Reconfiguring Shortest Paths in Graphs
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a s...
Saved in:
| Published in | Algorithmica Vol. 86; no. 10; pp. 3309 - 3338 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-4617 1432-0541 1432-0541 |
| DOI | 10.1007/s00453-024-01263-y |
Cover
| Abstract | Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming
P
≠
NP
), even for relaxed variants of the problem (assuming
P
≠
PSPACE
). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most
k
(for a fixed integer
k
≥
2
) contiguous vertices on a shortest path can be changed at a time. |
|---|---|
| AbstractList | Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time.Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time. Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P ≠ NP ), even for relaxed variants of the problem (assuming P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time. Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$ P≠NP), even for relaxed variants of the problem (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$ P≠PSPACE). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer $$k\ge 2$$ k≥2) contiguous vertices on a shortest path can be changed at a time. Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P≠NP), even for relaxed variants of the problem (assuming P≠PSPACE). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k≥2) contiguous vertices on a shortest path can be changed at a time. Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$ P ≠ NP ), even for relaxed variants of the problem (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$ P ≠ PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer $$k\ge 2$$ k ≥ 2 ) contiguous vertices on a shortest path can be changed at a time. Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming ), even for relaxed variants of the problem (assuming ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most (for a fixed integer ) contiguous vertices on a shortest path can be changed at a time. |
| Author | Jha, Agastya Vibhuti Lahiri, Abhiruk Gajjar, Kshitij Kumar, Manish |
| Author_xml | – sequence: 1 givenname: Kshitij surname: Gajjar fullname: Gajjar, Kshitij organization: Indian Institute of Technology Jodhpur – sequence: 2 givenname: Agastya Vibhuti surname: Jha fullname: Jha, Agastya Vibhuti organization: École polytechnique fédérale de Lausanne – sequence: 3 givenname: Manish surname: Kumar fullname: Kumar, Manish organization: Ben-Gurion University of the Negev & Bar-ilan University – sequence: 4 givenname: Abhiruk surname: Lahiri fullname: Lahiri, Abhiruk email: abhiruk@iuuk.mff.cuni.cz organization: Charles University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39359538$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtP3DAUha2KCgbKH-gCjYSEuknr61eSFUKjliIhgdqytpz4ZiYoYwc7Ac2_r6cz5bVArO7C3zn3nuN9suO8Q0I-A_0KlObfIqVC8owykVFgimerD2QCgrOMSgE7ZEIhLzKhIN8j-zHe0kTlpdole7zkspS8mJCTX1h717TzMbRuPv298GHAOEyvzbCI09ZNz4PpF_ET-diYLuLhdh6Qmx_f_8x-ZpdX5xezs8usFkwNmZDAqCjAKlY11jKOFEUhwACYyuYlWCxqK6oqVyXaBk0DiqPgWIiKSmX5AeEb39H1ZvVguk73oV2asNJA9Tq13qTWKbX-l1qvkup0o-rHaom2RjcE86T0ptUvX1y70HN_rwGEYJJDcviydQj-bkwF6GUba-w649CPUXMAJlnJuUro8Sv01o_BpVbWFMhcMSUSdfT8pMdb_jefALYB6uBjDNi8L-i2ntivvwvD0-43VH8Bq8mlAQ |
| Cites_doi | 10.1137/1.9781611975031.13 10.15439/2018F26 10.1016/j.dam.2016.05.024 10.1109/26.142797 10.1016/j.disc.2019.111640 10.1007/978-3-642-19222-7_7 10.1016/j.disc.2017.03.007 10.1016/B978-0-12-417750-5.50011-7 10.1016/B978-0-12-289260-8.50010-8 10.1016/j.jcss.2017.11.003 10.1137/1.9781611972870.5 10.1007/978-3-642-23719-5_58 10.1006/jpdc.1998.1483 10.1057/palgrave.jors.2601022 10.1002/net.3230030305 10.1145/800076.802479 10.1023/A:1018956823693 10.1007/s00453-010-9432-y 10.1016/j.disc.2018.07.007 10.1137/0213038 10.1090/dimacs/074/07 10.1016/j.ejor.2011.12.039 10.1137/0209001 10.1016/S0166-218X(99)00245-0 10.1007/BF01068561 10.1109/71.277792 10.1109/MM.1986.304707 10.1137/1.9781611972863.13 10.1016/0012-365X(95)00217-K 10.1016/j.tcs.2013.09.012 10.1016/j.tcs.2011.05.021 10.1016/S0166-218X(99)00219-X 10.1016/j.dam.2014.01.005 10.1145/321707.321710 10.1016/j.dam.2016.09.044 10.1007/978-3-642-22670-0_1 10.3390/a11040052 10.1137/1.9780898719796 10.1137/18M1194341 10.1145/1498698.1537599 10.1007/s00453-016-0159-2 10.1109/TITS.2016.2531425 10.1016/0012-365X(87)90099-9 10.3390/a11020020 10.1609/aaai.v36i9.21211 10.1109/TITS.2019.2898476 10.1137/0215055 10.1137/16M1065288 10.1007/s00291-009-0176-5 10.1016/j.jcss.2018.02.004 10.1007/s00291-015-0391-1 10.1177/027836498400300405 10.1109/26.328987 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM JQ2 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00453-024-01263-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 3338 |
| ExternalDocumentID | 10.1007/s00453-024-01263-y PMC11442531 39359538 10_1007_s00453_024_01263_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Rita Altura Trust Chair – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: ERC-CZ LL2005 funderid: http://dx.doi.org/10.13039/501100001823 – fundername: Israel Science Foundation grantid: 592/17 funderid: http://dx.doi.org/10.13039/501100003977 – fundername: H2020 European Research Council grantid: 682203-ERC-[Inf-Speed- Tradeoff] funderid: http://dx.doi.org/10.13039/100010663 – fundername: Faculty of Science, National University of Singapore grantid: WBS No. R-252-000-A94-133 funderid: http://dx.doi.org/10.13039/501100001361 – fundername: Lynne and William Frankel Center for Computer Science – fundername: Charles University |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM JQ2 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c426t-45120481d62bfdd23e0e4841a11abd791de8cd4bb769edfeaf163e43e84b056d3 |
| IEDL.DBID | C6C |
| ISSN | 0178-4617 1432-0541 |
| IngestDate | Sun Oct 26 04:09:23 EDT 2025 Tue Sep 30 17:07:14 EDT 2025 Thu Oct 02 19:58:49 EDT 2025 Thu Oct 02 16:28:58 EDT 2025 Thu Apr 03 06:55:48 EDT 2025 Wed Oct 01 01:52:09 EDT 2025 Fri Feb 21 02:41:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Bridged graph Line graph Hardness of approximation Shortest path PSPACE-complete Circle graph Reconfiguration Boolean hypercube |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-45120481d62bfdd23e0e4841a11abd791de8cd4bb769edfeaf163e43e84b056d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1007/s00453-024-01263-y |
| PMID | 39359538 |
| PQID | 3111576264 |
| PQPubID | 2043795 |
| PageCount | 30 |
| ParticipantIDs | unpaywall_primary_10_1007_s00453_024_01263_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_11442531 proquest_miscellaneous_3112529336 proquest_journals_3111576264 pubmed_primary_39359538 crossref_primary_10_1007_s00453_024_01263_y springer_journals_10_1007_s00453_024_01263_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationTitleAlternate | Algorithmica |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MouawadAENishimuraNRamanVSimjourNSuzukiAOn the parameterized complexity of reconfiguration problemsAlgorithmica20177812742973620830 Dörpinghaus, J., Schrader, R.: A graph-theoretic approach to the train marshalling problem. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 227–231. Poland. https://doi.org/10.15439/2018F26 (2018) BonsmaPSThe complexity of rerouting shortest pathsTheor. Comput. Sci.20135101123122210 GreenbergAGHajekBEDeflection routing in hypercube networksIEEE Trans. Commun.199240610701081 Even, S., Itai, A.: Queues stacks and graphs. In: Theory of Machines and Computations: Proceedings of an International Symposium on the Theory of Machines and Computations, pp. 71–86. Academic Press, USA. https://doi.org/10.1016/B978-0-12-417750-5.50011-7 (1971) Demaine, E.D., Demaine, M.L., Eisenstat, S., Lubiw, A., Winslow, A.: Algorithms for solving rubik’s cubes. In: Algorithms–ESA 2011–19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6942, pp. 689–700. https://doi.org/10.1007/978-3-642-23719-5_58 (2011) PifarréGDGravanoLFelperinSASanzJLCFully adaptive minimal deadlock-free packet routing in hypercubes, meshes, and other networks: algorithms and simulationsIEEE Trans. Parallel Distrib. Syst.199453247263 Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the rubik’s cube optimally is np-complete. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs, vol. 96, pp. 24–12413. Dagstuhl, Germany. https://doi.org/10.4230/LIPIcs.STACS.2018.24 (2018) SedgewickRWayneKAlgorithms2016New YorkAddison-Wesley WangSDjahelSZhangZMcManisJNext road rerouting: a multiagent system for mitigating unexpected urban traffic congestionIEEE Trans. Intell. Transp. Syst.2016171028882899 Transport, R.: Review of Maritime Transport, United Nations Conference on Trade and Development. Accessed 8th Sep 2021. https://unctad.org/webflyer/review-maritime-transport-2018 (2018) Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pp. 263–277. ACM, USA. https://doi.org/10.1145/800076.802479 (1981) SoltanVChepoiVConditions for invariance of set diameters under d-convexification in a graphCybernetics1983196750756765117 LokshtanovDMouawadAEPanolanFRamanujanMSSaurabhSReconfiguration on sparse graphsJ. Comput. Syst. Sci.2018951221313787581 TierneyKPacinoDJensenRMOn the complexity of container stowage planning problemsDiscret. Appl. Math.20141692252303175073 Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, USA. https://doi.org/10.1016/C2013-0-10739-8 (1980) HayesJPMudgeTNStoutQFColleySPalmerJA microprocessor-based hypercube supercomputerIEEE Micro198665617 CasertaMVoßSSniedovichMApplying the corridor method to a blocks relocation problemOR Spectr.20113349159292843930 Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. ACM J. Exp. Algorithm14 (2009) HaasRSeyffarthKReconfiguring dominating sets in some well-covered and other classes of graphsDiscrete Math.20173408180218173648209 AsplundJEdohKDHaasRHristovaYNovickBWernerBReconfiguration graphs of shortest pathsDiscret. Math.201834110293829483843282 CasertaMSchwarzeSVoßSA mathematical formulation and complexity considerations for the blocks relocation problemEur. J. Oper. Res.20122191961042880951 TuckerAAn efficient test for circular-arc graphsSIAM J. Comput.198091124557822 Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\times }$$\end{document} N extension of the 15-puzzle is intractable. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, USA, pp. 168–172. http://www.aaai.org/Library/AAAI/1986/aaai86-027.php (1986) BonsmaPSRerouting shortest paths in planar graphsDiscret. Appl. Math.2017231951123695273 Gajjar, K., Radhakrishnan, J.: Distance-preserving subgraphs of interval graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 39–13913. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2017/7879 (2017) HopcroftJEJosephDWhitesidesSMovement problems for 2-dimensional linkagesSIAM J. Comput.1984133610629749710 AsplundJWernerBClassification of reconfiguration graphs of shortest path graphs with no induced 4-cyclesDiscret. Math.202034314039413 StamoulisGDTsitsiklisJNThe efficiency of greedy routing in hypercubes and butterfliesIEEE Trans. Commun.1994421130513061 Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer, USA. https://doi.org/10.1007/978-3-642-22670-0_1 (2011) Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM. https://doi.org/10.1137/1.9781611972870.5 (2007) Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algorithms. In: Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21, 2006, pp. 129–143. SIAM. https://doi.org/10.1137/1.9781611972863.13 (2006) KaplanHNussbaumYA simpler linear-time recognition of circular-arc graphsAlgorithmica20116136947372825002 HopcroftJESchwartzJTSharirMOn the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”Int. J. Robot. Res.1984347688 DemaineEDFeketeSPKeldenichPMeijerHSchefferCCoordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretchSIAM J. Comput.2019486172717624036097 FarberMJamisonREOn local convexity in graphsDiscret. Math.1987663231247900046 MouawadAENishimuraNPathakVRamanVShortest reconfiguration paths in the solution space of Boolean formulasSIAM J. Discret. Math.2017313218522003705780 AvrielMPennMShpirerNContainer ship stowage problem: complexity and connection to the coloring of circle graphsDiscret. Appl. Math.20001031–32712791762215 Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths and independent sets. In: Combinatorial Algorithms - 21st International Workshop, IWOCA 2010, July 26-28, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6460, pp. 56–67. London (2010) DahlhausEHorákPMillerMRyanJFThe train marshalling problemDiscret. Appl. Math.20001031–341541762202 NishimuraNIntroduction to reconfigurationAlgorithms2018114523798903 KaminskiMMedvedevPMilanicMShortest paths between shortest pathsTheor. Comput. Sci.201141239520552102857671 Brandstädt, A., Le, V.B., Spinrad, J.P.: Discrete Mathematics and Applications. SIAM, USA. https://doi.org/10.1137/1.9780898719796 (1999) Graphclass: Information System on Graph Classes and their Inclusions. https://www.graphclasses.org/classes/gc_1242.html (2021). Accessed 11 Sept 2021 ChepoiVClassification of graphs by means of metric trianglesMethdy Diskret. Analiz.19899675931114014 WilsonIDRoachPAContainer stowage planning: a methodology for generating computerised solutionsJ. Oper. Res. Soc.2000511112481255 HopcroftJEWilfongGTReducing multiple object motion planning to graph searchingSIAM J. Comput.1986153768785850422 Mouawad, A.: On reconfiguration problems: Structure and tractability. PhD thesis, University of Waterloo. http://hdl.handle.net/10012/9183 (2015) GrammatikakisMDHsuDFSibeynJFPacket routing in fixed-connection networks: a surveyJ. Parallel Distrib. Comput.199854277132 Co-operation, O., Development: Organisation for Economic Co-operation and Development, Ocean shipping and shipbuilding. https://www.oecd.org/ocean/topics/ocean-shipping/ (2021). Accessed 8 Sept 2021 JaehnFRiederJWiehlAMinimizing delays in a shunting yardOR Spectr.20153724074293316655 GavrilFAlgorithms for a maximum clique and a maximum independent set of a circle graphNetworks197333261273340106 Siggers, M.H.: Graphs for which the homomorphism extension reconfiguration problem is trivial. arXiv:abs/2208.04071 (2022) Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22–March 1, 2022, pp. 9758–9766. AAAI Press, USA. https://ojs.aaai.org/index.php/AAAI/article/view/21211 (2022) Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 175–192. https://doi.org/10.1090/dimacs/074/07 (2006) FalsafainHTamannaeiMA novel dynamic programming approach to the train marshalling problemIEEE Trans. Intell. Transp. Syst.2020212701710 AvrielMPennMShpirerNWitteboonSStowage planning for container ships to reduce the number of shiftsAnn. Oper. Res.1998765571 BandeltHChepoiVA helly theorem in weakly modul PS Bonsma (1263_CR19) 2013; 510 PS Bonsma (1263_CR20) 2017; 231 1263_CR32 F Gavril (1263_CR25) 1973; 3 F Rinaldi (1263_CR37) 2017; 217 1263_CR38 H Falsafain (1263_CR39) 2020; 21 AE Mouawad (1263_CR6) 2017; 31 H Kaplan (1263_CR62) 2011; 61 M Avriel (1263_CR30) 2000; 103 K Tierney (1263_CR31) 2014; 169 D Lokshtanov (1263_CR10) 2018; 95 M Kaminski (1263_CR64) 2011; 412 1263_CR42 1263_CR43 1263_CR40 M Caserta (1263_CR33) 2011; 33 JE Hopcroft (1263_CR16) 1984; 3 E Dahlhaus (1263_CR35) 2000; 103 M Avriel (1263_CR29) 1998; 76 1263_CR1 1263_CR3 1263_CR2 JE Hopcroft (1263_CR17) 1986; 15 1263_CR5 1263_CR4 1263_CR44 H Bandelt (1263_CR59) 1996; 160 1263_CR8 N Nishimura (1263_CR11) 2018; 11 GD Pifarré (1263_CR47) 1994; 5 AE Mouawad (1263_CR14) 2018; 11 JE Hopcroft (1263_CR18) 1984; 13 ID Wilson (1263_CR28) 2000; 51 JP Hayes (1263_CR45) 1986; 6 MD Grammatikakis (1263_CR48) 1998; 54 1263_CR53 1263_CR54 R Haas (1263_CR7) 2017; 340 1263_CR51 1263_CR52 A Tucker (1263_CR61) 1980; 9 V Chepoi (1263_CR60) 1989; 96 ED Demaine (1263_CR56) 2019; 48 1263_CR15 1263_CR55 1263_CR12 J Asplund (1263_CR21) 2018; 341 S Wang (1263_CR50) 2016; 17 F Jaehn (1263_CR36) 2015; 37 M Farber (1263_CR58) 1987; 66 S Even (1263_CR41) 1972; 19 1263_CR63 M Caserta (1263_CR34) 2012; 219 V Soltan (1263_CR57) 1983; 19 1263_CR26 1263_CR27 1263_CR24 AG Greenberg (1263_CR49) 1992; 40 R Sedgewick (1263_CR23) 2016 GD Stamoulis (1263_CR46) 1994; 42 AE Mouawad (1263_CR13) 2017; 78 J Asplund (1263_CR22) 2020; 343 M Wrochna (1263_CR9) 2018; 93 |
| References_xml | – reference: Gajjar, K., Radhakrishnan, J.: Distance-preserving subgraphs of interval graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 39–13913. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2017/7879 (2017) – reference: Kirkpatrick, D., Liu, P.: Characterizing minimum-length coordinated motions for two discs. In: Proceedings of the 28th Canadian Conference on Computational Geometry, CCCG 2016, August 3-5, 2016, Simon Fraser University, Vancouver, British Columbia, Canada, Canada, pp. 252–259 (2016) – reference: GavrilFAlgorithms for a maximum clique and a maximum independent set of a circle graphNetworks197333261273340106 – reference: Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. ACM J. Exp. Algorithm14 (2009) – reference: Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, USA. https://doi.org/10.1016/C2013-0-10739-8 (1980) – reference: BonsmaPSRerouting shortest paths in planar graphsDiscret. Appl. Math.2017231951123695273 – reference: DahlhausEHorákPMillerMRyanJFThe train marshalling problemDiscret. Appl. Math.20001031–341541762202 – reference: MouawadAENishimuraNPathakVRamanVShortest reconfiguration paths in the solution space of Boolean formulasSIAM J. Discret. Math.2017313218522003705780 – reference: Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algorithms. In: Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21, 2006, pp. 129–143. SIAM. https://doi.org/10.1137/1.9781611972863.13 (2006) – reference: Even, S., Itai, A.: Queues stacks and graphs. In: Theory of Machines and Computations: Proceedings of an International Symposium on the Theory of Machines and Computations, pp. 71–86. Academic Press, USA. https://doi.org/10.1016/B978-0-12-417750-5.50011-7 (1971) – reference: HopcroftJEWilfongGTReducing multiple object motion planning to graph searchingSIAM J. Comput.1986153768785850422 – reference: JaehnFRiederJWiehlAMinimizing delays in a shunting yardOR Spectr.20153724074293316655 – reference: Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22–March 1, 2022, pp. 9758–9766. AAAI Press, USA. https://ojs.aaai.org/index.php/AAAI/article/view/21211 (2022) – reference: Mouawad, A.: On reconfiguration problems: Structure and tractability. PhD thesis, University of Waterloo. http://hdl.handle.net/10012/9183 (2015) – reference: FalsafainHTamannaeiMA novel dynamic programming approach to the train marshalling problemIEEE Trans. Intell. Transp. Syst.2020212701710 – reference: StamoulisGDTsitsiklisJNThe efficiency of greedy routing in hypercubes and butterfliesIEEE Trans. Commun.1994421130513061 – reference: Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\times }$$\end{document} N extension of the 15-puzzle is intractable. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, USA, pp. 168–172. http://www.aaai.org/Library/AAAI/1986/aaai86-027.php (1986) – reference: Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer, USA. https://doi.org/10.1007/978-3-642-22670-0_1 (2011) – reference: TierneyKPacinoDJensenRMOn the complexity of container stowage planning problemsDiscret. Appl. Math.20141692252303175073 – reference: DemaineEDFeketeSPKeldenichPMeijerHSchefferCCoordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretchSIAM J. Comput.2019486172717624036097 – reference: AsplundJEdohKDHaasRHristovaYNovickBWernerBReconfiguration graphs of shortest pathsDiscret. Math.201834110293829483843282 – reference: Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfiguration on bipartite graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 185–195. SIAM, USA. https://doi.org/10.1137/1.9781611975031.13 (2018) – reference: HayesJPMudgeTNStoutQFColleySPalmerJA microprocessor-based hypercube supercomputerIEEE Micro198665617 – reference: Brandstädt, A., Le, V.B., Spinrad, J.P.: Discrete Mathematics and Applications. SIAM, USA. https://doi.org/10.1137/1.9780898719796 (1999) – reference: MouawadAENishimuraNRamanVSimjourNSuzukiAOn the parameterized complexity of reconfiguration problemsAlgorithmica20177812742973620830 – reference: HopcroftJEJosephDWhitesidesSMovement problems for 2-dimensional linkagesSIAM J. Comput.1984133610629749710 – reference: Dörpinghaus, J., Schrader, R.: A graph-theoretic approach to the train marshalling problem. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 227–231. Poland. https://doi.org/10.15439/2018F26 (2018) – reference: PifarréGDGravanoLFelperinSASanzJLCFully adaptive minimal deadlock-free packet routing in hypercubes, meshes, and other networks: algorithms and simulationsIEEE Trans. Parallel Distrib. Syst.199453247263 – reference: KaplanHNussbaumYA simpler linear-time recognition of circular-arc graphsAlgorithmica20116136947372825002 – reference: CasertaMVoßSSniedovichMApplying the corridor method to a blocks relocation problemOR Spectr.20113349159292843930 – reference: Graphclass: Information System on Graph Classes and their Inclusions. https://www.graphclasses.org/classes/gc_1242.html (2021). Accessed 11 Sept 2021 – reference: Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths and independent sets. In: Combinatorial Algorithms - 21st International Workshop, IWOCA 2010, July 26-28, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6460, pp. 56–67. London (2010) – reference: SedgewickRWayneKAlgorithms2016New YorkAddison-Wesley – reference: AvrielMPennMShpirerNContainer ship stowage problem: complexity and connection to the coloring of circle graphsDiscret. Appl. Math.20001031–32712791762215 – reference: Co-operation, O., Development: Organisation for Economic Co-operation and Development, Ocean shipping and shipbuilding. https://www.oecd.org/ocean/topics/ocean-shipping/ (2021). Accessed 8 Sept 2021 – reference: RinaldiFRizziRSolving the train marshalling problem by inclusion-exclusionDiscret. Appl. Math.20172176856903579943 – reference: KaminskiMMedvedevPMilanicMShortest paths between shortest pathsTheor. Comput. Sci.201141239520552102857671 – reference: CasertaMSchwarzeSVoßSA mathematical formulation and complexity considerations for the blocks relocation problemEur. J. Oper. Res.20122191961042880951 – reference: BandeltHChepoiVA helly theorem in weakly modular spaceDiscret. Math.19961601–325391417558 – reference: Siggers, M.H.: Graphs for which the homomorphism extension reconfiguration problem is trivial. arXiv:abs/2208.04071 (2022) – reference: WilsonIDRoachPAContainer stowage planning: a methodology for generating computerised solutionsJ. Oper. Res. Soc.2000511112481255 – reference: SoltanVChepoiVConditions for invariance of set diameters under d-convexification in a graphCybernetics1983196750756765117 – reference: AvrielMPennMShpirerNWitteboonSStowage planning for container ships to reduce the number of shiftsAnn. Oper. Res.1998765571 – reference: GreenbergAGHajekBEDeflection routing in hypercube networksIEEE Trans. Commun.199240610701081 – reference: EvenSPnueliALempelAPermutation graphs and transitive graphsJ. ACM1972193400410313120 – reference: BonsmaPSThe complexity of rerouting shortest pathsTheor. Comput. Sci.20135101123122210 – reference: NishimuraNIntroduction to reconfigurationAlgorithms2018114523798903 – reference: Transport, R.: Review of Maritime Transport, United Nations Conference on Trade and Development. Accessed 8th Sep 2021. https://unctad.org/webflyer/review-maritime-transport-2018 (2018) – reference: WrochnaMReconfiguration in bounded bandwidth and tree-depthJ. Comput. Syst. Sci.2018931103736899 – reference: AsplundJWernerBClassification of reconfiguration graphs of shortest path graphs with no induced 4-cyclesDiscret. Math.202034314039413 – reference: Demaine, E.D., Demaine, M.L., Eisenstat, S., Lubiw, A., Winslow, A.: Algorithms for solving rubik’s cubes. In: Algorithms–ESA 2011–19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6942, pp. 689–700. https://doi.org/10.1007/978-3-642-23719-5_58 (2011) – reference: HaasRSeyffarthKReconfiguring dominating sets in some well-covered and other classes of graphsDiscrete Math.20173408180218173648209 – reference: Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the rubik’s cube optimally is np-complete. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs, vol. 96, pp. 24–12413. Dagstuhl, Germany. https://doi.org/10.4230/LIPIcs.STACS.2018.24 (2018) – reference: WangSDjahelSZhangZMcManisJNext road rerouting: a multiagent system for mitigating unexpected urban traffic congestionIEEE Trans. Intell. Transp. Syst.2016171028882899 – reference: GrammatikakisMDHsuDFSibeynJFPacket routing in fixed-connection networks: a surveyJ. Parallel Distrib. Comput.199854277132 – reference: LokshtanovDMouawadAEPanolanFRamanujanMSSaurabhSReconfiguration on sparse graphsJ. Comput. Syst. Sci.2018951221313787581 – reference: MouawadAENishimuraNRamanVSiebertzSVertex cover reconfiguration and beyondAlgorithms2018112203771701 – reference: Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM. https://doi.org/10.1137/1.9781611972870.5 (2007) – reference: ChepoiVClassification of graphs by means of metric trianglesMethdy Diskret. Analiz.19899675931114014 – reference: HopcroftJESchwartzJTSharirMOn the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”Int. J. Robot. Res.1984347688 – reference: TuckerAAn efficient test for circular-arc graphsSIAM J. Comput.198091124557822 – reference: FarberMJamisonREOn local convexity in graphsDiscret. Math.1987663231247900046 – reference: Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 175–192. https://doi.org/10.1090/dimacs/074/07 (2006) – reference: Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pp. 263–277. ACM, USA. https://doi.org/10.1145/800076.802479 (1981) – ident: 1263_CR8 doi: 10.1137/1.9781611975031.13 – ident: 1263_CR38 doi: 10.15439/2018F26 – volume: 231 start-page: 95 year: 2017 ident: 1263_CR20 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2016.05.024 – ident: 1263_CR27 – volume: 40 start-page: 1070 issue: 6 year: 1992 ident: 1263_CR49 publication-title: IEEE Trans. Commun. doi: 10.1109/26.142797 – volume: 343 issue: 1 year: 2020 ident: 1263_CR22 publication-title: Discret. Math. doi: 10.1016/j.disc.2019.111640 – ident: 1263_CR15 doi: 10.1007/978-3-642-19222-7_7 – volume: 340 start-page: 1802 issue: 8 year: 2017 ident: 1263_CR7 publication-title: Discrete Math. doi: 10.1016/j.disc.2017.03.007 – ident: 1263_CR40 doi: 10.1016/B978-0-12-417750-5.50011-7 – ident: 1263_CR42 doi: 10.1016/B978-0-12-289260-8.50010-8 – volume: 93 start-page: 1 year: 2018 ident: 1263_CR9 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2017.11.003 – ident: 1263_CR5 – ident: 1263_CR52 doi: 10.1137/1.9781611972870.5 – ident: 1263_CR4 doi: 10.1007/978-3-642-23719-5_58 – volume: 54 start-page: 77 issue: 2 year: 1998 ident: 1263_CR48 publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.1998.1483 – volume: 51 start-page: 1248 issue: 11 year: 2000 ident: 1263_CR28 publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601022 – ident: 1263_CR24 – volume: 3 start-page: 261 issue: 3 year: 1973 ident: 1263_CR25 publication-title: Networks doi: 10.1002/net.3230030305 – ident: 1263_CR44 doi: 10.1145/800076.802479 – volume: 76 start-page: 55 year: 1998 ident: 1263_CR29 publication-title: Ann. Oper. Res. doi: 10.1023/A:1018956823693 – volume: 61 start-page: 694 issue: 3 year: 2011 ident: 1263_CR62 publication-title: Algorithmica doi: 10.1007/s00453-010-9432-y – volume: 341 start-page: 2938 issue: 10 year: 2018 ident: 1263_CR21 publication-title: Discret. Math. doi: 10.1016/j.disc.2018.07.007 – volume: 13 start-page: 610 issue: 3 year: 1984 ident: 1263_CR18 publication-title: SIAM J. Comput. doi: 10.1137/0213038 – ident: 1263_CR51 doi: 10.1090/dimacs/074/07 – volume: 219 start-page: 96 issue: 1 year: 2012 ident: 1263_CR34 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.12.039 – volume: 9 start-page: 1 issue: 1 year: 1980 ident: 1263_CR61 publication-title: SIAM J. Comput. doi: 10.1137/0209001 – volume: 103 start-page: 271 issue: 1–3 year: 2000 ident: 1263_CR30 publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(99)00245-0 – ident: 1263_CR55 – volume: 19 start-page: 750 issue: 6 year: 1983 ident: 1263_CR57 publication-title: Cybernetics doi: 10.1007/BF01068561 – volume: 5 start-page: 247 issue: 3 year: 1994 ident: 1263_CR47 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.277792 – volume: 6 start-page: 6 issue: 5 year: 1986 ident: 1263_CR45 publication-title: IEEE Micro doi: 10.1109/MM.1986.304707 – ident: 1263_CR54 doi: 10.1137/1.9781611972863.13 – volume: 160 start-page: 25 issue: 1–3 year: 1996 ident: 1263_CR59 publication-title: Discret. Math. doi: 10.1016/0012-365X(95)00217-K – volume: 510 start-page: 1 year: 2013 ident: 1263_CR19 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2013.09.012 – volume: 96 start-page: 75 year: 1989 ident: 1263_CR60 publication-title: Methdy Diskret. Analiz. – volume: 412 start-page: 5205 issue: 39 year: 2011 ident: 1263_CR64 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2011.05.021 – volume: 103 start-page: 41 issue: 1–3 year: 2000 ident: 1263_CR35 publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(99)00219-X – volume: 169 start-page: 225 year: 2014 ident: 1263_CR31 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2014.01.005 – ident: 1263_CR12 – volume: 19 start-page: 400 issue: 3 year: 1972 ident: 1263_CR41 publication-title: J. ACM doi: 10.1145/321707.321710 – volume: 217 start-page: 685 year: 2017 ident: 1263_CR37 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2016.09.044 – volume-title: Algorithms year: 2016 ident: 1263_CR23 – ident: 1263_CR3 doi: 10.1007/978-3-642-22670-0_1 – volume: 11 start-page: 52 issue: 4 year: 2018 ident: 1263_CR11 publication-title: Algorithms doi: 10.3390/a11040052 – ident: 1263_CR43 doi: 10.1137/1.9780898719796 – volume: 48 start-page: 1727 issue: 6 year: 2019 ident: 1263_CR56 publication-title: SIAM J. Comput. doi: 10.1137/18M1194341 – ident: 1263_CR53 doi: 10.1145/1498698.1537599 – volume: 78 start-page: 274 issue: 1 year: 2017 ident: 1263_CR13 publication-title: Algorithmica doi: 10.1007/s00453-016-0159-2 – volume: 17 start-page: 2888 issue: 10 year: 2016 ident: 1263_CR50 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2531425 – ident: 1263_CR26 – volume: 66 start-page: 231 issue: 3 year: 1987 ident: 1263_CR58 publication-title: Discret. Math. doi: 10.1016/0012-365X(87)90099-9 – volume: 11 start-page: 20 issue: 2 year: 2018 ident: 1263_CR14 publication-title: Algorithms doi: 10.3390/a11020020 – ident: 1263_CR1 doi: 10.1609/aaai.v36i9.21211 – volume: 21 start-page: 701 issue: 2 year: 2020 ident: 1263_CR39 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2898476 – ident: 1263_CR32 – volume: 15 start-page: 768 issue: 3 year: 1986 ident: 1263_CR17 publication-title: SIAM J. Comput. doi: 10.1137/0215055 – volume: 31 start-page: 2185 issue: 3 year: 2017 ident: 1263_CR6 publication-title: SIAM J. Discret. Math. doi: 10.1137/16M1065288 – volume: 33 start-page: 915 issue: 4 year: 2011 ident: 1263_CR33 publication-title: OR Spectr. doi: 10.1007/s00291-009-0176-5 – volume: 95 start-page: 122 year: 2018 ident: 1263_CR10 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2018.02.004 – volume: 37 start-page: 407 issue: 2 year: 2015 ident: 1263_CR36 publication-title: OR Spectr. doi: 10.1007/s00291-015-0391-1 – ident: 1263_CR63 – ident: 1263_CR2 – volume: 3 start-page: 76 issue: 4 year: 1984 ident: 1263_CR16 publication-title: Int. J. Robot. Res. doi: 10.1177/027836498400300405 – volume: 42 start-page: 3051 issue: 11 year: 1994 ident: 1263_CR46 publication-title: IEEE Trans. Commun. doi: 10.1109/26.328987 |
| SSID | ssj0012796 |
| Score | 2.4017985 |
| Snippet | Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 3309 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Apexes Cargo containers Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematics of Computing Multiprocessing Packets (communication) Polynomials Roads & highways Shortest-path problems Stowage (onboard equipment) Theory of Computation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8jB4gI1tEOhQJqG9DKP6R5zkESE6NImq0laJPUV24kA1FBBJhcpfz9lJA20RYs-xkth35_tOd_cdwIHQvSiPGSUc70UihBYkRnRE0LlRqo1ixnWlnQ_k2Uj8ugguGpoc2wuzkL93ZJ-BzTTaWgkmOZmuwKoMEHd3YHU0GB7_dTWKGAoJ6cbrov9nBHEIbTpkXn7JvBdagpbLFZJtmnQd3k-KWzW9V9fXzzxRf7MeaVQ6AkNbgPLvaFLpo_Rhgd7xbZv8ABsNIPWPaw36CO9MsQWbs2EPfmP7n-C7DVSLfHzp-hr931e2Sres_CFCyNIfF_5PS31dfoZR__TPyRlphiyQFJ1zRQR6fMsZk0mm8yxj3PSMiARVlCqdhTHNjJ1vpHUoY5PlRuWI4IzgJkIxBzLjX6BT3BRmB_wsDQSXaUqjGIPMnlBhJBTXMTrBPGRp4MGP2aEntzWXRtKyJrsjSPAIEncEydSD7kwuSWNXZYIKRDFCQhTnwbf2MVqETXOowtxM3BoWIIrh0oPtWozt5-pGZB55EM0JuF1g2bbnnxTjK8e6jYEj3m-cenA404Wn_3ptG4etvrxh17v_t3wP1phVG1dd2IVOdTcxXxElVXq_MY9Hsr8D8Q priority: 102 providerName: Unpaywall |
| Title | Reconfiguring Shortest Paths in Graphs |
| URI | https://link.springer.com/article/10.1007/s00453-024-01263-y https://www.ncbi.nlm.nih.gov/pubmed/39359538 https://www.proquest.com/docview/3111576264 https://www.proquest.com/docview/3112529336 https://pubmed.ncbi.nlm.nih.gov/PMC11442531 https://doi.org/10.1007/s00453-024-01263-y |
| UnpaywallVersion | publishedVersion |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AFBBN dateStart: 19861101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofFAfvF-qUyqILxpYLr09buIcikPQgT6VpE11IN1wG7J_70nWVaci-tKWJqTNOUnOdzg3gGOhamEWMUo4notECCVIhOiIoHCjVGnJtI1Ku2n7rY64evAeijQ5Jhbmi_3eJvv0jKXR-Eown5PxPCx45skYZv3z0mLAAluLy1SbJwLFchEg8_MYs0LoG7L87iBZWkmXYXGU9-X4Tb68fBJEzTVYKRCkW5-wfB3mdL4Bq9PqDG6xWTfhxGiWedZ9soGI7t2zcasdDN1bxHwDt5u7lyZX9WALOs2L-_MWKaoikASl6ZAInL1J8pL6TGVpyriuaREKKimVKg0immpTkEipwI90mmmZIeTSgusQ-eL5Kd-GSt7L9S64aeIJ7icJDSPUCmtCBqGQXEUotbKAJZ4Dp1Myxf1J8ou4THNsiRojUWNL1HjsQHVKybjYCIMYOU5RpUHY5cBR2YxL2NglZK57I9uHeQg7uO_AzoTw5ecmkcM8dCCcYUnZwaTHnm3Ju882TTZqenggcerA2ZR7H__12zTOSg7_YdZ7_xt9H5aYWYjWHbAKleHrSB8grBmqQ1ioNxuNtrlfPl5fHNr1jdcOq-O7Tvu2_vgOpUfw_A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB7R5YHywNUWwlGChPpSjNZHrkeEgOUUEqxEnyI7ccoKFBDJCi2_nrFzwAKqyrMtJ-MZz3yjuQA2heqGWcQo4agXiRBKkAjREUHjRqnSkmlblXZ65vf64ujKu6qLwoom270JSVpN3Ra7GfRhYo4ma4L5nIy-wKRAB4V1YHLn4M_xXhs9YIGdy2UmzxOBJroulvn4lHGD9A5lvk-WbCOm0zA1zO_l6FHe3r4ySvuz0G_IqXJRbraHpdpOnt50evwsvXMwU6NUd6cSq3mY0PkCzDYTINxaIXyDX8Z7zbPBX1vs6F5cm9TdonTPEVcW7iB3D0w_7OI79Pf3Lnd7pJ68QBK02CURCANMI5nUZypLU8Z1V4tQUEmpVGkQ0VSboUdKBX6k00zLDGGdFlyHyHvPT_kP6OR3uV4CN008wf0koWGEnmdXyCAUkqsILWMWsMRz4Hdz_fF91WAjblsp2yuI8QpiewXxyIHVhkNx_diKGKWKotuE0M6BjXYZn4mJfchc3w3tHuYhtOG-A4sVQ9vPVdXJPHQgHGN1u8G04B5fyQfXthU3epOo9Dh1YKth4st__YuMrVZy_oPq5c-dvg5TvcvTk_jk8Ox4Bb4yI0I2_XAVOuXDUK8hjCrVz_rVPAMjYg-h |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD7YFVp90LZWHS_tFEpfanBzmdujrG7tTYRW8G1IJpm6INnFnUX233uSudRFKfqckJmcc5LvC-cG8EmoflpmjBKO9yIRQgmSITsiCG6UKiOZ8Vlpv87i0wvx_TK6vJfF76PdW5dkndPgqjTZ6nCiy8Mu8c0xEed_dBEULOZk_gKWBaKb62EwiAedH4ElvkOX60FPBIJ1kzbz-BqL0PSAbz4Mm-x8p6vwamYncn4rr6_vwdPwNaw1vDI8qg3hDSwZ-xbW254NYXOEN-Cze2_acvTXpyeGv69csO20Cs-RCU7DkQ2_ugrW03dwMTz5MzglTa8EUiDGVkQgcLvSLzpmqtSacdM3IhVUUiqVTjKqjWtTpFQSZ0aXRpZIxIzgJkVtRbHmm9CzY2u2IdRFJHhcFDTN8K3YFzJJheQqQywrE1ZEAXxpxZRP6pIYeVf82As1R6HmXqj5PIC9VpJ5czymOdoBxYcOkrEAPnbDaNjOWyGtGc_8HBYhGeFxAFu14LvP1fnEPA0gXVBJN8EVzV4csaMrXzwb3394TXEawEGrvX__9b9tHHQafsKud563-gd4eX48zH9-O_uxCyvM2aSPF9yDXnUzM_vIeyr13pv2HfOW9ok |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8jB4gI1tEOhQJqG9DKP6R5zkESE6NImq0laJPUV24kA1FBBJhcpfz9lJA20RYs-xkth35_tOd_cdwIHQvSiPGSUc70UihBYkRnRE0LlRqo1ixnWlnQ_k2Uj8ugguGpoc2wuzkL93ZJ-BzTTaWgkmOZmuwKoMEHd3YHU0GB7_dTWKGAoJ6cbrov9nBHEIbTpkXn7JvBdagpbLFZJtmnQd3k-KWzW9V9fXzzxRf7MeaVQ6AkNbgPLvaFLpo_Rhgd7xbZv8ABsNIPWPaw36CO9MsQWbs2EPfmP7n-C7DVSLfHzp-hr931e2Sres_CFCyNIfF_5PS31dfoZR__TPyRlphiyQFJ1zRQR6fMsZk0mm8yxj3PSMiARVlCqdhTHNjJ1vpHUoY5PlRuWI4IzgJkIxBzLjX6BT3BRmB_wsDQSXaUqjGIPMnlBhJBTXMTrBPGRp4MGP2aEntzWXRtKyJrsjSPAIEncEydSD7kwuSWNXZYIKRDFCQhTnwbf2MVqETXOowtxM3BoWIIrh0oPtWozt5-pGZB55EM0JuF1g2bbnnxTjK8e6jYEj3m-cenA404Wn_3ptG4etvrxh17v_t3wP1phVG1dd2IVOdTcxXxElVXq_MY9Hsr8D8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfiguring+Shortest+Paths+in+Graphs&rft.jtitle=Algorithmica&rft.au=Gajjar%2C+Kshitij&rft.au=Jha%2C+Agastya+Vibhuti&rft.au=Kumar%2C+Manish&rft.au=Lahiri%2C+Abhiruk&rft.date=2024-10-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=10&rft.spage=3309&rft.epage=3338&rft_id=info:doi/10.1007%2Fs00453-024-01263-y&rft.externalDocID=10_1007_s00453_024_01263_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |