1986.4767851
10.1007/s12665-010-0724-y
10.1007/s00254-006-0491-y
10.1016/j.ecolmodel.2007.05.011
10.1016/S0169-555X(03)00164-8
10.1007/s10346-013-0400-x
10.1023/A:1010933404324
10.1016/j.patrec.2005.08.011
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SN
7ST
7UA
C1K
F1W
H96
L.G
SOI
7SU
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.rse.2014.07.004
DatabaseName CrossRef
Pascal-Francis
Ecology Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 301
ExternalDocumentID 28785369
10_1016_j_rse_2014_07_004
S0034425714002491
GeographicLocations Far East
Asia
China
China, People's Rep., Sichuan Prov., Changjiang R., Three Gorges Dam
China, People's Rep
GeographicLocations_xml – name: China, People's Rep., Sichuan Prov., Changjiang R., Three Gorges Dam
– name: China, People's Rep
– name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SN
7ST
7UA
ABUFD
C1K
F1W
H96
L.G
SOI
7SU
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c426t-4c40c1e32cc1dc820e09b0b38f4bde31d816f64f83c0c61f3fa5e0b8d500d55d3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Wed Oct 01 14:14:01 EDT 2025
Tue Oct 07 08:07:15 EDT 2025
Tue Oct 07 09:22:34 EDT 2025
Wed Apr 02 07:46:49 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Oct 01 02:18:10 EDT 2025
Fri Feb 23 02:30:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Topographic analysis
Random forest
The Three Gorges
Landslide mapping
LiDAR
news
algorithms
detection
mountains
surveys
Shadow
remote sensing
vegetation
Extract
dams
forests
Random graph
techniques
landslides
digital terrain models
Lidar
Plant cover
Feasibility
Synthetic aperture radar
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-4c40c1e32cc1dc820e09b0b38f4bde31d816f64f83c0c61f3fa5e0b8d500d55d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1639980572
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_2000136680
proquest_miscellaneous_1651408426
proquest_miscellaneous_1639980572
pascalfrancis_primary_28785369
crossref_primary_10_1016_j_rse_2014_07_004
crossref_citationtrail_10_1016_j_rse_2014_07_004
elsevier_sciencedirect_doi_10_1016_j_rse_2014_07_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Schulz (bb0210) 2007; 89
Guzzetti, Cardinali, Reichenbach, Carrara (bb0085) 2000; 25
Bai, Wang, Lue, Zhou, Hou, Xu (bb0015) 2010; 115
Jaboyedoff, Oppikofer, Abellan, Derron, Loye, Metzger (bb0120) 2012; 61
Diaz-Uriarte (bb0055) 2010
Van Den Eeckhaut, Moeyersons, Nyssen, Abraha, Poesen, Haile (bb0225) 2009; 105
Chen, Li, Wang, Liu (bb0040) 2013; 70
Duro, Franklin, Dube (bb0065) 2012; 33
Ardizzone, Cardinali, Galli, Guzzetti, Reichenbach (bb0010) 2007; 7
Kursa, Rudnicki (bb0135) 2010; 36
Van Den Eeckhaut, Poesen, Verstraeten, Vanacker, Nyssen, Moeyersons (bb0240) 2007; 32
Gislason, Benediktsson, Sveinsson (bb0075) 2006; 27
Glenn, Streutker, Chadwick, Thackray, Dorsch (bb0080) 2006; 73
Liaw, Wiener (bb0155) 2002; 2
Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (bb0090) 2012; 112
Maas (bb0170) 1999
McKean, Roering (bb0180) 2004; 57
Lawrence, Wood, Sheley (bb0145) 2006; 100
Pesaresi, Gerhardinger, Kayitakire (bb0195) 2008; 1
Van Den Eeckhaut, Poesen, Verstraeten, Vanacker, Moeyersons, Nyssen (bb0235) 2005; 67
Liu, Hsiao, Shih (bb0165) 2012; 20
Haugerud, Harding, Johnson, Harless, Weaver, Sherrod (bb0110) 2003; 13
Van den Eeckhaut, Poesen, Gullentops, Vandekerckhove, Hervas (bb0230) 2011; 75
van Westen, Castellanos, Kuriakose (bb0250) 2008; 102
Haralick, Shanmugam, Dinstein (bb0100) 1973; SMC 3
Cutler, Edwards, Beard, Cutler, Hess (bb0050) 2007; 88
Kasai, Ikeda, Asahina, Fujisawa (bb0125) 2009; 113
Im, Jensen, Hodgson (bb0115) 2008; 45
Wang, Joyce, Phillips, Shrestha, Carter (bb0255) 2013; 10
Wills, McCrink (bb0265) 2002; 8
Van Den Eeckhaut, Kerle, Poesen, Hervas (bb0245) 2012; 173
Akgun, Dag, Bulut (bb0005) 2008; 54
Booth, Roering, Perron (bb0020) 2009; 109
Lin, Tseng, Tseng, Fei, Hsieh, Tarolli (bb0160) 2013; 62
Stumpf, Kerle (bb0215) 2011; 115
Rau, Chang, Shao, Lau (bb0270) 2012; 61
Kohavi, John (bb0130) 1997; 97
Haneberg, Cole, Kasali (bb0095) 2009; 68
Peters, De Baets, Verhoest, Samson, Degroeve, De Becker (bb0200) 2007; 207
Metternicht, Hurni, Gogu (bb0185) 2005; 98
Watts, Lawrence, Miller, Montagne (bb0260) 2009; 113
Constantin, Bednarik, Jurchescu, Vlaicu (bb0045) 2011; 63
Lee (bb0150) 2007; 52
Fiorucci, Cardinali, Carla, Rossi, Mondini, Santurri (bb0070) 2011; 129
Breiman (bb0030) 2001; 45
Malamud, Turcotte, Guzzetti, Reichenbach (bb0175) 2004; 29
Diaz-Uriarte, de Andres (bb0060) 2006; 7
Haralick, Joo (bb0105) 1986; GE-24
R Development Core Team (bb0205) 2012
Thiery, Malet, Sterlacchini, Puissant, Maquaire (bb0220) 2007; 92
Borkowski, Perski, Wojciechowski, Jozkow, Wojcik (bb0025) 2011; 8
Na, Zhang, Li, Yu, Liu (bb0190) 2010; 76
Canny (bb0035) 1986; PAMI-8
Laliberte, Rango (bb0140) 2009; 47
Liu (10.1016/j.rse.2014.07.004_bb0165) 2012; 20
Metternicht (10.1016/j.rse.2014.07.004_bb0185) 2005; 98
Fiorucci (10.1016/j.rse.2014.07.004_bb0070) 2011; 129
Lin (10.1016/j.rse.2014.07.004_bb0160) 2013; 62
Diaz-Uriarte (10.1016/j.rse.2014.07.004_bb0060) 2006; 7
Watts (10.1016/j.rse.2014.07.004_bb0260) 2009; 113
Ardizzone (10.1016/j.rse.2014.07.004_bb0010) 2007; 7
Duro (10.1016/j.rse.2014.07.004_bb0065) 2012; 33
Lawrence (10.1016/j.rse.2014.07.004_bb0145) 2006; 100
Kursa (10.1016/j.rse.2014.07.004_bb0135) 2010; 36
Malamud (10.1016/j.rse.2014.07.004_bb0175) 2004; 29
Maas (10.1016/j.rse.2014.07.004_bb0170) 1999
Lee (10.1016/j.rse.2014.07.004_bb0150) 2007; 52
Laliberte (10.1016/j.rse.2014.07.004_bb0140) 2009; 47
Haneberg (10.1016/j.rse.2014.07.004_bb0095) 2009; 68
Wang (10.1016/j.rse.2014.07.004_bb0255) 2013; 10
Akgun (10.1016/j.rse.2014.07.004_bb0005) 2008; 54
Haugerud (10.1016/j.rse.2014.07.004_bb0110) 2003; 13
McKean (10.1016/j.rse.2014.07.004_bb0180) 2004; 57
Pesaresi (10.1016/j.rse.2014.07.004_bb0195) 2008; 1
Borkowski (10.1016/j.rse.2014.07.004_bb0025) 2011; 8
Canny (10.1016/j.rse.2014.07.004_bb0035) 1986; PAMI-8
Haralick (10.1016/j.rse.2014.07.004_bb0100) 1973; SMC 3
Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0225) 2009; 105
Jaboyedoff (10.1016/j.rse.2014.07.004_bb0120) 2012; 61
Na (10.1016/j.rse.2014.07.004_bb0190) 2010; 76
Peters (10.1016/j.rse.2014.07.004_bb0200) 2007; 207
Booth (10.1016/j.rse.2014.07.004_bb0020) 2009; 109
Cutler (10.1016/j.rse.2014.07.004_bb0050) 2007; 88
Diaz-Uriarte (10.1016/j.rse.2014.07.004_bb0055)
Rau (10.1016/j.rse.2014.07.004_bb0270) 2012; 61
Liaw (10.1016/j.rse.2014.07.004_bb0155) 2002; 2
R Development Core Team (10.1016/j.rse.2014.07.004_bb0205) 2012
Chen (10.1016/j.rse.2014.07.004_bb0040) 2013; 70
Haralick (10.1016/j.rse.2014.07.004_bb0105) 1986; GE-24
Kasai (10.1016/j.rse.2014.07.004_bb0125) 2009; 113
Im (10.1016/j.rse.2014.07.004_bb0115) 2008; 45
van Westen (10.1016/j.rse.2014.07.004_bb0250) 2008; 102
Guzzetti (10.1016/j.rse.2014.07.004_bb0090) 2012; 112
Stumpf (10.1016/j.rse.2014.07.004_bb0215) 2011; 115
Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0235) 2005; 67
Gislason (10.1016/j.rse.2014.07.004_bb0075) 2006; 27
Van den Eeckhaut (10.1016/j.rse.2014.07.004_bb0230) 2011; 75
Guzzetti (10.1016/j.rse.2014.07.004_bb0085) 2000; 25
Wills (10.1016/j.rse.2014.07.004_bb0265) 2002; 8
Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0245) 2012; 173
Glenn (10.1016/j.rse.2014.07.004_bb0080) 2006; 73
Breiman (10.1016/j.rse.2014.07.004_bb0030) 2001; 45
Schulz (10.1016/j.rse.2014.07.004_bb0210) 2007; 89
Constantin (10.1016/j.rse.2014.07.004_bb0045) 2011; 63
Bai (10.1016/j.rse.2014.07.004_bb0015) 2010; 115
Kohavi (10.1016/j.rse.2014.07.004_bb0130) 1997; 97
Thiery (10.1016/j.rse.2014.07.004_bb0220) 2007; 92
Van Den Eeckhaut (10.1016/j.rse.2014.07.004_bb0240) 2007; 32
References_xml – volume: 98
  start-page: 284
  year: 2005
  end-page: 303
  ident: bb0185
  article-title: Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments
  publication-title: Remote Sensing of Environment
– year: 2010
  ident: bb0055
  article-title: varSelRF: Variable selection using random forests. R package version 0.7–3
– volume: 62
  start-page: 389
  year: 2013
  end-page: 400
  ident: bb0160
  article-title: Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography
  publication-title: Journal of Asian Earth Sciences
– volume: 92
  start-page: 38
  year: 2007
  end-page: 59
  ident: bb0220
  article-title: Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment
  publication-title: Geomorphology
– volume: 115
  start-page: 23
  year: 2010
  end-page: 31
  ident: bb0015
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
  publication-title: Geomorphology
– volume: 129
  start-page: 59
  year: 2011
  end-page: 70
  ident: bb0070
  article-title: Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images
  publication-title: Geomorphology
– volume: 20
  start-page: 629
  year: 2012
  end-page: 638
  ident: bb0165
  article-title: A geomorphological model for landslide detection using airborne LiDAR data
  publication-title: Journal of Marine Science and Technology-Taiwan
– volume: 47
  start-page: 761
  year: 2009
  end-page: 770
  ident: bb0140
  article-title: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 29
  start-page: 687
  year: 2004
  end-page: 711
  ident: bb0175
  article-title: Landslide inventories and their statistical properties
  publication-title: Earth Surface Processes and Landforms
– volume: 13
  start-page: 4
  year: 2003
  end-page: 10
  ident: bb0110
  article-title: High-resolution LiDAR topography of the Puget Lowland, Washington — A bonanza for earth science
  publication-title: GSA Today
– volume: 76
  start-page: 833
  year: 2010
  end-page: 840
  ident: bb0190
  article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 105
  start-page: 239
  year: 2009
  end-page: 252
  ident: bb0225
  article-title: Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands
  publication-title: Geomorphology
– volume: 88
  start-page: 2783
  year: 2007
  end-page: 2792
  ident: bb0050
  article-title: Random forests for classification in ecology
  publication-title: Ecology
– volume: 73
  start-page: 131
  year: 2006
  end-page: 148
  ident: bb0080
  article-title: Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity
  publication-title: Geomorphology
– volume: 7
  start-page: 3
  year: 2006
  ident: bb0060
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
– volume: 173
  start-page: 30
  year: 2012
  end-page: 42
  ident: bb0245
  article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data
  publication-title: Geomorphology
– volume: SMC 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bb0100
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– start-page: 1
  year: 2012
  end-page: 1731
  ident: bb0205
  article-title: R: A language and environment for statistical computing
– volume: 63
  start-page: 397
  year: 2011
  end-page: 406
  ident: bb0045
  article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)
  publication-title: Environmental Earth Sciences
– volume: GE-24
  start-page: 997
  year: 1986
  end-page: 1007
  ident: bb0105
  article-title: A context classifier
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 113
  start-page: 57
  year: 2009
  end-page: 69
  ident: bb0125
  article-title: LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan
  publication-title: Geomorphology
– volume: 57
  start-page: 331
  year: 2004
  end-page: 351
  ident: bb0180
  article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry
  publication-title: Geomorphology
– volume: 8
  start-page: 325
  year: 2011
  end-page: 333
  ident: bb0025
  article-title: Landslides mapping in Roznow Lake vicinity, Poland using airborne laser scanning data
  publication-title: Acta Geodynamica et Geomaterialia
– volume: 54
  start-page: 1127
  year: 2008
  end-page: 1143
  ident: bb0005
  article-title: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models
  publication-title: Environmental Geology
– volume: 89
  start-page: 67
  year: 2007
  end-page: 87
  ident: bb0210
  article-title: Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington
  publication-title: Engineering Geology
– volume: 115
  start-page: 2564
  year: 2011
  end-page: 2577
  ident: bb0215
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sensing of Environment
– volume: 67
  start-page: 351
  year: 2005
  end-page: 363
  ident: bb0235
  article-title: The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides
  publication-title: Geomorphology
– volume: 33
  start-page: 4502
  year: 2012
  end-page: 4526
  ident: bb0065
  article-title: Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
  publication-title: International Journal of Remote Sensing
– volume: 8
  start-page: 279
  year: 2002
  end-page: 293
  ident: bb0265
  article-title: Comparing landslide inventories: The map depends on the method
  publication-title: Environmental & Engineering Geoscience
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0155
  article-title: Classification and regression by randomForest
  publication-title: R News
– start-page: 154
  year: 1999
  end-page: 161
  ident: bb0170
  article-title: The potential of height texture measures for the segmentation of airborne laser scanner data
  publication-title: Fourth international Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bb0075
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognition Letters
– volume: 68
  start-page: 263
  year: 2009
  end-page: 276
  ident: bb0095
  article-title: High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA
  publication-title: Bulletin of Engineering Geology and the Environment
– volume: 109
  start-page: 132
  year: 2009
  end-page: 147
  ident: bb0020
  article-title: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon
  publication-title: Geomorphology
– volume: 32
  start-page: 754
  year: 2007
  end-page: 769
  ident: bb0240
  article-title: Use of LIDAR-derived images for mapping old landslides under forest
  publication-title: Earth Surface Processes and Landforms
– volume: 207
  start-page: 304
  year: 2007
  end-page: 318
  ident: bb0200
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecological Modelling
– volume: 75
  start-page: 721
  year: 2011
  end-page: 733
  ident: bb0230
  article-title: Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders
  publication-title: Quaternary Research
– volume: 113
  start-page: 1843
  year: 2009
  end-page: 1852
  ident: bb0260
  article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
  publication-title: Remote Sensing of Environment
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0030
  article-title: Random forests
  publication-title: Machine Learning
– volume: 25
  start-page: 247
  year: 2000
  end-page: 263
  ident: bb0085
  article-title: Comparing landslide maps: A case study in the Upper Tiber River basin, central Italy
  publication-title: Environmental Management
– volume: 61
  start-page: 5
  year: 2012
  end-page: 28
  ident: bb0120
  article-title: Use of LIDAR in landslide investigations: A review
  publication-title: Natural Hazards
– volume: 1
  start-page: 180
  year: 2008
  end-page: 192
  ident: bb0195
  article-title: A robust built-up area presence index by anisotropic rotation-invariant textural measure
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: PAMI-8
  start-page: 679
  year: 1986
  end-page: 698
  ident: bb0035
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 112
  start-page: 42
  year: 2012
  end-page: 66
  ident: bb0090
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth-Science Reviews
– volume: 52
  start-page: 615
  year: 2007
  end-page: 623
  ident: bb0150
  article-title: Application and verification of fuzzy algebraic operators to landslide susceptibility mapping
  publication-title: Environmental Geology
– volume: 10
  start-page: 503
  year: 2013
  end-page: 513
  ident: bb0255
  article-title: Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data
  publication-title: Landslides
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bb0130
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– volume: 61
  start-page: 469
  year: 2012
  end-page: 480
  ident: bb0270
  article-title: Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data
  publication-title: Natural Hazards
– volume: 102
  start-page: 112
  year: 2008
  end-page: 131
  ident: bb0250
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview
  publication-title: Engineering Geology
– volume: 45
  start-page: 209
  year: 2008
  end-page: 228
  ident: bb0115
  article-title: Object-based land cover classification using high-posting-density LiDAR data
  publication-title: GIScience & Remote Sensing
– volume: 100
  start-page: 356
  year: 2006
  end-page: 362
  ident: bb0145
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest)
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 637
  year: 2007
  end-page: 650
  ident: bb0010
  article-title: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR
  publication-title: Natural Hazards and Earth System Sciences
– volume: 70
  start-page: 673
  year: 2013
  end-page: 685
  ident: bb0040
  article-title: Landslide susceptibility mapping using LiDAR and DMC data: A case study in the Three Gorges area, China
  publication-title: Environmental Earth Sciences
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: bb0135
  article-title: Feature selection with the Boruta package
  publication-title: Journal of Statistical Software
– volume: 100
  start-page: 356
  year: 2006
  ident: 10.1016/j.rse.2014.07.004_bb0145
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest)
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.014
– volume: 29
  start-page: 687
  year: 2004
  ident: 10.1016/j.rse.2014.07.004_bb0175
  article-title: Landslide inventories and their statistical properties
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1064
– volume: 173
  start-page: 30
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0245
  article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.05.024
– volume: 68
  start-page: 263
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0095
  article-title: High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-009-0204-3
– volume: 61
  start-page: 5
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0120
  article-title: Use of LIDAR in landslide investigations: A review
  publication-title: Natural Hazards
  doi: 10.1007/s11069-010-9634-2
– volume: 105
  start-page: 239
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0225
  article-title: Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.09.027
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.rse.2014.07.004_bb0130
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– ident: 10.1016/j.rse.2014.07.004_bb0055
– volume: 76
  start-page: 833
  year: 2010
  ident: 10.1016/j.rse.2014.07.004_bb0190
  article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.76.7.833
– volume: 112
  start-page: 42
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0090
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2012.02.001
– volume: 47
  start-page: 761
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0140
  article-title: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2008.2009355
– volume: 20
  start-page: 629
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0165
  article-title: A geomorphological model for landslide detection using airborne LiDAR data
  publication-title: Journal of Marine Science and Technology-Taiwan
– start-page: 1
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0205
– volume: 89
  start-page: 67
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0210
  article-title: Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2006.09.019
– volume: GE-24
  start-page: 997
  issue: 6
  year: 1986
  ident: 10.1016/j.rse.2014.07.004_bb0105
  article-title: A context classifier
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.1986.289563
– volume: 113
  start-page: 1843
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0260
  article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.04.015
– start-page: 154
  year: 1999
  ident: 10.1016/j.rse.2014.07.004_bb0170
  article-title: The potential of height texture measures for the segmentation of airborne laser scanner data
– volume: 98
  start-page: 284
  year: 2005
  ident: 10.1016/j.rse.2014.07.004_bb0185
  article-title: Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.08.004
– volume: 33
  start-page: 4502
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0065
  article-title: Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2011.649864
– volume: 73
  start-page: 131
  year: 2006
  ident: 10.1016/j.rse.2014.07.004_bb0080
  article-title: Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.07.006
– volume: 1
  start-page: 180
  year: 2008
  ident: 10.1016/j.rse.2014.07.004_bb0195
  article-title: A robust built-up area presence index by anisotropic rotation-invariant textural measure
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2008.2002869
– volume: 7
  start-page: 637
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0010
  article-title: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-7-637-2007
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.rse.2014.07.004_bb0155
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 54
  start-page: 1127
  year: 2008
  ident: 10.1016/j.rse.2014.07.004_bb0005
  article-title: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models
  publication-title: Environmental Geology
  doi: 10.1007/s00254-007-0882-8
– volume: 13
  start-page: 4
  year: 2003
  ident: 10.1016/j.rse.2014.07.004_bb0110
  article-title: High-resolution LiDAR topography of the Puget Lowland, Washington — A bonanza for earth science
  publication-title: GSA Today
  doi: 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
– volume: 115
  start-page: 23
  year: 2010
  ident: 10.1016/j.rse.2014.07.004_bb0015
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 109
  start-page: 132
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0020
  article-title: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.027
– volume: 32
  start-page: 754
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0240
  article-title: Use of LIDAR-derived images for mapping old landslides under forest
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1417
– volume: SMC 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.rse.2014.07.004_bb0100
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 8
  start-page: 279
  year: 2002
  ident: 10.1016/j.rse.2014.07.004_bb0265
  article-title: Comparing landslide inventories: The map depends on the method
  publication-title: Environmental & Engineering Geoscience
  doi: 10.2113/8.4.279
– volume: 70
  start-page: 673
  issue: 2
  year: 2013
  ident: 10.1016/j.rse.2014.07.004_bb0040
  article-title: Landslide susceptibility mapping using LiDAR and DMC data: A case study in the Three Gorges area, China
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-012-2151-8
– volume: 61
  start-page: 469
  year: 2012
  ident: 10.1016/j.rse.2014.07.004_bb0270
  article-title: Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data
  publication-title: Natural Hazards
  doi: 10.1007/s11069-011-9929-y
– volume: 36
  start-page: 1
  issue: 11
  year: 2010
  ident: 10.1016/j.rse.2014.07.004_bb0135
  article-title: Feature selection with the Boruta package
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v036.i11
– volume: 102
  start-page: 112
  year: 2008
  ident: 10.1016/j.rse.2014.07.004_bb0250
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 129
  start-page: 59
  year: 2011
  ident: 10.1016/j.rse.2014.07.004_bb0070
  article-title: Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.01.013
– volume: 67
  start-page: 351
  year: 2005
  ident: 10.1016/j.rse.2014.07.004_bb0235
  article-title: The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.11.001
– volume: 8
  start-page: 325
  year: 2011
  ident: 10.1016/j.rse.2014.07.004_bb0025
  article-title: Landslides mapping in Roznow Lake vicinity, Poland using airborne laser scanning data
  publication-title: Acta Geodynamica et Geomaterialia
– volume: 7
  start-page: 3
  year: 2006
  ident: 10.1016/j.rse.2014.07.004_bb0060
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume: 45
  start-page: 209
  year: 2008
  ident: 10.1016/j.rse.2014.07.004_bb0115
  article-title: Object-based land cover classification using high-posting-density LiDAR data
  publication-title: GIScience & Remote Sensing
  doi: 10.2747/1548-1603.45.2.209
– volume: 113
  start-page: 57
  year: 2009
  ident: 10.1016/j.rse.2014.07.004_bb0125
  article-title: LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.06.004
– volume: 75
  start-page: 721
  year: 2011
  ident: 10.1016/j.rse.2014.07.004_bb0230
  article-title: Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders
  publication-title: Quaternary Research
  doi: 10.1016/j.yqres.2011.02.006
– volume: 62
  start-page: 389
  year: 2013
  ident: 10.1016/j.rse.2014.07.004_bb0160
  article-title: Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.10.022
– volume: 25
  start-page: 247
  year: 2000
  ident: 10.1016/j.rse.2014.07.004_bb0085
  article-title: Comparing landslide maps: A case study in the Upper Tiber River basin, central Italy
  publication-title: Environmental Management
  doi: 10.1007/s002679910020
– volume: 115
  start-page: 2564
  year: 2011
  ident: 10.1016/j.rse.2014.07.004_bb0215
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.05.013
– volume: 92
  start-page: 38
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0220
  article-title: Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.02.020
– volume: 88
  start-page: 2783
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0050
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: PAMI-8
  start-page: 679
  issue: 6
  year: 1986
  ident: 10.1016/j.rse.2014.07.004_bb0035
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1986.4767851
– volume: 63
  start-page: 397
  year: 2011
  ident: 10.1016/j.rse.2014.07.004_bb0045
  article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-010-0724-y
– volume: 52
  start-page: 615
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0150
  article-title: Application and verification of fuzzy algebraic operators to landslide susceptibility mapping
  publication-title: Environmental Geology
  doi: 10.1007/s00254-006-0491-y
– volume: 207
  start-page: 304
  year: 2007
  ident: 10.1016/j.rse.2014.07.004_bb0200
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2007.05.011
– volume: 57
  start-page: 331
  year: 2004
  ident: 10.1016/j.rse.2014.07.004_bb0180
  article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(03)00164-8
– volume: 10
  start-page: 503
  year: 2013
  ident: 10.1016/j.rse.2014.07.004_bb0255
  article-title: Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data
  publication-title: Landslides
  doi: 10.1007/s10346-013-0400-x
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rse.2014.07.004_bb0030
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.rse.2014.07.004_bb0075
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.08.011
SSID ssj0015871
Score 2.5315225
Snippet The Three Gorges region of central western China is one of the most landslide-prone regions in the world. However, landslide detection based on field surveys...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms Accuracy
Algorithms
Animal, plant and microbial ecology
Applied geophysics
autocorrelation
Biological and medical sciences
case studies
China
Classification
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feature selection
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
Landslide mapping
Landslides
LiDAR
Random forest
remote sensing
Slopes
Surface layer
surveys
synthetic aperture radar
Teledetection and vegetation maps
Texture
The Three Gorges
Topographic analysis
Training
vegetation cover
Title Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China
URI https://dx.doi.org/10.1016/j.rse.2014.07.004
https://www.proquest.com/docview/1639980572
https://www.proquest.com/docview/1651408426
https://www.proquest.com/docview/2000136680
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbRQSrptSPpYVOip1I1kyVq5tyWv7SuHkkBuxtYjcdnYy9op5NLf3hnZ3hDS7qFH2yNsa6SZT9LMfIS8gzmUp7nykTRcRFjiPEpjXUQFVo7xjpmJwwTn7ydqdia_nCfnG2R_yIXBsMre9nc2PVjr_s5e35t7i7LEHF8hccTBEgHr3oUMdjlBFoOPv1dhHjzRk441T8gIpYeTzRDjtWywUiaXoX5nz9X2F9_0ZJE30GO-o7q4Z7WDKzraIk97DEmn3Wc-IxuuGpHtw9uUNXjYz9lmRB71POeXNyPy8DgQ-d48J7-QkxO3OmlI9p2X1lHr2hCYVVGMhr-g38qD6Q-KMaQUZChARQrfZusr6kNjms8v6mXZXl59olNqwB_SUK2W1j4In8I4cfQYN92bDzQwdb8gZ0eHp_uzqOdgiAz47hZUKJnhTsTGcGsALjiWFqwQ2svCOsGt5sor6bUwzCjuhc8TxwptE8ZsklixTTarunI7hGLlemMU87BIknaSps4WSoN9SD2PlZG7hA29n5m-QDnyZMyzIRLtZwYKy1BhGcNjc2jyftVk0VXnWCcsB5Vmd4ZYBt5jXbPxHfWvXgRrTcA6Kt0lb4fxkMHcxAOXvHL1dZNxhH8aEHG8TgYgK9PQ2f-WiQNSV0qzl__3D6_IY7zqYuNek812ee3eAJhqi3GYLWPyYPr56-zkD1nLHbU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlQkhGCh6gOKkTghQu3E8TrcVqXtAtse0FbqzUr8aIO22dUmReqF386MkyyqgD1wTcZK4rFnvoln5iPkLeyhPMulj4ThSYQtzqMsVkVUYOcY75gZOixwPjuX4wvx5TK93CBHfS0MplV2tr-16cFad1cOu9k8XJQl1vgmAlcchAjY9w5CoAcijYcYgX34ucrz4KkatrR5iYhQvD_aDEleyxpbZXIRGnh2ZG1_cU6PF3kNU-Zbros_zHbwRSdPyZMORNJR-57PyIarBmT7-HfNGtzsNm09IFsd0fn13YA8PA1MvnfPyQ8k5cR_nTRU-85K66h1TcjMqiimw1_RSflp9I1iEikFGQpYkcK72fkN9WEwzWdX82XZXN98pCNqwCHS0K6Wzn0QnsJCcfQU_7rX72mg6n5BLk6Op0fjqCNhiAw47wZ0KJjhLomN4dYAXnAsK1iRKC8K6xJuFZdeCq8Sw4zkPvF56lihbMqYTVObbJPNal65HUKxdb0xknmIkoQdZpmzhVRgIDLPY2nELmH97GvTdShHooyZ7lPRvmtQmEaFaYbn5jDk3WrIom3PsU5Y9CrV99aYBvexbtjBPfWvHgTBJoAdme2SN_160LA58cQlr9z8ttYc8Z8CSByvkwHMyhRM9r9l4gDVpVRs7_--4TXZGk_PJnry-fzrPnmEd9pEuZdks1neuleArJriIOycX8NOH0o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forested+landslide+detection+using+LiDAR+data+and+the+random+forest+algorithm%3A+A+case+study+of+the+Three+Gorges%2C+China&rft.jtitle=Remote+sensing+of+environment&rft.au=WEITAO+CHEN&rft.au=XIANJU+LI&rft.au=YANXIN+WANG&rft.au=GANG+CHEN&rft.date=2014-09-01&rft.pub=Elsevier&rft.issn=0034-4257&rft.volume=152&rft.spage=291&rft.epage=301&rft_id=info:doi/10.1016%2Fj.rse.2014.07.004&rft.externalDBID=n%2Fa&rft.externalDocID=28785369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon