Reconfiguring Shortest Paths in Graphs

Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a s...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 86; no. 10; pp. 3309 - 3338
Main Authors Gajjar, Kshitij, Jha, Agastya Vibhuti, Kumar, Manish, Lahiri, Abhiruk
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
1432-0541
DOI10.1007/s00453-024-01263-y

Cover

Abstract Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.
AbstractList Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$ P≠NP), even for relaxed variants of the problem (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$ P≠PSPACE). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer $$k\ge 2$$ k≥2) contiguous vertices on a shortest path can be changed at a time.
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P≠NP), even for relaxed variants of the problem (assuming P≠PSPACE). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k≥2) contiguous vertices on a shortest path can be changed at a time.
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$ P ≠ NP ), even for relaxed variants of the problem (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$ P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer $$k\ge 2$$ k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming ), even for relaxed variants of the problem (assuming ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most (for a fixed integer ) contiguous vertices on a shortest path can be changed at a time.
Author Jha, Agastya Vibhuti
Lahiri, Abhiruk
Gajjar, Kshitij
Kumar, Manish
Author_xml – sequence: 1
  givenname: Kshitij
  surname: Gajjar
  fullname: Gajjar, Kshitij
  organization: Indian Institute of Technology Jodhpur
– sequence: 2
  givenname: Agastya Vibhuti
  surname: Jha
  fullname: Jha, Agastya Vibhuti
  organization: École polytechnique fédérale de Lausanne
– sequence: 3
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Ben-Gurion University of the Negev & Bar-ilan University
– sequence: 4
  givenname: Abhiruk
  surname: Lahiri
  fullname: Lahiri, Abhiruk
  email: abhiruk@iuuk.mff.cuni.cz
  organization: Charles University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39359538$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2KCgbKH-gCjYSEuknr61eSFUKjliIhgdqytpz4ZiYoYwc7Ac2_r6cz5bVArO7C3zn3nuN9suO8Q0I-A_0KlObfIqVC8owykVFgimerD2QCgrOMSgE7ZEIhLzKhIN8j-zHe0kTlpdole7zkspS8mJCTX1h717TzMbRuPv298GHAOEyvzbCI09ZNz4PpF_ET-diYLuLhdh6Qmx_f_8x-ZpdX5xezs8usFkwNmZDAqCjAKlY11jKOFEUhwACYyuYlWCxqK6oqVyXaBk0DiqPgWIiKSmX5AeEb39H1ZvVguk73oV2asNJA9Tq13qTWKbX-l1qvkup0o-rHaom2RjcE86T0ptUvX1y70HN_rwGEYJJDcviydQj-bkwF6GUba-w649CPUXMAJlnJuUro8Sv01o_BpVbWFMhcMSUSdfT8pMdb_jefALYB6uBjDNi8L-i2ntivvwvD0-43VH8Bq8mlAQ
Cites_doi 10.1137/1.9781611975031.13
10.15439/2018F26
10.1016/j.dam.2016.05.024
10.1109/26.142797
10.1016/j.disc.2019.111640
10.1007/978-3-642-19222-7_7
10.1016/j.disc.2017.03.007
10.1016/B978-0-12-417750-5.50011-7
10.1016/B978-0-12-289260-8.50010-8
10.1016/j.jcss.2017.11.003
10.1137/1.9781611972870.5
10.1007/978-3-642-23719-5_58
10.1006/jpdc.1998.1483
10.1057/palgrave.jors.2601022
10.1002/net.3230030305
10.1145/800076.802479
10.1023/A:1018956823693
10.1007/s00453-010-9432-y
10.1016/j.disc.2018.07.007
10.1137/0213038
10.1090/dimacs/074/07
10.1016/j.ejor.2011.12.039
10.1137/0209001
10.1016/S0166-218X(99)00245-0
10.1007/BF01068561
10.1109/71.277792
10.1109/MM.1986.304707
10.1137/1.9781611972863.13
10.1016/0012-365X(95)00217-K
10.1016/j.tcs.2013.09.012
10.1016/j.tcs.2011.05.021
10.1016/S0166-218X(99)00219-X
10.1016/j.dam.2014.01.005
10.1145/321707.321710
10.1016/j.dam.2016.09.044
10.1007/978-3-642-22670-0_1
10.3390/a11040052
10.1137/1.9780898719796
10.1137/18M1194341
10.1145/1498698.1537599
10.1007/s00453-016-0159-2
10.1109/TITS.2016.2531425
10.1016/0012-365X(87)90099-9
10.3390/a11020020
10.1609/aaai.v36i9.21211
10.1109/TITS.2019.2898476
10.1137/0215055
10.1137/16M1065288
10.1007/s00291-009-0176-5
10.1016/j.jcss.2018.02.004
10.1007/s00291-015-0391-1
10.1177/027836498400300405
10.1109/26.328987
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
JQ2
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00453-024-01263-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Computer Science Collection
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3338
ExternalDocumentID 10.1007/s00453-024-01263-y
PMC11442531
39359538
10_1007_s00453_024_01263_y
Genre Journal Article
GrantInformation_xml – fundername: Rita Altura Trust Chair
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: ERC-CZ LL2005
  funderid: http://dx.doi.org/10.13039/501100001823
– fundername: Israel Science Foundation
  grantid: 592/17
  funderid: http://dx.doi.org/10.13039/501100003977
– fundername: H2020 European Research Council
  grantid: 682203-ERC-[Inf-Speed- Tradeoff]
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Faculty of Science, National University of Singapore
  grantid: WBS No. R-252-000-A94-133
  funderid: http://dx.doi.org/10.13039/501100001361
– fundername: Lynne and William Frankel Center for Computer Science
– fundername: Charles University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
JQ2
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c426t-45120481d62bfdd23e0e4841a11abd791de8cd4bb769edfeaf163e43e84b056d3
IEDL.DBID C6C
ISSN 0178-4617
1432-0541
IngestDate Sun Oct 26 04:09:23 EDT 2025
Tue Sep 30 17:07:14 EDT 2025
Thu Oct 02 19:58:49 EDT 2025
Thu Oct 02 16:28:58 EDT 2025
Thu Apr 03 06:55:48 EDT 2025
Wed Oct 01 01:52:09 EDT 2025
Fri Feb 21 02:41:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Bridged graph
Line graph
Hardness of approximation
Shortest path
PSPACE-complete
Circle graph
Reconfiguration
Boolean hypercube
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-45120481d62bfdd23e0e4841a11abd791de8cd4bb769edfeaf163e43e84b056d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s00453-024-01263-y
PMID 39359538
PQID 3111576264
PQPubID 2043795
PageCount 30
ParticipantIDs unpaywall_primary_10_1007_s00453_024_01263_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11442531
proquest_miscellaneous_3112529336
proquest_journals_3111576264
pubmed_primary_39359538
crossref_primary_10_1007_s00453_024_01263_y
springer_journals_10_1007_s00453_024_01263_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationTitleAlternate Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MouawadAENishimuraNRamanVSimjourNSuzukiAOn the parameterized complexity of reconfiguration problemsAlgorithmica20177812742973620830
Dörpinghaus, J., Schrader, R.: A graph-theoretic approach to the train marshalling problem. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 227–231. Poland. https://doi.org/10.15439/2018F26 (2018)
BonsmaPSThe complexity of rerouting shortest pathsTheor. Comput. Sci.20135101123122210
GreenbergAGHajekBEDeflection routing in hypercube networksIEEE Trans. Commun.199240610701081
Even, S., Itai, A.: Queues stacks and graphs. In: Theory of Machines and Computations: Proceedings of an International Symposium on the Theory of Machines and Computations, pp. 71–86. Academic Press, USA. https://doi.org/10.1016/B978-0-12-417750-5.50011-7 (1971)
Demaine, E.D., Demaine, M.L., Eisenstat, S., Lubiw, A., Winslow, A.: Algorithms for solving rubik’s cubes. In: Algorithms–ESA 2011–19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6942, pp. 689–700. https://doi.org/10.1007/978-3-642-23719-5_58 (2011)
PifarréGDGravanoLFelperinSASanzJLCFully adaptive minimal deadlock-free packet routing in hypercubes, meshes, and other networks: algorithms and simulationsIEEE Trans. Parallel Distrib. Syst.199453247263
Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the rubik’s cube optimally is np-complete. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs, vol. 96, pp. 24–12413. Dagstuhl, Germany. https://doi.org/10.4230/LIPIcs.STACS.2018.24 (2018)
SedgewickRWayneKAlgorithms2016New YorkAddison-Wesley
WangSDjahelSZhangZMcManisJNext road rerouting: a multiagent system for mitigating unexpected urban traffic congestionIEEE Trans. Intell. Transp. Syst.2016171028882899
Transport, R.: Review of Maritime Transport, United Nations Conference on Trade and Development. Accessed 8th Sep 2021. https://unctad.org/webflyer/review-maritime-transport-2018 (2018)
Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pp. 263–277. ACM, USA. https://doi.org/10.1145/800076.802479 (1981)
SoltanVChepoiVConditions for invariance of set diameters under d-convexification in a graphCybernetics1983196750756765117
LokshtanovDMouawadAEPanolanFRamanujanMSSaurabhSReconfiguration on sparse graphsJ. Comput. Syst. Sci.2018951221313787581
TierneyKPacinoDJensenRMOn the complexity of container stowage planning problemsDiscret. Appl. Math.20141692252303175073
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, USA. https://doi.org/10.1016/C2013-0-10739-8 (1980)
HayesJPMudgeTNStoutQFColleySPalmerJA microprocessor-based hypercube supercomputerIEEE Micro198665617
CasertaMVoßSSniedovichMApplying the corridor method to a blocks relocation problemOR Spectr.20113349159292843930
Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. ACM J. Exp. Algorithm14 (2009)
HaasRSeyffarthKReconfiguring dominating sets in some well-covered and other classes of graphsDiscrete Math.20173408180218173648209
AsplundJEdohKDHaasRHristovaYNovickBWernerBReconfiguration graphs of shortest pathsDiscret. Math.201834110293829483843282
CasertaMSchwarzeSVoßSA mathematical formulation and complexity considerations for the blocks relocation problemEur. J. Oper. Res.20122191961042880951
TuckerAAn efficient test for circular-arc graphsSIAM J. Comput.198091124557822
Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\times }$$\end{document} N extension of the 15-puzzle is intractable. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, USA, pp. 168–172. http://www.aaai.org/Library/AAAI/1986/aaai86-027.php (1986)
BonsmaPSRerouting shortest paths in planar graphsDiscret. Appl. Math.2017231951123695273
Gajjar, K., Radhakrishnan, J.: Distance-preserving subgraphs of interval graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 39–13913. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2017/7879 (2017)
HopcroftJEJosephDWhitesidesSMovement problems for 2-dimensional linkagesSIAM J. Comput.1984133610629749710
AsplundJWernerBClassification of reconfiguration graphs of shortest path graphs with no induced 4-cyclesDiscret. Math.202034314039413
StamoulisGDTsitsiklisJNThe efficiency of greedy routing in hypercubes and butterfliesIEEE Trans. Commun.1994421130513061
Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer, USA. https://doi.org/10.1007/978-3-642-22670-0_1 (2011)
Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM. https://doi.org/10.1137/1.9781611972870.5 (2007)
Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algorithms. In: Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21, 2006, pp. 129–143. SIAM. https://doi.org/10.1137/1.9781611972863.13 (2006)
KaplanHNussbaumYA simpler linear-time recognition of circular-arc graphsAlgorithmica20116136947372825002
HopcroftJESchwartzJTSharirMOn the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”Int. J. Robot. Res.1984347688
DemaineEDFeketeSPKeldenichPMeijerHSchefferCCoordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretchSIAM J. Comput.2019486172717624036097
FarberMJamisonREOn local convexity in graphsDiscret. Math.1987663231247900046
MouawadAENishimuraNPathakVRamanVShortest reconfiguration paths in the solution space of Boolean formulasSIAM J. Discret. Math.2017313218522003705780
AvrielMPennMShpirerNContainer ship stowage problem: complexity and connection to the coloring of circle graphsDiscret. Appl. Math.20001031–32712791762215
Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths and independent sets. In: Combinatorial Algorithms - 21st International Workshop, IWOCA 2010, July 26-28, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6460, pp. 56–67. London (2010)
DahlhausEHorákPMillerMRyanJFThe train marshalling problemDiscret. Appl. Math.20001031–341541762202
NishimuraNIntroduction to reconfigurationAlgorithms2018114523798903
KaminskiMMedvedevPMilanicMShortest paths between shortest pathsTheor. Comput. Sci.201141239520552102857671
Brandstädt, A., Le, V.B., Spinrad, J.P.: Discrete Mathematics and Applications. SIAM, USA. https://doi.org/10.1137/1.9780898719796 (1999)
Graphclass: Information System on Graph Classes and their Inclusions. https://www.graphclasses.org/classes/gc_1242.html (2021). Accessed 11 Sept 2021
ChepoiVClassification of graphs by means of metric trianglesMethdy Diskret. Analiz.19899675931114014
WilsonIDRoachPAContainer stowage planning: a methodology for generating computerised solutionsJ. Oper. Res. Soc.2000511112481255
HopcroftJEWilfongGTReducing multiple object motion planning to graph searchingSIAM J. Comput.1986153768785850422
Mouawad, A.: On reconfiguration problems: Structure and tractability. PhD thesis, University of Waterloo. http://hdl.handle.net/10012/9183 (2015)
GrammatikakisMDHsuDFSibeynJFPacket routing in fixed-connection networks: a surveyJ. Parallel Distrib. Comput.199854277132
Co-operation, O., Development: Organisation for Economic Co-operation and Development, Ocean shipping and shipbuilding. https://www.oecd.org/ocean/topics/ocean-shipping/ (2021). Accessed 8 Sept 2021
JaehnFRiederJWiehlAMinimizing delays in a shunting yardOR Spectr.20153724074293316655
GavrilFAlgorithms for a maximum clique and a maximum independent set of a circle graphNetworks197333261273340106
Siggers, M.H.: Graphs for which the homomorphism extension reconfiguration problem is trivial. arXiv:abs/2208.04071 (2022)
Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22–March 1, 2022, pp. 9758–9766. AAAI Press, USA. https://ojs.aaai.org/index.php/AAAI/article/view/21211 (2022)
Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 175–192. https://doi.org/10.1090/dimacs/074/07 (2006)
FalsafainHTamannaeiMA novel dynamic programming approach to the train marshalling problemIEEE Trans. Intell. Transp. Syst.2020212701710
AvrielMPennMShpirerNWitteboonSStowage planning for container ships to reduce the number of shiftsAnn. Oper. Res.1998765571
BandeltHChepoiVA helly theorem in weakly modul
PS Bonsma (1263_CR19) 2013; 510
PS Bonsma (1263_CR20) 2017; 231
1263_CR32
F Gavril (1263_CR25) 1973; 3
F Rinaldi (1263_CR37) 2017; 217
1263_CR38
H Falsafain (1263_CR39) 2020; 21
AE Mouawad (1263_CR6) 2017; 31
H Kaplan (1263_CR62) 2011; 61
M Avriel (1263_CR30) 2000; 103
K Tierney (1263_CR31) 2014; 169
D Lokshtanov (1263_CR10) 2018; 95
M Kaminski (1263_CR64) 2011; 412
1263_CR42
1263_CR43
1263_CR40
M Caserta (1263_CR33) 2011; 33
JE Hopcroft (1263_CR16) 1984; 3
E Dahlhaus (1263_CR35) 2000; 103
M Avriel (1263_CR29) 1998; 76
1263_CR1
1263_CR3
1263_CR2
JE Hopcroft (1263_CR17) 1986; 15
1263_CR5
1263_CR4
1263_CR44
H Bandelt (1263_CR59) 1996; 160
1263_CR8
N Nishimura (1263_CR11) 2018; 11
GD Pifarré (1263_CR47) 1994; 5
AE Mouawad (1263_CR14) 2018; 11
JE Hopcroft (1263_CR18) 1984; 13
ID Wilson (1263_CR28) 2000; 51
JP Hayes (1263_CR45) 1986; 6
MD Grammatikakis (1263_CR48) 1998; 54
1263_CR53
1263_CR54
R Haas (1263_CR7) 2017; 340
1263_CR51
1263_CR52
A Tucker (1263_CR61) 1980; 9
V Chepoi (1263_CR60) 1989; 96
ED Demaine (1263_CR56) 2019; 48
1263_CR15
1263_CR55
1263_CR12
J Asplund (1263_CR21) 2018; 341
S Wang (1263_CR50) 2016; 17
F Jaehn (1263_CR36) 2015; 37
M Farber (1263_CR58) 1987; 66
S Even (1263_CR41) 1972; 19
1263_CR63
M Caserta (1263_CR34) 2012; 219
V Soltan (1263_CR57) 1983; 19
1263_CR26
1263_CR27
1263_CR24
AG Greenberg (1263_CR49) 1992; 40
R Sedgewick (1263_CR23) 2016
GD Stamoulis (1263_CR46) 1994; 42
AE Mouawad (1263_CR13) 2017; 78
J Asplund (1263_CR22) 2020; 343
M Wrochna (1263_CR9) 2018; 93
References_xml – reference: Gajjar, K., Radhakrishnan, J.: Distance-preserving subgraphs of interval graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 39–13913. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2017/7879 (2017)
– reference: Kirkpatrick, D., Liu, P.: Characterizing minimum-length coordinated motions for two discs. In: Proceedings of the 28th Canadian Conference on Computational Geometry, CCCG 2016, August 3-5, 2016, Simon Fraser University, Vancouver, British Columbia, Canada, Canada, pp. 252–259 (2016)
– reference: GavrilFAlgorithms for a maximum clique and a maximum independent set of a circle graphNetworks197333261273340106
– reference: Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. ACM J. Exp. Algorithm14 (2009)
– reference: Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, USA. https://doi.org/10.1016/C2013-0-10739-8 (1980)
– reference: BonsmaPSRerouting shortest paths in planar graphsDiscret. Appl. Math.2017231951123695273
– reference: DahlhausEHorákPMillerMRyanJFThe train marshalling problemDiscret. Appl. Math.20001031–341541762202
– reference: MouawadAENishimuraNPathakVRamanVShortest reconfiguration paths in the solution space of Boolean formulasSIAM J. Discret. Math.2017313218522003705780
– reference: Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algorithms. In: Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21, 2006, pp. 129–143. SIAM. https://doi.org/10.1137/1.9781611972863.13 (2006)
– reference: Even, S., Itai, A.: Queues stacks and graphs. In: Theory of Machines and Computations: Proceedings of an International Symposium on the Theory of Machines and Computations, pp. 71–86. Academic Press, USA. https://doi.org/10.1016/B978-0-12-417750-5.50011-7 (1971)
– reference: HopcroftJEWilfongGTReducing multiple object motion planning to graph searchingSIAM J. Comput.1986153768785850422
– reference: JaehnFRiederJWiehlAMinimizing delays in a shunting yardOR Spectr.20153724074293316655
– reference: Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22–March 1, 2022, pp. 9758–9766. AAAI Press, USA. https://ojs.aaai.org/index.php/AAAI/article/view/21211 (2022)
– reference: Mouawad, A.: On reconfiguration problems: Structure and tractability. PhD thesis, University of Waterloo. http://hdl.handle.net/10012/9183 (2015)
– reference: FalsafainHTamannaeiMA novel dynamic programming approach to the train marshalling problemIEEE Trans. Intell. Transp. Syst.2020212701710
– reference: StamoulisGDTsitsiklisJNThe efficiency of greedy routing in hypercubes and butterfliesIEEE Trans. Commun.1994421130513061
– reference: Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\times }$$\end{document} N extension of the 15-puzzle is intractable. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, USA, pp. 168–172. http://www.aaai.org/Library/AAAI/1986/aaai86-027.php (1986)
– reference: Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer, USA. https://doi.org/10.1007/978-3-642-22670-0_1 (2011)
– reference: TierneyKPacinoDJensenRMOn the complexity of container stowage planning problemsDiscret. Appl. Math.20141692252303175073
– reference: DemaineEDFeketeSPKeldenichPMeijerHSchefferCCoordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretchSIAM J. Comput.2019486172717624036097
– reference: AsplundJEdohKDHaasRHristovaYNovickBWernerBReconfiguration graphs of shortest pathsDiscret. Math.201834110293829483843282
– reference: Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfiguration on bipartite graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 185–195. SIAM, USA. https://doi.org/10.1137/1.9781611975031.13 (2018)
– reference: HayesJPMudgeTNStoutQFColleySPalmerJA microprocessor-based hypercube supercomputerIEEE Micro198665617
– reference: Brandstädt, A., Le, V.B., Spinrad, J.P.: Discrete Mathematics and Applications. SIAM, USA. https://doi.org/10.1137/1.9780898719796 (1999)
– reference: MouawadAENishimuraNRamanVSimjourNSuzukiAOn the parameterized complexity of reconfiguration problemsAlgorithmica20177812742973620830
– reference: HopcroftJEJosephDWhitesidesSMovement problems for 2-dimensional linkagesSIAM J. Comput.1984133610629749710
– reference: Dörpinghaus, J., Schrader, R.: A graph-theoretic approach to the train marshalling problem. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 227–231. Poland. https://doi.org/10.15439/2018F26 (2018)
– reference: PifarréGDGravanoLFelperinSASanzJLCFully adaptive minimal deadlock-free packet routing in hypercubes, meshes, and other networks: algorithms and simulationsIEEE Trans. Parallel Distrib. Syst.199453247263
– reference: KaplanHNussbaumYA simpler linear-time recognition of circular-arc graphsAlgorithmica20116136947372825002
– reference: CasertaMVoßSSniedovichMApplying the corridor method to a blocks relocation problemOR Spectr.20113349159292843930
– reference: Graphclass: Information System on Graph Classes and their Inclusions. https://www.graphclasses.org/classes/gc_1242.html (2021). Accessed 11 Sept 2021
– reference: Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths and independent sets. In: Combinatorial Algorithms - 21st International Workshop, IWOCA 2010, July 26-28, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6460, pp. 56–67. London (2010)
– reference: SedgewickRWayneKAlgorithms2016New YorkAddison-Wesley
– reference: AvrielMPennMShpirerNContainer ship stowage problem: complexity and connection to the coloring of circle graphsDiscret. Appl. Math.20001031–32712791762215
– reference: Co-operation, O., Development: Organisation for Economic Co-operation and Development, Ocean shipping and shipbuilding. https://www.oecd.org/ocean/topics/ocean-shipping/ (2021). Accessed 8 Sept 2021
– reference: RinaldiFRizziRSolving the train marshalling problem by inclusion-exclusionDiscret. Appl. Math.20172176856903579943
– reference: KaminskiMMedvedevPMilanicMShortest paths between shortest pathsTheor. Comput. Sci.201141239520552102857671
– reference: CasertaMSchwarzeSVoßSA mathematical formulation and complexity considerations for the blocks relocation problemEur. J. Oper. Res.20122191961042880951
– reference: BandeltHChepoiVA helly theorem in weakly modular spaceDiscret. Math.19961601–325391417558
– reference: Siggers, M.H.: Graphs for which the homomorphism extension reconfiguration problem is trivial. arXiv:abs/2208.04071 (2022)
– reference: WilsonIDRoachPAContainer stowage planning: a methodology for generating computerised solutionsJ. Oper. Res. Soc.2000511112481255
– reference: SoltanVChepoiVConditions for invariance of set diameters under d-convexification in a graphCybernetics1983196750756765117
– reference: AvrielMPennMShpirerNWitteboonSStowage planning for container ships to reduce the number of shiftsAnn. Oper. Res.1998765571
– reference: GreenbergAGHajekBEDeflection routing in hypercube networksIEEE Trans. Commun.199240610701081
– reference: EvenSPnueliALempelAPermutation graphs and transitive graphsJ. ACM1972193400410313120
– reference: BonsmaPSThe complexity of rerouting shortest pathsTheor. Comput. Sci.20135101123122210
– reference: NishimuraNIntroduction to reconfigurationAlgorithms2018114523798903
– reference: Transport, R.: Review of Maritime Transport, United Nations Conference on Trade and Development. Accessed 8th Sep 2021. https://unctad.org/webflyer/review-maritime-transport-2018 (2018)
– reference: WrochnaMReconfiguration in bounded bandwidth and tree-depthJ. Comput. Syst. Sci.2018931103736899
– reference: AsplundJWernerBClassification of reconfiguration graphs of shortest path graphs with no induced 4-cyclesDiscret. Math.202034314039413
– reference: Demaine, E.D., Demaine, M.L., Eisenstat, S., Lubiw, A., Winslow, A.: Algorithms for solving rubik’s cubes. In: Algorithms–ESA 2011–19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6942, pp. 689–700. https://doi.org/10.1007/978-3-642-23719-5_58 (2011)
– reference: HaasRSeyffarthKReconfiguring dominating sets in some well-covered and other classes of graphsDiscrete Math.20173408180218173648209
– reference: Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the rubik’s cube optimally is np-complete. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs, vol. 96, pp. 24–12413. Dagstuhl, Germany. https://doi.org/10.4230/LIPIcs.STACS.2018.24 (2018)
– reference: WangSDjahelSZhangZMcManisJNext road rerouting: a multiagent system for mitigating unexpected urban traffic congestionIEEE Trans. Intell. Transp. Syst.2016171028882899
– reference: GrammatikakisMDHsuDFSibeynJFPacket routing in fixed-connection networks: a surveyJ. Parallel Distrib. Comput.199854277132
– reference: LokshtanovDMouawadAEPanolanFRamanujanMSSaurabhSReconfiguration on sparse graphsJ. Comput. Syst. Sci.2018951221313787581
– reference: MouawadAENishimuraNRamanVSiebertzSVertex cover reconfiguration and beyondAlgorithms2018112203771701
– reference: Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM. https://doi.org/10.1137/1.9781611972870.5 (2007)
– reference: ChepoiVClassification of graphs by means of metric trianglesMethdy Diskret. Analiz.19899675931114014
– reference: HopcroftJESchwartzJTSharirMOn the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”Int. J. Robot. Res.1984347688
– reference: TuckerAAn efficient test for circular-arc graphsSIAM J. Comput.198091124557822
– reference: FarberMJamisonREOn local convexity in graphsDiscret. Math.1987663231247900046
– reference: Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 175–192. https://doi.org/10.1090/dimacs/074/07 (2006)
– reference: Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pp. 263–277. ACM, USA. https://doi.org/10.1145/800076.802479 (1981)
– ident: 1263_CR8
  doi: 10.1137/1.9781611975031.13
– ident: 1263_CR38
  doi: 10.15439/2018F26
– volume: 231
  start-page: 95
  year: 2017
  ident: 1263_CR20
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2016.05.024
– ident: 1263_CR27
– volume: 40
  start-page: 1070
  issue: 6
  year: 1992
  ident: 1263_CR49
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.142797
– volume: 343
  issue: 1
  year: 2020
  ident: 1263_CR22
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2019.111640
– ident: 1263_CR15
  doi: 10.1007/978-3-642-19222-7_7
– volume: 340
  start-page: 1802
  issue: 8
  year: 2017
  ident: 1263_CR7
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2017.03.007
– ident: 1263_CR40
  doi: 10.1016/B978-0-12-417750-5.50011-7
– ident: 1263_CR42
  doi: 10.1016/B978-0-12-289260-8.50010-8
– volume: 93
  start-page: 1
  year: 2018
  ident: 1263_CR9
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2017.11.003
– ident: 1263_CR5
– ident: 1263_CR52
  doi: 10.1137/1.9781611972870.5
– ident: 1263_CR4
  doi: 10.1007/978-3-642-23719-5_58
– volume: 54
  start-page: 77
  issue: 2
  year: 1998
  ident: 1263_CR48
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1998.1483
– volume: 51
  start-page: 1248
  issue: 11
  year: 2000
  ident: 1263_CR28
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601022
– ident: 1263_CR24
– volume: 3
  start-page: 261
  issue: 3
  year: 1973
  ident: 1263_CR25
  publication-title: Networks
  doi: 10.1002/net.3230030305
– ident: 1263_CR44
  doi: 10.1145/800076.802479
– volume: 76
  start-page: 55
  year: 1998
  ident: 1263_CR29
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018956823693
– volume: 61
  start-page: 694
  issue: 3
  year: 2011
  ident: 1263_CR62
  publication-title: Algorithmica
  doi: 10.1007/s00453-010-9432-y
– volume: 341
  start-page: 2938
  issue: 10
  year: 2018
  ident: 1263_CR21
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2018.07.007
– volume: 13
  start-page: 610
  issue: 3
  year: 1984
  ident: 1263_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213038
– ident: 1263_CR51
  doi: 10.1090/dimacs/074/07
– volume: 219
  start-page: 96
  issue: 1
  year: 2012
  ident: 1263_CR34
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.12.039
– volume: 9
  start-page: 1
  issue: 1
  year: 1980
  ident: 1263_CR61
  publication-title: SIAM J. Comput.
  doi: 10.1137/0209001
– volume: 103
  start-page: 271
  issue: 1–3
  year: 2000
  ident: 1263_CR30
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(99)00245-0
– ident: 1263_CR55
– volume: 19
  start-page: 750
  issue: 6
  year: 1983
  ident: 1263_CR57
  publication-title: Cybernetics
  doi: 10.1007/BF01068561
– volume: 5
  start-page: 247
  issue: 3
  year: 1994
  ident: 1263_CR47
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.277792
– volume: 6
  start-page: 6
  issue: 5
  year: 1986
  ident: 1263_CR45
  publication-title: IEEE Micro
  doi: 10.1109/MM.1986.304707
– ident: 1263_CR54
  doi: 10.1137/1.9781611972863.13
– volume: 160
  start-page: 25
  issue: 1–3
  year: 1996
  ident: 1263_CR59
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(95)00217-K
– volume: 510
  start-page: 1
  year: 2013
  ident: 1263_CR19
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.09.012
– volume: 96
  start-page: 75
  year: 1989
  ident: 1263_CR60
  publication-title: Methdy Diskret. Analiz.
– volume: 412
  start-page: 5205
  issue: 39
  year: 2011
  ident: 1263_CR64
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.05.021
– volume: 103
  start-page: 41
  issue: 1–3
  year: 2000
  ident: 1263_CR35
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(99)00219-X
– volume: 169
  start-page: 225
  year: 2014
  ident: 1263_CR31
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2014.01.005
– ident: 1263_CR12
– volume: 19
  start-page: 400
  issue: 3
  year: 1972
  ident: 1263_CR41
  publication-title: J. ACM
  doi: 10.1145/321707.321710
– volume: 217
  start-page: 685
  year: 2017
  ident: 1263_CR37
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2016.09.044
– volume-title: Algorithms
  year: 2016
  ident: 1263_CR23
– ident: 1263_CR3
  doi: 10.1007/978-3-642-22670-0_1
– volume: 11
  start-page: 52
  issue: 4
  year: 2018
  ident: 1263_CR11
  publication-title: Algorithms
  doi: 10.3390/a11040052
– ident: 1263_CR43
  doi: 10.1137/1.9780898719796
– volume: 48
  start-page: 1727
  issue: 6
  year: 2019
  ident: 1263_CR56
  publication-title: SIAM J. Comput.
  doi: 10.1137/18M1194341
– ident: 1263_CR53
  doi: 10.1145/1498698.1537599
– volume: 78
  start-page: 274
  issue: 1
  year: 2017
  ident: 1263_CR13
  publication-title: Algorithmica
  doi: 10.1007/s00453-016-0159-2
– volume: 17
  start-page: 2888
  issue: 10
  year: 2016
  ident: 1263_CR50
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2531425
– ident: 1263_CR26
– volume: 66
  start-page: 231
  issue: 3
  year: 1987
  ident: 1263_CR58
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(87)90099-9
– volume: 11
  start-page: 20
  issue: 2
  year: 2018
  ident: 1263_CR14
  publication-title: Algorithms
  doi: 10.3390/a11020020
– ident: 1263_CR1
  doi: 10.1609/aaai.v36i9.21211
– volume: 21
  start-page: 701
  issue: 2
  year: 2020
  ident: 1263_CR39
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2898476
– ident: 1263_CR32
– volume: 15
  start-page: 768
  issue: 3
  year: 1986
  ident: 1263_CR17
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215055
– volume: 31
  start-page: 2185
  issue: 3
  year: 2017
  ident: 1263_CR6
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/16M1065288
– volume: 33
  start-page: 915
  issue: 4
  year: 2011
  ident: 1263_CR33
  publication-title: OR Spectr.
  doi: 10.1007/s00291-009-0176-5
– volume: 95
  start-page: 122
  year: 2018
  ident: 1263_CR10
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2018.02.004
– volume: 37
  start-page: 407
  issue: 2
  year: 2015
  ident: 1263_CR36
  publication-title: OR Spectr.
  doi: 10.1007/s00291-015-0391-1
– ident: 1263_CR63
– ident: 1263_CR2
– volume: 3
  start-page: 76
  issue: 4
  year: 1984
  ident: 1263_CR16
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836498400300405
– volume: 42
  start-page: 3051
  issue: 11
  year: 1994
  ident: 1263_CR46
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.328987
SSID ssj0012796
Score 2.4017985
Snippet Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3309
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Cargo containers
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Multiprocessing
Packets (communication)
Polynomials
Roads & highways
Shortest-path problems
Stowage (onboard equipment)
Theory of Computation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8jB4gI1tEOhQJqG9DKP6R5zkESE6NImq0laJPUV24kA1FBBJhcpfz9lJA20RYs-xkth35_tOd_cdwIHQvSiPGSUc70UihBYkRnRE0LlRqo1ixnWlnQ_k2Uj8ugguGpoc2wuzkL93ZJ-BzTTaWgkmOZmuwKoMEHd3YHU0GB7_dTWKGAoJ6cbrov9nBHEIbTpkXn7JvBdagpbLFZJtmnQd3k-KWzW9V9fXzzxRf7MeaVQ6AkNbgPLvaFLpo_Rhgd7xbZv8ABsNIPWPaw36CO9MsQWbs2EPfmP7n-C7DVSLfHzp-hr931e2Sres_CFCyNIfF_5PS31dfoZR__TPyRlphiyQFJ1zRQR6fMsZk0mm8yxj3PSMiARVlCqdhTHNjJ1vpHUoY5PlRuWI4IzgJkIxBzLjX6BT3BRmB_wsDQSXaUqjGIPMnlBhJBTXMTrBPGRp4MGP2aEntzWXRtKyJrsjSPAIEncEydSD7kwuSWNXZYIKRDFCQhTnwbf2MVqETXOowtxM3BoWIIrh0oPtWozt5-pGZB55EM0JuF1g2bbnnxTjK8e6jYEj3m-cenA404Wn_3ptG4etvrxh17v_t3wP1phVG1dd2IVOdTcxXxElVXq_MY9Hsr8D8Q
  priority: 102
  providerName: Unpaywall
Title Reconfiguring Shortest Paths in Graphs
URI https://link.springer.com/article/10.1007/s00453-024-01263-y
https://www.ncbi.nlm.nih.gov/pubmed/39359538
https://www.proquest.com/docview/3111576264
https://www.proquest.com/docview/3112529336
https://pubmed.ncbi.nlm.nih.gov/PMC11442531
https://doi.org/10.1007/s00453-024-01263-y
UnpaywallVersion publishedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofFAfvF-qUyqILxpYLr09buIcikPQgT6VpE11IN1wG7J_70nWVaci-tKWJqTNOUnOdzg3gGOhamEWMUo4notECCVIhOiIoHCjVGnJtI1Ku2n7rY64evAeijQ5Jhbmi_3eJvv0jKXR-Eown5PxPCx45skYZv3z0mLAAluLy1SbJwLFchEg8_MYs0LoG7L87iBZWkmXYXGU9-X4Tb68fBJEzTVYKRCkW5-wfB3mdL4Bq9PqDG6xWTfhxGiWedZ9soGI7t2zcasdDN1bxHwDt5u7lyZX9WALOs2L-_MWKaoikASl6ZAInL1J8pL6TGVpyriuaREKKimVKg0immpTkEipwI90mmmZIeTSgusQ-eL5Kd-GSt7L9S64aeIJ7icJDSPUCmtCBqGQXEUotbKAJZ4Dp1Myxf1J8ou4THNsiRojUWNL1HjsQHVKybjYCIMYOU5RpUHY5cBR2YxL2NglZK57I9uHeQg7uO_AzoTw5ecmkcM8dCCcYUnZwaTHnm3Ju882TTZqenggcerA2ZR7H__12zTOSg7_YdZ7_xt9H5aYWYjWHbAKleHrSB8grBmqQ1ioNxuNtrlfPl5fHNr1jdcOq-O7Tvu2_vgOpUfw_A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB7R5YHywNUWwlGChPpSjNZHrkeEgOUUEqxEnyI7ccoKFBDJCi2_nrFzwAKqyrMtJ-MZz3yjuQA2heqGWcQo4agXiRBKkAjREUHjRqnSkmlblXZ65vf64ujKu6qLwoom270JSVpN3Ra7GfRhYo4ma4L5nIy-wKRAB4V1YHLn4M_xXhs9YIGdy2UmzxOBJroulvn4lHGD9A5lvk-WbCOm0zA1zO_l6FHe3r4ySvuz0G_IqXJRbraHpdpOnt50evwsvXMwU6NUd6cSq3mY0PkCzDYTINxaIXyDX8Z7zbPBX1vs6F5cm9TdonTPEVcW7iB3D0w_7OI79Pf3Lnd7pJ68QBK02CURCANMI5nUZypLU8Z1V4tQUEmpVGkQ0VSboUdKBX6k00zLDGGdFlyHyHvPT_kP6OR3uV4CN008wf0koWGEnmdXyCAUkqsILWMWsMRz4Hdz_fF91WAjblsp2yuI8QpiewXxyIHVhkNx_diKGKWKotuE0M6BjXYZn4mJfchc3w3tHuYhtOG-A4sVQ9vPVdXJPHQgHGN1u8G04B5fyQfXthU3epOo9Dh1YKth4st__YuMrVZy_oPq5c-dvg5TvcvTk_jk8Ox4Bb4yI0I2_XAVOuXDUK8hjCrVz_rVPAMjYg-h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD7YFVp90LZWHS_tFEpfanBzmdujrG7tTYRW8G1IJpm6INnFnUX233uSudRFKfqckJmcc5LvC-cG8EmoflpmjBKO9yIRQgmSITsiCG6UKiOZ8Vlpv87i0wvx_TK6vJfF76PdW5dkndPgqjTZ6nCiy8Mu8c0xEed_dBEULOZk_gKWBaKb62EwiAedH4ElvkOX60FPBIJ1kzbz-BqL0PSAbz4Mm-x8p6vwamYncn4rr6_vwdPwNaw1vDI8qg3hDSwZ-xbW254NYXOEN-Cze2_acvTXpyeGv69csO20Cs-RCU7DkQ2_ugrW03dwMTz5MzglTa8EUiDGVkQgcLvSLzpmqtSacdM3IhVUUiqVTjKqjWtTpFQSZ0aXRpZIxIzgJkVtRbHmm9CzY2u2IdRFJHhcFDTN8K3YFzJJheQqQywrE1ZEAXxpxZRP6pIYeVf82As1R6HmXqj5PIC9VpJ5czymOdoBxYcOkrEAPnbDaNjOWyGtGc_8HBYhGeFxAFu14LvP1fnEPA0gXVBJN8EVzV4csaMrXzwb3394TXEawEGrvX__9b9tHHQafsKud563-gd4eX48zH9-O_uxCyvM2aSPF9yDXnUzM_vIeyr13pv2HfOW9ok
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8jB4gI1tEOhQJqG9DKP6R5zkESE6NImq0laJPUV24kA1FBBJhcpfz9lJA20RYs-xkth35_tOd_cdwIHQvSiPGSUc70UihBYkRnRE0LlRqo1ixnWlnQ_k2Uj8ugguGpoc2wuzkL93ZJ-BzTTaWgkmOZmuwKoMEHd3YHU0GB7_dTWKGAoJ6cbrov9nBHEIbTpkXn7JvBdagpbLFZJtmnQd3k-KWzW9V9fXzzxRf7MeaVQ6AkNbgPLvaFLpo_Rhgd7xbZv8ABsNIPWPaw36CO9MsQWbs2EPfmP7n-C7DVSLfHzp-hr931e2Sres_CFCyNIfF_5PS31dfoZR__TPyRlphiyQFJ1zRQR6fMsZk0mm8yxj3PSMiARVlCqdhTHNjJ1vpHUoY5PlRuWI4IzgJkIxBzLjX6BT3BRmB_wsDQSXaUqjGIPMnlBhJBTXMTrBPGRp4MGP2aEntzWXRtKyJrsjSPAIEncEydSD7kwuSWNXZYIKRDFCQhTnwbf2MVqETXOowtxM3BoWIIrh0oPtWozt5-pGZB55EM0JuF1g2bbnnxTjK8e6jYEj3m-cenA404Wn_3ptG4etvrxh17v_t3wP1phVG1dd2IVOdTcxXxElVXq_MY9Hsr8D8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfiguring+Shortest+Paths+in+Graphs&rft.jtitle=Algorithmica&rft.au=Gajjar%2C+Kshitij&rft.au=Jha%2C+Agastya+Vibhuti&rft.au=Kumar%2C+Manish&rft.au=Lahiri%2C+Abhiruk&rft.date=2024-10-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=10&rft.spage=3309&rft.epage=3338&rft_id=info:doi/10.1007%2Fs00453-024-01263-y&rft.externalDocID=10_1007_s00453_024_01263_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon