Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products wi...
Saved in:
| Published in | Remote sensing of environment Vol. 118; pp. 127 - 139 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
15.03.2012
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2011.11.002 |
Cover
| Abstract | ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting.
By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR).
GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications.
► Sentinel-2 and -3 aim to ensure continuity of operational land monitoring products. ► Machine learning algorithms are promising for biophysical parameters retrieval. ► Gaussian Processes regression (GPR) is evaluated as best performing algorithm. ► GPR reached accuracies superior to the by GMES requested threshold of 10%. ► Along with estimates, GPR provides insight in relevant bands and confidence values. |
|---|---|
| AbstractList | ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications. ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications. ► Sentinel-2 and -3 aim to ensure continuity of operational land monitoring products. ► Machine learning algorithms are promising for biophysical parameters retrieval. ► Gaussian Processes regression (GPR) is evaluated as best performing algorithm. ► GPR reached accuracies superior to the by GMES requested threshold of 10%. ► Along with estimates, GPR provides insight in relevant bands and confidence values. |
| Author | Alonso, Luis Delegido, Jesús Verrelst, Jochem Rivera, Juan Pablo Moreno, José Muñoz, Jordi Camps-Valls, Gustavo |
| Author_xml | – sequence: 1 givenname: Jochem surname: Verrelst fullname: Verrelst, Jochem email: jochem.verrelst@uv.es – sequence: 2 givenname: Jordi surname: Muñoz fullname: Muñoz, Jordi – sequence: 3 givenname: Luis surname: Alonso fullname: Alonso, Luis – sequence: 4 givenname: Jesús surname: Delegido fullname: Delegido, Jesús – sequence: 5 givenname: Juan Pablo surname: Rivera fullname: Rivera, Juan Pablo – sequence: 6 givenname: Gustavo surname: Camps-Valls fullname: Camps-Valls, Gustavo – sequence: 7 givenname: José surname: Moreno fullname: Moreno, José |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25618742$$DView record in Pascal Francis |
| BookMark | eNp9kU1rGzEQhkVJoU7aH9CbLoVe1pW0ktZuTyWkH5CSQ9uz0Gpn7TGytB3Jgfz7Kjj00ENgQBI8z4De95JdpJyAsbdSrKWQ9sNhTQXWSki5biOEesFWcjNsOzEIfcFWQvS608oMr9hlKQchpNkMcsXyDx_2mIBH8JQw7TjBjqAUzIn7uMuEdX8sfM7ER8zL_qFg8JEvnvwRKlDjKyHc-_iR3y1LpnpKWBHOyk9ItW2PneI-TbzrX7OXs48F3jydV-z3l5tf19-627uv368_33ZBK1s7aa1plwAA21EZqSawyoqwHfUU5rm99bgNwzR6oyeprDKzUWB0gAFsv-n7K_b-vHeh_OcEpbojlgAx-gT5VJwcpFC9FMI09N0T6kv72kw-BSxuITx6enDK2BakVo2TZy5QLoVg_odI4R5LcAfXSnCPJbg2rYTmDP85AauvLdxKHuOz5qezCS2lewRyJSCkABMShOqmjM_YfwFOv6S7 |
| CODEN | RSEEA7 |
| CitedBy_id | crossref_primary_10_3390_rs10101648 crossref_primary_10_1016_j_scitotenv_2018_03_004 crossref_primary_10_1002_rse2_149 crossref_primary_10_3390_rs8020119 crossref_primary_10_1016_j_catena_2020_104938 crossref_primary_10_1007_s41064_019_00076_x crossref_primary_10_3390_s21093078 crossref_primary_10_3390_rs14153694 crossref_primary_10_3389_fpls_2022_1075856 crossref_primary_10_3390_rs14061347 crossref_primary_10_3389_fpls_2022_949598 crossref_primary_10_1016_j_fcr_2023_109088 crossref_primary_10_1029_2018EA000539 crossref_primary_10_3390_rs14030715 crossref_primary_10_1016_j_rse_2023_113614 crossref_primary_10_1016_j_knosys_2022_108682 crossref_primary_10_3390_rs13183560 crossref_primary_10_3390_rs14153560 crossref_primary_10_1080_10106049_2017_1316781 crossref_primary_10_3390_su9060892 crossref_primary_10_3390_rs16173241 crossref_primary_10_3390_rs8080673 crossref_primary_10_1007_s11356_019_07519_3 crossref_primary_10_1016_j_rse_2013_09_030 crossref_primary_10_1016_j_isprsjprs_2014_07_003 crossref_primary_10_3390_agronomy13082147 crossref_primary_10_1016_j_jag_2020_102174 crossref_primary_10_1080_01431161_2020_1734261 crossref_primary_10_3390_s121114537 crossref_primary_10_3390_f16030464 crossref_primary_10_1016_j_jphotobiol_2014_03_010 crossref_primary_10_1016_j_isprsjprs_2020_04_009 crossref_primary_10_1016_j_compag_2024_109030 crossref_primary_10_3390_rs11172000 crossref_primary_10_1016_j_rse_2018_11_016 crossref_primary_10_3390_rs11131614 crossref_primary_10_1016_j_isprsjprs_2021_06_017 crossref_primary_10_1016_j_jag_2021_102407 crossref_primary_10_1016_j_envres_2023_115747 crossref_primary_10_1016_j_rse_2023_113883 crossref_primary_10_1109_TGRS_2013_2238242 crossref_primary_10_1080_01431161_2023_2240508 crossref_primary_10_1007_s43681_021_00132_6 crossref_primary_10_1016_j_jfoodeng_2020_110177 crossref_primary_10_3390_rs12111843 crossref_primary_10_3390_rs15235496 crossref_primary_10_3390_rs5073280 crossref_primary_10_1016_j_rse_2014_03_022 crossref_primary_10_3390_rs12182934 crossref_primary_10_1016_j_rse_2020_111758 crossref_primary_10_3390_rs14225867 crossref_primary_10_1016_j_tplants_2021_12_003 crossref_primary_10_3390_rs13081589 crossref_primary_10_1016_j_isprsjprs_2023_10_017 crossref_primary_10_1016_j_srs_2021_100025 crossref_primary_10_1016_j_rse_2013_09_005 crossref_primary_10_1109_TGRS_2016_2585201 crossref_primary_10_1109_TGRS_2019_2940826 crossref_primary_10_1615_HeatTransRes_2023046884 crossref_primary_10_1016_j_marpolbul_2022_114132 crossref_primary_10_1109_TGRS_2016_2551326 crossref_primary_10_3390_rs9090906 crossref_primary_10_1080_01431161_2015_1054047 crossref_primary_10_3389_fpls_2022_722442 crossref_primary_10_3390_rs12111788 crossref_primary_10_1016_j_saa_2022_121231 crossref_primary_10_1109_JSTARS_2021_3074975 crossref_primary_10_1109_TGRS_2024_3373629 crossref_primary_10_1007_s11104_022_05506_1 crossref_primary_10_3390_agronomy13030716 crossref_primary_10_3390_s19040904 crossref_primary_10_1016_j_rse_2020_111810 crossref_primary_10_1109_JSTARS_2018_2813281 crossref_primary_10_1016_j_rse_2018_10_004 crossref_primary_10_1016_j_rse_2017_02_009 crossref_primary_10_3390_rs9040318 crossref_primary_10_1007_s11119_024_10117_0 crossref_primary_10_3390_agronomy12010202 crossref_primary_10_1016_j_jag_2019_06_003 crossref_primary_10_3390_app13064005 crossref_primary_10_3390_rs9101080 crossref_primary_10_1016_j_jag_2019_101942 crossref_primary_10_3390_rs14122849 crossref_primary_10_3390_agronomy13112808 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_1117_1_JRS_12_046026 crossref_primary_10_1016_j_cj_2016_01_008 crossref_primary_10_3390_rs9040309 crossref_primary_10_1109_LGRS_2016_2560799 crossref_primary_10_1016_j_ecoinf_2022_101967 crossref_primary_10_1109_JSTARS_2014_2298752 crossref_primary_10_1109_JSTARS_2016_2574802 crossref_primary_10_1007_s12524_024_01973_4 crossref_primary_10_1080_17538947_2020_1794064 crossref_primary_10_1016_j_rse_2017_03_042 crossref_primary_10_1007_s11119_019_09664_8 crossref_primary_10_3390_rs11151752 crossref_primary_10_1016_j_isprsjprs_2024_11_005 crossref_primary_10_1080_07038992_2014_928182 crossref_primary_10_1109_JSTARS_2012_2222356 crossref_primary_10_1109_JSTARS_2018_2875330 crossref_primary_10_1109_JSTARS_2021_3098513 crossref_primary_10_1080_19479832_2022_2055157 crossref_primary_10_1016_j_geoderma_2020_114211 crossref_primary_10_1016_j_rse_2016_01_017 crossref_primary_10_1016_j_rse_2016_01_018 crossref_primary_10_1016_j_jag_2013_05_013 crossref_primary_10_1109_TGRS_2020_3022461 crossref_primary_10_1155_2022_8264297 crossref_primary_10_1109_JSTARS_2016_2575360 crossref_primary_10_1007_s10661_023_11650_7 crossref_primary_10_1002_hyp_14156 crossref_primary_10_1016_j_asr_2023_10_004 crossref_primary_10_1016_j_rse_2022_113199 crossref_primary_10_3390_rs12132069 crossref_primary_10_1016_j_rse_2013_06_007 crossref_primary_10_1007_s11540_023_09644_6 crossref_primary_10_3390_rs11050481 crossref_primary_10_3390_rs11151816 crossref_primary_10_3390_agronomy12050979 crossref_primary_10_1007_s42979_023_02214_0 crossref_primary_10_1016_j_rse_2017_03_013 crossref_primary_10_3390_rs13020329 crossref_primary_10_1016_j_fcr_2022_108655 crossref_primary_10_3390_rs5031274 crossref_primary_10_1016_j_fcr_2022_108538 crossref_primary_10_1080_01431161_2015_1054959 crossref_primary_10_3390_rs15133404 crossref_primary_10_3390_rs9090927 crossref_primary_10_3390_rs15143690 crossref_primary_10_1016_j_foreco_2018_12_019 crossref_primary_10_1016_j_jag_2016_07_016 crossref_primary_10_3390_f14071417 crossref_primary_10_1016_j_biosystemseng_2021_08_035 crossref_primary_10_3390_atmos9030083 crossref_primary_10_1080_01431161_2024_2413027 crossref_primary_10_1016_j_isprsjprs_2021_01_017 crossref_primary_10_3390_rs16111869 crossref_primary_10_3390_rs13132598 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_3390_agronomy13123071 crossref_primary_10_1016_j_fcr_2023_108844 crossref_primary_10_1007_s11368_016_1374_9 crossref_primary_10_1109_TGRS_2019_2921392 crossref_primary_10_1002_ps_7443 crossref_primary_10_3390_rs14174196 crossref_primary_10_1016_j_rsase_2021_100657 crossref_primary_10_3390_rs10122026 crossref_primary_10_1016_j_compag_2021_106581 crossref_primary_10_1016_j_catena_2016_11_016 crossref_primary_10_1016_j_saa_2022_121186 crossref_primary_10_1016_j_jag_2014_10_001 crossref_primary_10_3390_rs12142291 crossref_primary_10_1007_s42247_022_00409_4 crossref_primary_10_3390_rs12132139 crossref_primary_10_1111_2041_210X_13994 crossref_primary_10_1080_01431161_2022_2150098 crossref_primary_10_1016_j_rse_2018_06_037 crossref_primary_10_1016_j_jag_2019_04_019 crossref_primary_10_1016_j_jag_2018_02_006 crossref_primary_10_3389_fenvs_2024_1430818 crossref_primary_10_3390_rs10122015 crossref_primary_10_1016_j_rse_2021_112724 crossref_primary_10_1109_LGRS_2019_2903231 crossref_primary_10_3390_rs11030244 crossref_primary_10_1016_j_rse_2021_112728 crossref_primary_10_3390_rs6043427 crossref_primary_10_1016_j_jag_2020_102242 crossref_primary_10_3390_rs14246284 crossref_primary_10_1029_2018RG000608 crossref_primary_10_3390_rs12101586 crossref_primary_10_1016_j_atmosenv_2022_119098 crossref_primary_10_1016_j_agrformet_2019_107793 crossref_primary_10_3390_rs6076324 crossref_primary_10_1016_j_isprsjprs_2020_09_015 crossref_primary_10_3390_rs14051247 crossref_primary_10_14358_PERS_21_00045R2 crossref_primary_10_1109_JSTARS_2023_3338979 crossref_primary_10_3390_agriculture11030258 crossref_primary_10_1016_j_isprsjprs_2019_08_002 crossref_primary_10_1016_j_jag_2021_102454 crossref_primary_10_1016_j_isprsjprs_2015_01_008 crossref_primary_10_1016_j_rse_2022_113085 crossref_primary_10_1109_MGRS_2015_2510084 crossref_primary_10_3390_rs5031355 crossref_primary_10_1016_j_geodrs_2021_e00399 crossref_primary_10_1016_j_isprsjprs_2016_03_010 crossref_primary_10_3389_fmicb_2018_00343 crossref_primary_10_1016_j_ecolmodel_2020_109398 crossref_primary_10_1016_j_rse_2013_07_012 crossref_primary_10_3390_rs71013098 crossref_primary_10_1016_j_ecolind_2021_108126 crossref_primary_10_1109_JSTARS_2018_2810704 crossref_primary_10_1007_s40808_021_01243_z crossref_primary_10_1016_j_eng_2020_07_001 crossref_primary_10_1186_s13007_023_01088_w crossref_primary_10_3390_agronomy15010241 crossref_primary_10_1016_j_agrformet_2022_109152 crossref_primary_10_1063_5_0140372 crossref_primary_10_1016_j_isprsjprs_2014_09_016 crossref_primary_10_1016_j_compag_2020_105692 crossref_primary_10_1016_j_scitotenv_2014_08_060 crossref_primary_10_1016_j_agrformet_2018_12_008 crossref_primary_10_3390_rs11121468 crossref_primary_10_1080_10106049_2022_2146764 crossref_primary_10_5194_bg_21_473_2024 crossref_primary_10_3390_rs15245653 crossref_primary_10_3390_rs10050775 crossref_primary_10_1016_j_envsoft_2017_12_001 crossref_primary_10_1080_01431161_2019_1674461 crossref_primary_10_3390_rs12091383 crossref_primary_10_1109_TGRS_2024_3425517 crossref_primary_10_1016_j_isprsjprs_2015_05_005 crossref_primary_10_1007_s00521_022_08030_6 crossref_primary_10_3390_rs11040387 crossref_primary_10_1016_j_agwat_2020_106346 crossref_primary_10_3390_rs13030403 crossref_primary_10_1016_j_rse_2019_01_031 crossref_primary_10_1016_j_compag_2024_108959 crossref_primary_10_1109_JSTARS_2021_3132228 crossref_primary_10_1016_j_rse_2019_01_039 crossref_primary_10_3390_rs9111113 crossref_primary_10_1016_j_scitotenv_2021_149805 crossref_primary_10_3389_fphy_2019_00247 crossref_primary_10_3390_rs11030327 crossref_primary_10_3390_rs11161923 crossref_primary_10_3390_rs9030248 crossref_primary_10_1016_j_isprsjprs_2013_09_012 crossref_primary_10_1016_j_isprsjprs_2017_09_012 crossref_primary_10_1109_JSTARS_2016_2641583 crossref_primary_10_3390_rs8060488 crossref_primary_10_1007_s12524_021_01466_8 crossref_primary_10_1016_j_compag_2023_108308 crossref_primary_10_3390_rs15092289 crossref_primary_10_1016_j_compag_2024_109717 crossref_primary_10_1016_j_eja_2012_12_001 crossref_primary_10_1016_j_isprsjprs_2017_10_011 crossref_primary_10_1016_j_earscirev_2023_104501 crossref_primary_10_1016_j_jag_2019_102037 crossref_primary_10_1109_JSTARS_2017_2748341 crossref_primary_10_1109_JSTARS_2015_2442584 crossref_primary_10_1016_j_jaridenv_2022_104880 crossref_primary_10_1109_TGRS_2022_3211554 crossref_primary_10_3390_agronomy13041119 crossref_primary_10_1186_s13007_021_00796_5 crossref_primary_10_3390_s21124118 crossref_primary_10_1016_j_rse_2020_112168 crossref_primary_10_3390_rs16091614 crossref_primary_10_1016_j_isprsjprs_2017_10_004 crossref_primary_10_1016_j_jag_2018_08_004 crossref_primary_10_3390_rs10121942 crossref_primary_10_1080_10106049_2024_2309174 crossref_primary_10_3390_rs10050786 crossref_primary_10_1016_j_isprsjprs_2018_03_005 crossref_primary_10_1007_s00521_016_2666_0 crossref_primary_10_3390_rs13091810 crossref_primary_10_1016_j_resourpol_2018_10_008 crossref_primary_10_1080_15481603_2018_1492213 crossref_primary_10_1016_j_compag_2024_108730 crossref_primary_10_1016_j_rse_2016_10_009 crossref_primary_10_3390_rs14184531 crossref_primary_10_1016_j_rse_2024_114228 crossref_primary_10_3390_rs11161909 crossref_primary_10_1016_j_agwat_2022_108056 crossref_primary_10_3390_f15101739 crossref_primary_10_3390_rs15143664 crossref_primary_10_3390_rs13245141 crossref_primary_10_1029_2020MS002214 crossref_primary_10_3390_rs70810400 crossref_primary_10_3389_fpls_2019_00730 crossref_primary_10_3390_rs8040324 crossref_primary_10_1016_j_rse_2021_112453 crossref_primary_10_3390_f15101720 crossref_primary_10_1016_j_isprsjprs_2017_08_012 crossref_primary_10_3390_rs10020185 crossref_primary_10_3390_f7100226 crossref_primary_10_1016_j_compag_2019_105089 crossref_primary_10_1016_j_rse_2019_111614 crossref_primary_10_3390_w13010022 crossref_primary_10_1016_j_fcr_2023_108860 crossref_primary_10_1016_j_rse_2020_112101 crossref_primary_10_1016_j_ecolind_2022_109102 crossref_primary_10_1016_j_rse_2022_112958 crossref_primary_10_1109_LGRS_2020_3014676 crossref_primary_10_1016_j_isprsjprs_2021_04_002 crossref_primary_10_3390_rs12071116 crossref_primary_10_3390_geographies1030011 crossref_primary_10_3390_rs10020172 crossref_primary_10_1007_s11540_024_09803_3 crossref_primary_10_1109_TGRS_2023_3284992 crossref_primary_10_1016_j_compag_2024_108942 crossref_primary_10_3390_rs70911249 crossref_primary_10_1080_01431161_2022_2074809 crossref_primary_10_1109_JSTARS_2021_3065582 crossref_primary_10_3390_rs11121459 crossref_primary_10_1016_j_isprsjprs_2015_04_013 crossref_primary_10_1016_j_rse_2021_112304 crossref_primary_10_3389_fpls_2023_1196634 crossref_primary_10_1016_j_compag_2022_107003 crossref_primary_10_1016_j_isprsjprs_2019_06_007 crossref_primary_10_1016_j_isprsjprs_2020_07_004 crossref_primary_10_1111_rge_12245 crossref_primary_10_3390_w10101428 crossref_primary_10_1109_TGRS_2017_2767205 crossref_primary_10_1016_j_rse_2014_06_006 crossref_primary_10_1016_j_rse_2024_114260 crossref_primary_10_1016_j_jag_2016_06_019 crossref_primary_10_1016_j_jag_2024_103905 crossref_primary_10_1016_j_envpol_2020_115412 crossref_primary_10_1063_1_5064655 crossref_primary_10_3390_rs13214314 crossref_primary_10_1016_j_jag_2023_103367 crossref_primary_10_3390_rs12060915 crossref_primary_10_3390_rs16122058 crossref_primary_10_3390_agronomy9100663 crossref_primary_10_5194_amt_8_1337_2015 crossref_primary_10_3390_rs13112099 crossref_primary_10_1016_j_catena_2018_10_004 crossref_primary_10_3389_frans_2022_872646 crossref_primary_10_1029_2022WR032073 crossref_primary_10_3390_agriculture13010009 crossref_primary_10_1016_j_ecoinf_2024_102816 crossref_primary_10_1080_01431161_2024_2368929 crossref_primary_10_1111_nph_19807 crossref_primary_10_1016_j_compag_2024_109658 crossref_primary_10_1016_j_oregeorev_2017_10_009 crossref_primary_10_1016_j_jag_2023_103479 crossref_primary_10_1080_22797254_2017_1324743 crossref_primary_10_1016_j_agrformet_2017_04_011 crossref_primary_10_3390_rs71012635 crossref_primary_10_3390_app9071459 crossref_primary_10_1016_j_rse_2015_06_002 crossref_primary_10_1016_j_rse_2024_114048 crossref_primary_10_3390_rs10091458 crossref_primary_10_1016_j_isprsjprs_2019_11_018 crossref_primary_10_3390_agronomy14040750 crossref_primary_10_3390_rs13040821 crossref_primary_10_1080_01431161_2021_1998714 crossref_primary_10_1109_TGRS_2019_2926392 crossref_primary_10_1016_j_compag_2022_106806 crossref_primary_10_3390_rs70709347 crossref_primary_10_3390_rs14071662 crossref_primary_10_3390_rs12183073 crossref_primary_10_1016_j_marenvres_2022_105701 crossref_primary_10_3390_rs15010100 crossref_primary_10_1007_s11119_023_10106_9 crossref_primary_10_1016_j_isprsjprs_2020_10_004 crossref_primary_10_3390_s16060834 crossref_primary_10_1016_j_jag_2015_01_016 crossref_primary_10_1016_j_jag_2023_103498 crossref_primary_10_1109_TGRS_2017_2687421 crossref_primary_10_3390_rs13010084 crossref_primary_10_3390_rs14040934 crossref_primary_10_1016_j_rse_2018_02_067 crossref_primary_10_1007_s12524_019_01024_3 crossref_primary_10_1016_j_isprsjprs_2023_09_009 crossref_primary_10_1016_j_jag_2016_10_001 crossref_primary_10_1007_s11119_022_09940_0 crossref_primary_10_1016_j_scitotenv_2024_177180 crossref_primary_10_3390_rs13234898 crossref_primary_10_1016_j_rse_2024_114072 crossref_primary_10_1016_j_foreco_2023_121034 crossref_primary_10_1016_j_rse_2020_112176 crossref_primary_10_1142_S0219691319410029 crossref_primary_10_1016_j_compag_2020_105899 crossref_primary_10_3390_rs12162574 crossref_primary_10_3390_s18041120 crossref_primary_10_3390_rs12244015 crossref_primary_10_1080_2150704X_2022_2114108 crossref_primary_10_3390_rs12223770 crossref_primary_10_3390_rs13040806 crossref_primary_10_1007_s41064_022_00218_8 crossref_primary_10_1109_JSTARS_2018_2823361 crossref_primary_10_1016_j_jclepro_2020_123870 crossref_primary_10_3390_rs11172050 crossref_primary_10_3390_rs8110883 crossref_primary_10_3389_fmars_2023_1065123 crossref_primary_10_1080_10095020_2024_2313329 crossref_primary_10_3390_rs14225801 crossref_primary_10_3390_agronomy15030526 crossref_primary_10_1016_j_rse_2023_113966 crossref_primary_10_3390_rs14153515 crossref_primary_10_3390_rs14235977 crossref_primary_10_1080_02681102_2020_1811945 crossref_primary_10_3390_rs12183028 crossref_primary_10_3390_rs14010146 crossref_primary_10_1016_j_eja_2022_126664 crossref_primary_10_3390_rs11182076 crossref_primary_10_1016_j_rse_2019_03_002 crossref_primary_10_1088_1755_1315_918_1_012011 crossref_primary_10_1080_01431161_2023_2283903 crossref_primary_10_3390_rs6064927 crossref_primary_10_3390_rs14184452 |
| Cites_doi | 10.1016/j.rse.2006.05.018 10.1080/014311697217558 10.1016/S0034-4257(98)00083-2 10.1016/S0034-4257(00)00139-5 10.1016/j.rse.2006.07.014 10.1016/S0034-4257(98)00046-7 10.1016/S0034-4257(02)00010-X 10.1016/j.rse.2009.11.004 10.1016/S0176-1617(96)80285-9 10.1080/01431160802036458 10.1023/B:STCO.0000035301.49549.88 10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2 10.1016/S0034-4257(03)00131-7 10.1016/j.rse.2008.01.006 10.1078/0176-1617-00887 10.5589/m09-010 10.1093/forestscience/49.3.381 10.1016/j.scitotenv.2007.11.007 10.1109/TGRS.2008.918765 10.1016/j.agrformet.2003.08.015 10.1016/j.jag.2006.11.003 10.1080/01431169408954177 10.1016/j.rse.2004.03.013 10.1080/014311698214433 10.1109/TGRS.2005.857915 10.1016/j.rse.2010.01.007 10.1016/j.rse.2008.06.005 10.1109/LGRS.2009.2039191 10.1016/j.rse.2005.04.018 10.1109/TGRS.2005.848410 10.1016/j.compag.2010.05.006 10.1016/j.rse.2004.06.016 10.1016/j.rse.2007.04.012 10.1016/0076-6879(87)48036-1 10.1109/TGRS.2004.827260 10.1016/0034-4257(91)90009-U 10.1016/j.jag.2009.02.003 10.1016/j.jag.2010.02.003 10.1016/S0176-1617(96)80081-2 10.1016/j.isprsjprs.2008.01.001 10.1016/j.rse.2009.12.006 10.1046/j.1469-8137.1999.00424.x 10.1016/j.rse.2007.12.003 10.1109/36.934080 10.1016/1011-1344(93)06963-4 10.1016/j.rse.2008.09.014 10.1016/0034-4257(95)00018-V 10.1016/S0176-1617(96)80071-X 10.1016/j.rse.2010.09.012 10.1016/S0034-4257(99)00067-X 10.1061/(ASCE)IR.1943-4774.0000169 10.1080/01431169408954109 10.1029/2005JD006017 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.rse.2011.11.002 |
| DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 139 |
| ExternalDocumentID | 25618742 10_1016_j_rse_2011_11_002 S003442571100397X |
| GeographicLocations | Iberian Peninsula Southern Europe Europe Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA HMC HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB G-2 HVGLF H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD AGCQF AGRNS BNPGV IQODW SSH 7S9 L.6 |
| ID | FETCH-LOGICAL-c426t-1665426ceee9b2512de6260c9b4dcff12d4b9c7dba54d12625f52e54ce7e63833 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Sat Sep 27 19:53:48 EDT 2025 Mon Jul 21 09:14:33 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Wed Oct 01 02:18:05 EDT 2025 Fri Feb 23 02:25:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biophysical parameter retrieval Support vector regression (SVR) Regression algorithms Kernel ridge regression (KRR) Sentinel-3 Sentinel-2 Machine learning Gaussian Processes regression (GPR) Parameter estimation data Spot adaptation accuracy vegetation Image artificial intelligence Test method Learning algorithm Ability Availability time resolution Fitting Space remote sensing Landsat Biophysics monitoring Real time Landsat satellite regression Nonlinearity Parameter Reflectance |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-1665426ceee9b2512de6260c9b4dcff12d4b9c7dba54d12625f52e54ce7e63833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1710231005 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1710231005 pascalfrancis_primary_25618742 crossref_primary_10_1016_j_rse_2011_11_002 crossref_citationtrail_10_1016_j_rse_2011_11_002 elsevier_sciencedirect_doi_10_1016_j_rse_2011_11_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-15 |
| PublicationDateYYYYMMDD | 2012-03-15 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2012 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Buermann, Dong, Zeng, Myneni, Dickinson (bb0060) 2001; 14 Lichtenthaler (bb0245) 1987; 148 Verrelst, Schaepman, Malenovský, Clevers (bb0350) 2010; 114 Botha, Leblon, Zebarth, Watmough (bb0055) 2007; 9 Datt (bb0090) 1998; 66 Stagakis, Markos, Sykioti, Kyparissis (bb0320) 2010; 114 Gitelson, Gritz, Merzlyak (bb0145) 2003; 160 Bannari, Pacheco, Staenz, McNairn, Omari (bb0030) 2006; 104 Smola, Schölkopf (bb0315) 2004; 14 Shawe-Taylor, Cristianini (bb0305) 2004 Atzberger (bb0015) 2004; 93 Guanter, Alonso, Moreno (bb0165) 2005; 43 Hastie, Tibshirani, Friedman (bb0175) 2009 French, Hunsaker, Clarke, Fitzgerald, Pinter (bb0125) 2010; 136 Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J., in press. Retrieval of vegetation biophysical parameters using gausian processes techniques. Richter, Atzberger, Vuolo, Weihs, D'Urso (bb0280) 2009; 35 Bacour, Baret, Béal, Weiss, Pavageau (bb0025) 2006; 105 Nieke, Frerick, Stroede, Mavrocordatos, Berruti (bb0260) 2009; vol. 7452 Fernández, Moreno, Gandía, Martínez, Vuolo, Morales (bb0115) 2005 Verger, Baret, Weiss (bb0340) 2008; 112 le Maire, François, Soudani, Berveiller, Pontailler, Bréda (bb0240) 2008; 112 Carter (bb0075) 1994; 15 Haykin (bb0180) Oct. 1999 . Houborg, Anderson, Daughtry (bb0195) 2009; 113 Gitelson, Merzlyak, Lichtenthaler (bb0155) 1996; 148 Delegido, Alonso, González, Moreno (bb0095) 2010; 12 Darvishzadeh, Skidmore, Schlerf, Atzberger (bb0080) 2008; 112 Whittaker, Marks (bb0355) 1975 Hansen, Schjoerring (bb0170) 2003; 86 Pasolli, Melgani, Blanzieri (bb0265) 2010; 99 Kakani, Reddy, Zhao, Sailaja (bb0220) 2003; 120 Hirose, Ackerly, Traw, Ramseier, Bazzaz (bb0190) 1997; 78 Bicheron, Leroy (bb0050) 1999; 67 Camps-Valls, Gómez-Chova, Muñoz-Marí, Calpe-Maravilla (bb0070) 2009 Darvishzadeh, Skidmore, Schlerf, Atzberger, Corsi, Cho (bb0085) 2008; 63 Barnsley, Settle, Cutter, Lobb, Teston (bb0045) 2004; 42 Gitelson, Vina, Verma, Rundquist, Arkebauer, Keydan (bb0160) 2006; 111 Fava, Colombo, Bocchi, Meroni, Sitzia, Fois (bb0110) 2009; 11 Jacquemoud, Bacour, Poilvé, Frangi (bb0205) 2000; 74 Drusch, Gascon, Berger (bb0100) 2010 Filella, Penuelas (bb0120) 1994; 15 Hilker, Coops, Wulder, Black, Guy (bb0185) 2008; 404 Schepers, Blackmer, Wilhelm, Resende (bb0290) 1996; 148 Verger, Baret, Camacho (bb0335) 2011; 115 Houborg, Boegh (bb0200) 2008; 112 Arenas-García, Camps-Valls (bb0010) Oct. 2008; 46 Gamon, Surfus (bb0130) 1999; 143 Gitelson, Merzlyak (bb0150) 1997; 18 Lichtenthaler, Lang, Sowinska, Heisel, Miehe (bb0250) 1996; 148 Schölkopf, Smola (bb0300) 2002 (bb0065) Dec 2009 Baret, Buis (bb0035) 2008 Atzberger, Guérif, Baret, Werner (bb0020) 2010; 73 Gitelson, Merzlyak (bb0140) 1994; 22 Jacquemoud, Baret, Andrieu, Danson, Jaggard (bb0210) 1995; 52 Jiménez-Muñoz, Sobrino, Guanter, Moreno, Plaza, Martínez (bb0215) 2005 Kempeneers, Zarco-Tejada, North, de Backer, Delalieux, Sepulcre-Canto (bb0225) 2008; 29 ESA (bb0105) 2004 Sims, Gamon (bb0310) 2002; 81 Knudby, LeDrew, Brenning (bb0235) 2010; 114 Gandía, Fernández, Garcia, Moreno (bb0135) 2004 Rasmussen, Williams (bb0275) 2006 Baret, Guyot (bb0040) 1991; 35 Pozdnyakov, Shuchman, Korosov, Hatt (bb0270) 2005; 97 Thenkabail, Enclona, Ashton, Meer (bb0325) 2004; 91 Thenkabail, Smith, Pauw (bb0330) 2000; 71 Kimes, Nelson, Manry, Fung (bb0230) 1998; 19 Alonso, Moreno (bb0005) 2005 Schiller, Doerffer (bb0295) 2005; 43 Zarco-Tejada, Miller, Noland, Mohammed, Sampson (bb0360) 2001; 39 Sampson, Zarco-Tejada, Mohammed, Miller, Noland (bb0285) 2003; 49 Martimort, Berger, Carnicero, Bello, Fernandez, Gascon (bb0255) 2007 Richter (10.1016/j.rse.2011.11.002_bb0280) 2009; 35 Baret (10.1016/j.rse.2011.11.002_bb0040) 1991; 35 Guanter (10.1016/j.rse.2011.11.002_bb0165) 2005; 43 Kakani (10.1016/j.rse.2011.11.002_bb0220) 2003; 120 Fernández (10.1016/j.rse.2011.11.002_bb0115) 2005 Arenas-García (10.1016/j.rse.2011.11.002_bb0010) 2008; 46 Gitelson (10.1016/j.rse.2011.11.002_bb0155) 1996; 148 Verrelst (10.1016/j.rse.2011.11.002_bb0350) 2010; 114 Buermann (10.1016/j.rse.2011.11.002_bb0060) 2001; 14 Pasolli (10.1016/j.rse.2011.11.002_bb0265) 2010; 99 Verger (10.1016/j.rse.2011.11.002_bb0340) 2008; 112 Hastie (10.1016/j.rse.2011.11.002_bb0175) 2009 Thenkabail (10.1016/j.rse.2011.11.002_bb0325) 2004; 91 Jacquemoud (10.1016/j.rse.2011.11.002_bb0210) 1995; 52 Drusch (10.1016/j.rse.2011.11.002_bb0100) Sims (10.1016/j.rse.2011.11.002_bb0310) 2002; 81 Whittaker (10.1016/j.rse.2011.11.002_bb0355) 1975 Gitelson (10.1016/j.rse.2011.11.002_bb0140) 1994; 22 Schölkopf (10.1016/j.rse.2011.11.002_bb0300) 2002 Gitelson (10.1016/j.rse.2011.11.002_bb0160) 2006; 111 Hilker (10.1016/j.rse.2011.11.002_bb0185) 2008; 404 Hansen (10.1016/j.rse.2011.11.002_bb0170) 2003; 86 Schiller (10.1016/j.rse.2011.11.002_bb0295) 2005; 43 Stagakis (10.1016/j.rse.2011.11.002_bb0320) 2010; 114 Smola (10.1016/j.rse.2011.11.002_bb0315) 2004; 14 Barnsley (10.1016/j.rse.2011.11.002_bb0045) 2004; 42 Nieke (10.1016/j.rse.2011.11.002_bb0260) 2009; vol. 7452 Rasmussen (10.1016/j.rse.2011.11.002_bb0275) 2006 Alonso (10.1016/j.rse.2011.11.002_bb0005) 2005 Hirose (10.1016/j.rse.2011.11.002_bb0190) 1997; 78 Zarco-Tejada (10.1016/j.rse.2011.11.002_bb0360) 2001; 39 Kimes (10.1016/j.rse.2011.11.002_bb0230) 1998; 19 Shawe-Taylor (10.1016/j.rse.2011.11.002_bb0305) 2004 Jiménez-Muñoz (10.1016/j.rse.2011.11.002_bb0215) 2005 Darvishzadeh (10.1016/j.rse.2011.11.002_bb0080) 2008; 112 Delegido (10.1016/j.rse.2011.11.002_bb0095) 2010; 12 Pozdnyakov (10.1016/j.rse.2011.11.002_bb0270) 2005; 97 Filella (10.1016/j.rse.2011.11.002_bb0120) 1994; 15 Datt (10.1016/j.rse.2011.11.002_bb0090) 1998; 66 Darvishzadeh (10.1016/j.rse.2011.11.002_bb0085) 2008; 63 Haykin (10.1016/j.rse.2011.11.002_bb0180) 1999 Bannari (10.1016/j.rse.2011.11.002_bb0030) 2006; 104 Thenkabail (10.1016/j.rse.2011.11.002_bb0330) 2000; 71 Houborg (10.1016/j.rse.2011.11.002_bb0200) 2008; 112 Botha (10.1016/j.rse.2011.11.002_bb0055) 2007; 9 Camps-Valls (10.1016/j.rse.2011.11.002_bb0070) 2009 Carter (10.1016/j.rse.2011.11.002_bb0075) 1994; 15 10.1016/j.rse.2011.11.002_bb0345 Houborg (10.1016/j.rse.2011.11.002_bb0195) 2009; 113 Bacour (10.1016/j.rse.2011.11.002_bb0025) 2006; 105 Fava (10.1016/j.rse.2011.11.002_bb0110) 2009; 11 French (10.1016/j.rse.2011.11.002_bb0125) 2010; 136 Sampson (10.1016/j.rse.2011.11.002_bb0285) 2003; 49 Lichtenthaler (10.1016/j.rse.2011.11.002_bb0245) 1987; 148 Kempeneers (10.1016/j.rse.2011.11.002_bb0225) 2008; 29 Lichtenthaler (10.1016/j.rse.2011.11.002_bb0250) 1996; 148 (10.1016/j.rse.2011.11.002_bb0065) 2009 Schepers (10.1016/j.rse.2011.11.002_bb0290) 1996; 148 Gandía (10.1016/j.rse.2011.11.002_bb0135) 2004 Jacquemoud (10.1016/j.rse.2011.11.002_bb0205) 2000; 74 le Maire (10.1016/j.rse.2011.11.002_bb0240) 2008; 112 Gitelson (10.1016/j.rse.2011.11.002_bb0145) 2003; 160 Atzberger (10.1016/j.rse.2011.11.002_bb0015) 2004; 93 ESA (10.1016/j.rse.2011.11.002_bb0105) Atzberger (10.1016/j.rse.2011.11.002_bb0020) 2010; 73 Bicheron (10.1016/j.rse.2011.11.002_bb0050) 1999; 67 Martimort (10.1016/j.rse.2011.11.002_bb0255) 2007 Gitelson (10.1016/j.rse.2011.11.002_bb0150) 1997; 18 Baret (10.1016/j.rse.2011.11.002_bb0035) 2008 Verger (10.1016/j.rse.2011.11.002_bb0335) 2011; 115 Gamon (10.1016/j.rse.2011.11.002_bb0130) 1999; 143 Knudby (10.1016/j.rse.2011.11.002_bb0235) 2010; 114 |
| References_xml | – volume: 143 start-page: 105 year: 1999 end-page: 117 ident: bb0130 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: The New Phytologist – volume: 148 start-page: 599 year: 1996 end-page: 612 ident: bb0250 article-title: Detection of vegetation stress via a new high resolution fluorescence imaging system publication-title: Journal of Plant Physiology – year: 2009 ident: bb0175 article-title: The elements of statistical learning: data mining, inference, and prediction – volume: 73 start-page: 165 year: 2010 end-page: 173 ident: bb0020 article-title: Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat publication-title: Computers and Electronics in Agriculture – volume: 86 start-page: 542 year: 2003 end-page: 553 ident: bb0170 article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression publication-title: Remote Sensing of Environment – year: 2006 ident: bb0275 article-title: Gaussian Processes for Machine Learning – year: 2005 ident: bb0005 article-title: Advances and limitations in a parametric geometric correction of CHRIS/PROBA data publication-title: Proceedings of the 3rd CHRIS/Proba Workshop – volume: 148 start-page: 350 year: 1987 end-page: 382 ident: bb0245 article-title: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes publication-title: Methods in Enzymology – volume: 78 start-page: 2339 year: 1997 end-page: 2350 ident: bb0190 article-title: CO2 elevation, canopy photosynthesis, and optimal leaf area index publication-title: Ecology – volume: 114 start-page: 977 year: 2010 end-page: 994 ident: bb0320 article-title: Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations publication-title: Remote Sensing of Environment – year: 2004 ident: bb0105 article-title: SPARC data acquisition report – volume: vol. 7452 year: 2009 ident: bb0260 publication-title: Status of the optical payload and processor development of ESA's sentinel 3 mission – volume: 81 start-page: 337 year: 2002 end-page: 354 ident: bb0310 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sensing of Environment – volume: 115 start-page: 415 year: 2011 end-page: 426 ident: bb0335 article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations publication-title: Remote Sensing of Environment – volume: 42 start-page: 1512 year: 2004 end-page: 1520 ident: bb0045 article-title: The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2005 ident: bb0215 article-title: Fractional vegetation cover estimation from proba/CHRIS data: methods, analysis of angular effects and application to the land surface emissivity retrieval publication-title: Proceedings of the 3rd CHRIS/Proba Workshop – volume: 74 start-page: 471 year: 2000 end-page: 481 ident: bb0205 article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode publication-title: Remote Sensing of Environment – year: 2010 ident: bb0100 article-title: Sentinel-2 mission requirements document – volume: 12 start-page: 165 year: 2010 end-page: 174 ident: bb0095 article-title: Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC) publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 91 start-page: 354 year: 2004 end-page: 376 ident: bb0325 article-title: Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications publication-title: Remote Sensing of Environment – volume: 11 start-page: 233 year: 2009 end-page: 243 ident: bb0110 article-title: Identification of hyperspectral vegetation indices for Mediterranean pasture characterization publication-title: International Journal of Applied Earth Observation and Geoinformation – year: 2005 ident: bb0115 article-title: Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns publication-title: Proceedings of the SPARC Workshop – volume: 22 start-page: 247 year: 1994 end-page: 252 ident: bb0140 article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves publication-title: Journal of Photochemistry and Photobiology. B, Biology – year: 2004 ident: bb0305 article-title: Kernel Methods for Pattern Analysis – year: 2009 ident: bb0070 article-title: Biophysical parameter estimation with adaptive Gaussian Processes publication-title: IEEE International Geoscience and Remote Sensing Symposium, IGARSS'2009. Capetown, South Africa – volume: 404 start-page: 411 year: 2008 end-page: 423 ident: bb0185 article-title: The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements publication-title: The Science of the Total Environment – volume: 114 start-page: 1230 year: 2010 end-page: 1241 ident: bb0235 article-title: Predictive mapping of reef fish species richness, diversity and biomass in zanzibar using IKONOS imagery and machine-learning techniques publication-title: Remote Sensing of Environment – volume: 111 year: 2006 ident: bb0160 article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity publication-title: Journal of Geophysical Research D: Atmospheres – volume: 35 start-page: 230 year: 2009 end-page: 247 ident: bb0280 article-title: Experimental assessment of the sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize publication-title: Canadian Journal of Remote Sensing – year: 2004 ident: bb0135 article-title: Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign publication-title: Proceedings of the 2nd CHRIS/PROBAWorkshop – volume: 114 start-page: 647 year: 2010 end-page: 656 ident: bb0350 article-title: Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval publication-title: Remote Sensing of Environment – volume: 15 year: 1994 ident: bb0075 article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress publication-title: International Journal of Remote Sensing – volume: 18 start-page: 2691 year: 1997 end-page: 2697 ident: bb0150 article-title: Remote estimation of chlorophyll content in higher plant leaves publication-title: International Journal of Remote Sensing – volume: 104 start-page: 447 year: 2006 end-page: 459 ident: bb0030 article-title: Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data publication-title: Remote Sensing of Environment – volume: 97 start-page: 352 year: 2005 end-page: 370 ident: bb0270 article-title: Operational algorithm for the retrieval of water quality in the Great Lakes publication-title: Remote Sensing of Environment – volume: 148 start-page: 501 year: 1996 end-page: 508 ident: bb0155 article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm publication-title: Journal of Plant Physiology – start-page: 18 year: 2007 end-page: 23 ident: bb0255 article-title: The optical high-resolution mission for GMES operational services publication-title: European Space Agency Bulletin – year: Oct. 1999 ident: bb0180 article-title: Neural Networks – A Comprehensive Foundation – year: 2002 ident: bb0300 article-title: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond – volume: 63 start-page: 409 year: 2008 end-page: 426 ident: bb0085 article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 71 start-page: 158 year: 2000 end-page: 182 ident: bb0330 article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics publication-title: Remote Sensing of Environment – volume: 35 start-page: 161 year: 1991 end-page: 173 ident: bb0040 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sensing of Environment – volume: 99 start-page: 464 year: 2010 end-page: 468 ident: bb0265 article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data publication-title: IEEE Geoscience and Remote Sensing Society – volume: 136 start-page: 232 year: 2010 end-page: 239 ident: bb0125 article-title: Combining remotely sensed data and ground-based radiometers to estimate crop cover and surface temperatures at daily time steps publication-title: Journal of Irrigation and Drainage Engineering – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bb0315 article-title: A tutorial on support vector regression publication-title: Statistics and Computing – volume: 160 start-page: 271 year: 2003 end-page: 282 ident: bb0145 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: Journal of Plant Physiology – volume: 93 start-page: 53 year: 2004 end-page: 67 ident: bb0015 article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models publication-title: Remote Sensing of Environment – volume: 112 start-page: 3846 year: 2008 end-page: 3864 ident: bb0240 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sensing of Environment – volume: 43 start-page: 1585 year: 2005 end-page: 1591 ident: bb0295 article-title: Improved determination of coastal water constituent concentrations from MERIS data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 66 start-page: 111 year: 1998 end-page: 121 ident: bb0090 article-title: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves publication-title: Remote Sensing of Environment – volume: 19 start-page: 2639 year: 1998 end-page: 2662 ident: bb0230 article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements publication-title: International Journal of Remote Sensing – volume: 39 start-page: 1491 year: 2001 end-page: 1507 ident: bb0360 article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 120 start-page: 191 year: 2003 end-page: 218 ident: bb0220 article-title: Field crop responses to ultraviolet-B radiation: A review publication-title: Agricultural and Forest Meteorology – volume: 29 start-page: 5093 year: 2008 end-page: 5111 ident: bb0225 article-title: Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery publication-title: International Journal of Remote Sensing – volume: 9 start-page: 360 year: 2007 end-page: 374 ident: bb0055 article-title: Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 14 start-page: 3536 year: 2001 end-page: 3550 ident: bb0060 article-title: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations publication-title: Journal of Climate – reference: Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J., in press. Retrieval of vegetation biophysical parameters using gausian processes techniques. – volume: 52 start-page: 163 year: 1995 end-page: 172 ident: bb0210 article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors publication-title: Remote Sensing of Environment – year: Dec 2009 ident: bb0065 publication-title: Kernel methods for Remote Sensing Data Analysis – volume: 46 start-page: 2872 year: Oct. 2008 end-page: 2881 ident: bb0010 article-title: Efficient kernel orthonormalized PLS for remote sensing applications publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 113 start-page: 259 year: 2009 end-page: 274 ident: bb0195 article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of lai and leaf chlorophyll content at the field scale publication-title: Remote Sensing of Environment – volume: 112 start-page: 2592 year: 2008 end-page: 2604 ident: bb0080 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sensing of Environment – start-page: 55 year: 1975 end-page: 118 ident: bb0355 article-title: Methods of assessing terrestrial productivity publication-title: Primary Productivity of the Biosphere – volume: 67 start-page: 251 year: 1999 end-page: 266 ident: bb0050 article-title: A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model publication-title: Remote Sensing of Environment – volume: 49 start-page: 381 year: 2003 end-page: 391 ident: bb0285 article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods publication-title: Forest Science – volume: 112 start-page: 186 year: 2008 end-page: 202 ident: bb0200 article-title: Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and publication-title: Remote Sensing of Environment – volume: 105 start-page: 313 year: 2006 end-page: 325 ident: bb0025 article-title: Neural network estimation of LAI, fAPAR, fCover and LAI××Cab, from top of canopy MERIS reflectance data: Principles and validation publication-title: Remote Sensing of Environment – volume: 148 start-page: 523 year: 1996 end-page: 529 ident: bb0290 article-title: Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply publication-title: Journal of Plant Physiology – volume: 15 start-page: 1459 year: 1994 end-page: 1470 ident: bb0120 article-title: The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status publication-title: International Journal of Remote Sensing – reference: . – volume: 112 start-page: 2789 year: 2008 end-page: 2803 ident: bb0340 article-title: Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products publication-title: Remote Sensing of Environment – start-page: 172 year: 2008 end-page: 301 ident: bb0035 article-title: Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems publication-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Application – volume: 43 start-page: 2908 year: 2005 end-page: 2917 ident: bb0165 article-title: A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 104 start-page: 447 issue: 4 year: 2006 ident: 10.1016/j.rse.2011.11.002_bb0030 article-title: Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.05.018 – volume: 18 start-page: 2691 issue: 12 year: 1997 ident: 10.1016/j.rse.2011.11.002_bb0150 article-title: Remote estimation of chlorophyll content in higher plant leaves publication-title: International Journal of Remote Sensing doi: 10.1080/014311697217558 – volume: 67 start-page: 251 issue: 3 year: 1999 ident: 10.1016/j.rse.2011.11.002_bb0050 article-title: A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(98)00083-2 – volume: 74 start-page: 471 issue: 3 year: 2000 ident: 10.1016/j.rse.2011.11.002_bb0205 article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(00)00139-5 – volume: 105 start-page: 313 issue: 4 year: 2006 ident: 10.1016/j.rse.2011.11.002_bb0025 article-title: Neural network estimation of LAI, fAPAR, fCover and LAI××Cab, from top of canopy MERIS reflectance data: Principles and validation publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.07.014 – volume: 66 start-page: 111 issue: 2 year: 1998 ident: 10.1016/j.rse.2011.11.002_bb0090 article-title: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(98)00046-7 – volume: 81 start-page: 337 issue: 2–3 year: 2002 ident: 10.1016/j.rse.2011.11.002_bb0310 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00010-X – year: 2002 ident: 10.1016/j.rse.2011.11.002_bb0300 – volume: 114 start-page: 647 issue: 3 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0350 article-title: Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.11.004 – volume: 148 start-page: 501 issue: 3–4 year: 1996 ident: 10.1016/j.rse.2011.11.002_bb0155 article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm publication-title: Journal of Plant Physiology doi: 10.1016/S0176-1617(96)80285-9 – volume: 29 start-page: 5093 issue: 17–18 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0225 article-title: Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery publication-title: International Journal of Remote Sensing doi: 10.1080/01431160802036458 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0315 article-title: A tutorial on support vector regression publication-title: Statistics and Computing doi: 10.1023/B:STCO.0000035301.49549.88 – year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0005 article-title: Advances and limitations in a parametric geometric correction of CHRIS/PROBA data – volume: 14 start-page: 3536 issue: 17 year: 2001 ident: 10.1016/j.rse.2011.11.002_bb0060 article-title: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations publication-title: Journal of Climate doi: 10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2 – volume: 86 start-page: 542 issue: 4 year: 2003 ident: 10.1016/j.rse.2011.11.002_bb0170 article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(03)00131-7 – ident: 10.1016/j.rse.2011.11.002_bb0100 – volume: 112 start-page: 2789 issue: 6 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0340 article-title: Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.01.006 – volume: 160 start-page: 271 issue: 3 year: 2003 ident: 10.1016/j.rse.2011.11.002_bb0145 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: Journal of Plant Physiology doi: 10.1078/0176-1617-00887 – volume: 35 start-page: 230 issue: 3 year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0280 article-title: Experimental assessment of the sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize publication-title: Canadian Journal of Remote Sensing doi: 10.5589/m09-010 – volume: 49 start-page: 381 issue: 3 year: 2003 ident: 10.1016/j.rse.2011.11.002_bb0285 article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods publication-title: Forest Science doi: 10.1093/forestscience/49.3.381 – start-page: 55 year: 1975 ident: 10.1016/j.rse.2011.11.002_bb0355 article-title: Methods of assessing terrestrial productivity – year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0070 article-title: Biophysical parameter estimation with adaptive Gaussian Processes – year: 2006 ident: 10.1016/j.rse.2011.11.002_bb0275 – ident: 10.1016/j.rse.2011.11.002_bb0105 – year: 1999 ident: 10.1016/j.rse.2011.11.002_bb0180 – volume: 404 start-page: 411 issue: 2–3 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0185 article-title: The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2007.11.007 – year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0115 article-title: Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns – volume: 46 start-page: 2872 issue: 10 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0010 article-title: Efficient kernel orthonormalized PLS for remote sensing applications publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2008.918765 – volume: 120 start-page: 191 issue: 1–4 year: 2003 ident: 10.1016/j.rse.2011.11.002_bb0220 article-title: Field crop responses to ultraviolet-B radiation: A review publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2003.08.015 – volume: 9 start-page: 360 issue: 4 year: 2007 ident: 10.1016/j.rse.2011.11.002_bb0055 article-title: Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2006.11.003 – volume: 15 start-page: 1459 issue: 7 year: 1994 ident: 10.1016/j.rse.2011.11.002_bb0120 article-title: The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status publication-title: International Journal of Remote Sensing doi: 10.1080/01431169408954177 – volume: 91 start-page: 354 issue: 3–4 year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0325 article-title: Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.03.013 – volume: 19 start-page: 2639 issue: 14 year: 1998 ident: 10.1016/j.rse.2011.11.002_bb0230 article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements publication-title: International Journal of Remote Sensing doi: 10.1080/014311698214433 – volume: 43 start-page: 2908 issue: 12 year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0165 article-title: A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2005.857915 – volume: 114 start-page: 1230 issue: 6 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0235 article-title: Predictive mapping of reef fish species richness, diversity and biomass in zanzibar using IKONOS imagery and machine-learning techniques publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.01.007 – volume: 112 start-page: 3846 issue: 10 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0240 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.06.005 – volume: 99 start-page: 464 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0265 article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data publication-title: IEEE Geoscience and Remote Sensing Society doi: 10.1109/LGRS.2009.2039191 – volume: 97 start-page: 352 issue: 3 year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0270 article-title: Operational algorithm for the retrieval of water quality in the Great Lakes publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.04.018 – volume: 43 start-page: 1585 issue: 7 year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0295 article-title: Improved determination of coastal water constituent concentrations from MERIS data publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2005.848410 – start-page: 18 year: 2007 ident: 10.1016/j.rse.2011.11.002_bb0255 article-title: The optical high-resolution mission for GMES operational services publication-title: European Space Agency Bulletin – volume: 73 start-page: 165 issue: 2 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0020 article-title: Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.05.006 – year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0065 – volume: 93 start-page: 53 issue: 1–2 year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0015 article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.06.016 – volume: 112 start-page: 186 issue: 1 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0200 article-title: Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.04.012 – volume: vol. 7452 year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0260 – volume: 148 start-page: 350 year: 1987 ident: 10.1016/j.rse.2011.11.002_bb0245 article-title: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes publication-title: Methods in Enzymology doi: 10.1016/0076-6879(87)48036-1 – volume: 42 start-page: 1512 issue: 7 year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0045 article-title: The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.827260 – volume: 35 start-page: 161 issue: 2–3 year: 1991 ident: 10.1016/j.rse.2011.11.002_bb0040 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(91)90009-U – ident: 10.1016/j.rse.2011.11.002_bb0345 – year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0305 – volume: 11 start-page: 233 issue: 4 year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0110 article-title: Identification of hyperspectral vegetation indices for Mediterranean pasture characterization publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2009.02.003 – volume: 12 start-page: 165 issue: 3 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0095 article-title: Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC) publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2010.02.003 – volume: 148 start-page: 599 issue: 5 year: 1996 ident: 10.1016/j.rse.2011.11.002_bb0250 article-title: Detection of vegetation stress via a new high resolution fluorescence imaging system publication-title: Journal of Plant Physiology doi: 10.1016/S0176-1617(96)80081-2 – volume: 63 start-page: 409 issue: 4 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0085 article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2008.01.001 – year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0175 – volume: 114 start-page: 977 issue: 5 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0320 article-title: Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.12.006 – volume: 143 start-page: 105 issue: 1 year: 1999 ident: 10.1016/j.rse.2011.11.002_bb0130 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: The New Phytologist doi: 10.1046/j.1469-8137.1999.00424.x – volume: 112 start-page: 2592 issue: 5 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0080 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.12.003 – volume: 39 start-page: 1491 issue: 7 year: 2001 ident: 10.1016/j.rse.2011.11.002_bb0360 article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.934080 – start-page: 172 year: 2008 ident: 10.1016/j.rse.2011.11.002_bb0035 article-title: Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems publication-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Application – volume: 22 start-page: 247 issue: 3 year: 1994 ident: 10.1016/j.rse.2011.11.002_bb0140 article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves publication-title: Journal of Photochemistry and Photobiology. B, Biology doi: 10.1016/1011-1344(93)06963-4 – year: 2004 ident: 10.1016/j.rse.2011.11.002_bb0135 article-title: Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign – volume: 113 start-page: 259 issue: 1 year: 2009 ident: 10.1016/j.rse.2011.11.002_bb0195 article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of lai and leaf chlorophyll content at the field scale publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.09.014 – year: 2005 ident: 10.1016/j.rse.2011.11.002_bb0215 article-title: Fractional vegetation cover estimation from proba/CHRIS data: methods, analysis of angular effects and application to the land surface emissivity retrieval – volume: 52 start-page: 163 issue: 3 year: 1995 ident: 10.1016/j.rse.2011.11.002_bb0210 article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00018-V – volume: 148 start-page: 523 issue: 5 year: 1996 ident: 10.1016/j.rse.2011.11.002_bb0290 article-title: Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply publication-title: Journal of Plant Physiology doi: 10.1016/S0176-1617(96)80071-X – volume: 115 start-page: 415 issue: 2 year: 2011 ident: 10.1016/j.rse.2011.11.002_bb0335 article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.09.012 – volume: 71 start-page: 158 issue: 2 year: 2000 ident: 10.1016/j.rse.2011.11.002_bb0330 article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(99)00067-X – volume: 136 start-page: 232 issue: 4 year: 2010 ident: 10.1016/j.rse.2011.11.002_bb0125 article-title: Combining remotely sensed data and ground-based radiometers to estimate crop cover and surface temperatures at daily time steps publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)IR.1943-4774.0000169 – volume: 15 issue: 3 year: 1994 ident: 10.1016/j.rse.2011.11.002_bb0075 article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress publication-title: International Journal of Remote Sensing doi: 10.1080/01431169408954109 – volume: 78 start-page: 2339 issue: 8 year: 1997 ident: 10.1016/j.rse.2011.11.002_bb0190 article-title: CO2 elevation, canopy photosynthesis, and optimal leaf area index publication-title: Ecology – volume: 111 issue: 8 year: 2006 ident: 10.1016/j.rse.2011.11.002_bb0160 article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity publication-title: Journal of Geophysical Research D: Atmospheres doi: 10.1029/2005JD006017 |
| SSID | ssj0015871 |
| Score | 2.5660834 |
| Snippet | ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | algorithms Animal, plant and microbial ecology Applied geophysics artificial intelligence Biological and medical sciences Biophysical parameter retrieval chlorophyll confidence interval Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology Gaussian Processes regression (GPR) General aspects. Techniques Internal geophysics Kernel ridge regression (KRR) Landsat leaf area index leaves Machine learning monitoring neural networks reflectance Regression algorithms remote sensing Sentinel-2 Sentinel-3 Spain Support vector regression (SVR) Teledetection and vegetation maps vegetation cover |
| Title | Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 |
| URI | https://dx.doi.org/10.1016/j.rse.2011.11.002 https://www.proquest.com/docview/1710231005 |
| Volume | 118 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQwikaYLCxDaojMQTktkS20nL2zRtFNDGA0zqm-Vf6Yq6JGrah73sb99d4hRNoD3w6MSWI9_57hx_dx_AByVN4bJCcuHyMZcu5NwGI3jIBHkX49OMEoUvLrPJlfw2VdMtOO1zYQhWGW1_Z9Nbax2fHMXVPKrnc8rxFZI0joqeoVedUga7zInF4NPdBuaRqFHeseYJyal3f7PZYryWTeiqeFIhz_hn5R--aac2Da5Y0VFd_GW1W1d0_gJ2YwzJTrrPfAlboRzA3tmflDV8GfdsM4Bnkef8-nYAT7-0RL63r6C6aFGUgUXaiBlbhlmHiS2ZWcyq5Xx1fdMwjGmZnVd1FCejUuE3BKHB_sTFhYr6mf2oKYpfl2111nbITwIhlWHBU2ZKz7h4DVfnZ79OJzySL3CHTnvFE6IlTjP0oWFsKQjygc4-bmyld0WBbWnHLvfWKOmTFI9RhUqDImmjnEdC7MF2WZXhDTCR-MJntjA2tTKEzDrlR8c-McrlLgnpPhz3y65drExOBBkL3UPQfmuUlCZJ4YlFo6T24eNmSN2V5Xiss-xlqR_olka38diw4QO5bybCKJGYDLHD-14RNG5KumkxZajWjU4obqOrE3Xwf3MfwnNspQR2S9Rb2F4t1-EdRj8rO2zVewhPTr5-n1zeA8LYBpw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQkhGChojyKkTghmTaOnexyQ1XLAt1yoJX2ZvmV7VbbJNrsHnrhtzOTOIsqUA8cE9ty5BnPI_48H8B7JU3hskLy1OUjLl3IuQ0m5SFLybsYLzK6KDw5y8YX8ttUTbfgqL8LQ7DKaPs7m95a6_jmIK7mQT2f0x3fVJLGUdEz9KrTe3BfKpFTBvbx1wbnkahh3tHmpZJT9_5oswV5LZvQlfGkSp7x18o_nNOj2jS4ZEXHdfGX2W590ckTeByDSPa5-86nsBXKAewe_7mzho1x0zYD2IlE55c3A3jwpWXyvXkG1aSFUQYWeSNmbBlmHSi2ZGYxq5bz1eV1wzCoZXZe1VGejGqFXxOGBvsTGRdq6if2o6Ywfl225VnbIT8JhVSGBRfMlJ7x9DlcnByfH415ZF_gDr32iifESywydKJhZCkK8oGSHzey0ruiwGdpRy731ijpE4F5VKFEUCRuFPQwTXdhu6zK8AJYmvjCZ7YwVlgZQmad8sNDnxjlcpcEsQeH_bJrF0uTE0PGQvcYtCuNktIkKUxZNEpqDz5shtRdXY67OstelvqWcmn0G3cN278l981EGCYSlSF2eNcrgsZdSUctpgzVutEJBW50dqJe_t_cb2FnfD451adfz76_gofYIgj5lqjXsL1arsMbDIVWdr9V9d-_KQgx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+regression+algorithms+for+biophysical+parameter+retrieval%3A+Opportunities+for+Sentinel-2+and+-3&rft.jtitle=Remote+sensing+of+environment&rft.au=Verrelst%2C+Jochem&rft.au=Mu%C3%B1oz%2C+Jordi&rft.au=Alonso%2C+Luis&rft.au=Delegido%2C+Jes%C3%BAs&rft.date=2012-03-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=118&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.rse.2011.11.002&rft.externalDocID=S003442571100397X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |