Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3

ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products wi...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 118; pp. 127 - 139
Main Authors Verrelst, Jochem, Muñoz, Jordi, Alonso, Luis, Delegido, Jesús, Rivera, Juan Pablo, Camps-Valls, Gustavo, Moreno, José
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.03.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2011.11.002

Cover

Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications. ► Sentinel-2 and -3 aim to ensure continuity of operational land monitoring products. ► Machine learning algorithms are promising for biophysical parameters retrieval. ► Gaussian Processes regression (GPR) is evaluated as best performing algorithm. ► GPR reached accuracies superior to the by GMES requested threshold of 10%. ► Along with estimates, GPR provides insight in relevant bands and confidence values.
AbstractList ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications.
ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10m (4 bands), S2-20m (8 bands), S2-60m (10 bands) and S3-300m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications. ► Sentinel-2 and -3 aim to ensure continuity of operational land monitoring products. ► Machine learning algorithms are promising for biophysical parameters retrieval. ► Gaussian Processes regression (GPR) is evaluated as best performing algorithm. ► GPR reached accuracies superior to the by GMES requested threshold of 10%. ► Along with estimates, GPR provides insight in relevant bands and confidence values.
Author Alonso, Luis
Delegido, Jesús
Verrelst, Jochem
Rivera, Juan Pablo
Moreno, José
Muñoz, Jordi
Camps-Valls, Gustavo
Author_xml – sequence: 1
  givenname: Jochem
  surname: Verrelst
  fullname: Verrelst, Jochem
  email: jochem.verrelst@uv.es
– sequence: 2
  givenname: Jordi
  surname: Muñoz
  fullname: Muñoz, Jordi
– sequence: 3
  givenname: Luis
  surname: Alonso
  fullname: Alonso, Luis
– sequence: 4
  givenname: Jesús
  surname: Delegido
  fullname: Delegido, Jesús
– sequence: 5
  givenname: Juan Pablo
  surname: Rivera
  fullname: Rivera, Juan Pablo
– sequence: 6
  givenname: Gustavo
  surname: Camps-Valls
  fullname: Camps-Valls, Gustavo
– sequence: 7
  givenname: José
  surname: Moreno
  fullname: Moreno, José
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25618742$$DView record in Pascal Francis
BookMark eNp9kU1rGzEQhkVJoU7aH9CbLoVe1pW0ktZuTyWkH5CSQ9uz0Gpn7TGytB3Jgfz7Kjj00ENgQBI8z4De95JdpJyAsbdSrKWQ9sNhTQXWSki5biOEesFWcjNsOzEIfcFWQvS608oMr9hlKQchpNkMcsXyDx_2mIBH8JQw7TjBjqAUzIn7uMuEdX8sfM7ER8zL_qFg8JEvnvwRKlDjKyHc-_iR3y1LpnpKWBHOyk9ItW2PneI-TbzrX7OXs48F3jydV-z3l5tf19-627uv368_33ZBK1s7aa1plwAA21EZqSawyoqwHfUU5rm99bgNwzR6oyeprDKzUWB0gAFsv-n7K_b-vHeh_OcEpbojlgAx-gT5VJwcpFC9FMI09N0T6kv72kw-BSxuITx6enDK2BakVo2TZy5QLoVg_odI4R5LcAfXSnCPJbg2rYTmDP85AauvLdxKHuOz5qezCS2lewRyJSCkABMShOqmjM_YfwFOv6S7
CODEN RSEEA7
CitedBy_id crossref_primary_10_3390_rs10101648
crossref_primary_10_1016_j_scitotenv_2018_03_004
crossref_primary_10_1002_rse2_149
crossref_primary_10_3390_rs8020119
crossref_primary_10_1016_j_catena_2020_104938
crossref_primary_10_1007_s41064_019_00076_x
crossref_primary_10_3390_s21093078
crossref_primary_10_3390_rs14153694
crossref_primary_10_3389_fpls_2022_1075856
crossref_primary_10_3390_rs14061347
crossref_primary_10_3389_fpls_2022_949598
crossref_primary_10_1016_j_fcr_2023_109088
crossref_primary_10_1029_2018EA000539
crossref_primary_10_3390_rs14030715
crossref_primary_10_1016_j_rse_2023_113614
crossref_primary_10_1016_j_knosys_2022_108682
crossref_primary_10_3390_rs13183560
crossref_primary_10_3390_rs14153560
crossref_primary_10_1080_10106049_2017_1316781
crossref_primary_10_3390_su9060892
crossref_primary_10_3390_rs16173241
crossref_primary_10_3390_rs8080673
crossref_primary_10_1007_s11356_019_07519_3
crossref_primary_10_1016_j_rse_2013_09_030
crossref_primary_10_1016_j_isprsjprs_2014_07_003
crossref_primary_10_3390_agronomy13082147
crossref_primary_10_1016_j_jag_2020_102174
crossref_primary_10_1080_01431161_2020_1734261
crossref_primary_10_3390_s121114537
crossref_primary_10_3390_f16030464
crossref_primary_10_1016_j_jphotobiol_2014_03_010
crossref_primary_10_1016_j_isprsjprs_2020_04_009
crossref_primary_10_1016_j_compag_2024_109030
crossref_primary_10_3390_rs11172000
crossref_primary_10_1016_j_rse_2018_11_016
crossref_primary_10_3390_rs11131614
crossref_primary_10_1016_j_isprsjprs_2021_06_017
crossref_primary_10_1016_j_jag_2021_102407
crossref_primary_10_1016_j_envres_2023_115747
crossref_primary_10_1016_j_rse_2023_113883
crossref_primary_10_1109_TGRS_2013_2238242
crossref_primary_10_1080_01431161_2023_2240508
crossref_primary_10_1007_s43681_021_00132_6
crossref_primary_10_1016_j_jfoodeng_2020_110177
crossref_primary_10_3390_rs12111843
crossref_primary_10_3390_rs15235496
crossref_primary_10_3390_rs5073280
crossref_primary_10_1016_j_rse_2014_03_022
crossref_primary_10_3390_rs12182934
crossref_primary_10_1016_j_rse_2020_111758
crossref_primary_10_3390_rs14225867
crossref_primary_10_1016_j_tplants_2021_12_003
crossref_primary_10_3390_rs13081589
crossref_primary_10_1016_j_isprsjprs_2023_10_017
crossref_primary_10_1016_j_srs_2021_100025
crossref_primary_10_1016_j_rse_2013_09_005
crossref_primary_10_1109_TGRS_2016_2585201
crossref_primary_10_1109_TGRS_2019_2940826
crossref_primary_10_1615_HeatTransRes_2023046884
crossref_primary_10_1016_j_marpolbul_2022_114132
crossref_primary_10_1109_TGRS_2016_2551326
crossref_primary_10_3390_rs9090906
crossref_primary_10_1080_01431161_2015_1054047
crossref_primary_10_3389_fpls_2022_722442
crossref_primary_10_3390_rs12111788
crossref_primary_10_1016_j_saa_2022_121231
crossref_primary_10_1109_JSTARS_2021_3074975
crossref_primary_10_1109_TGRS_2024_3373629
crossref_primary_10_1007_s11104_022_05506_1
crossref_primary_10_3390_agronomy13030716
crossref_primary_10_3390_s19040904
crossref_primary_10_1016_j_rse_2020_111810
crossref_primary_10_1109_JSTARS_2018_2813281
crossref_primary_10_1016_j_rse_2018_10_004
crossref_primary_10_1016_j_rse_2017_02_009
crossref_primary_10_3390_rs9040318
crossref_primary_10_1007_s11119_024_10117_0
crossref_primary_10_3390_agronomy12010202
crossref_primary_10_1016_j_jag_2019_06_003
crossref_primary_10_3390_app13064005
crossref_primary_10_3390_rs9101080
crossref_primary_10_1016_j_jag_2019_101942
crossref_primary_10_3390_rs14122849
crossref_primary_10_3390_agronomy13112808
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_1117_1_JRS_12_046026
crossref_primary_10_1016_j_cj_2016_01_008
crossref_primary_10_3390_rs9040309
crossref_primary_10_1109_LGRS_2016_2560799
crossref_primary_10_1016_j_ecoinf_2022_101967
crossref_primary_10_1109_JSTARS_2014_2298752
crossref_primary_10_1109_JSTARS_2016_2574802
crossref_primary_10_1007_s12524_024_01973_4
crossref_primary_10_1080_17538947_2020_1794064
crossref_primary_10_1016_j_rse_2017_03_042
crossref_primary_10_1007_s11119_019_09664_8
crossref_primary_10_3390_rs11151752
crossref_primary_10_1016_j_isprsjprs_2024_11_005
crossref_primary_10_1080_07038992_2014_928182
crossref_primary_10_1109_JSTARS_2012_2222356
crossref_primary_10_1109_JSTARS_2018_2875330
crossref_primary_10_1109_JSTARS_2021_3098513
crossref_primary_10_1080_19479832_2022_2055157
crossref_primary_10_1016_j_geoderma_2020_114211
crossref_primary_10_1016_j_rse_2016_01_017
crossref_primary_10_1016_j_rse_2016_01_018
crossref_primary_10_1016_j_jag_2013_05_013
crossref_primary_10_1109_TGRS_2020_3022461
crossref_primary_10_1155_2022_8264297
crossref_primary_10_1109_JSTARS_2016_2575360
crossref_primary_10_1007_s10661_023_11650_7
crossref_primary_10_1002_hyp_14156
crossref_primary_10_1016_j_asr_2023_10_004
crossref_primary_10_1016_j_rse_2022_113199
crossref_primary_10_3390_rs12132069
crossref_primary_10_1016_j_rse_2013_06_007
crossref_primary_10_1007_s11540_023_09644_6
crossref_primary_10_3390_rs11050481
crossref_primary_10_3390_rs11151816
crossref_primary_10_3390_agronomy12050979
crossref_primary_10_1007_s42979_023_02214_0
crossref_primary_10_1016_j_rse_2017_03_013
crossref_primary_10_3390_rs13020329
crossref_primary_10_1016_j_fcr_2022_108655
crossref_primary_10_3390_rs5031274
crossref_primary_10_1016_j_fcr_2022_108538
crossref_primary_10_1080_01431161_2015_1054959
crossref_primary_10_3390_rs15133404
crossref_primary_10_3390_rs9090927
crossref_primary_10_3390_rs15143690
crossref_primary_10_1016_j_foreco_2018_12_019
crossref_primary_10_1016_j_jag_2016_07_016
crossref_primary_10_3390_f14071417
crossref_primary_10_1016_j_biosystemseng_2021_08_035
crossref_primary_10_3390_atmos9030083
crossref_primary_10_1080_01431161_2024_2413027
crossref_primary_10_1016_j_isprsjprs_2021_01_017
crossref_primary_10_3390_rs16111869
crossref_primary_10_3390_rs13132598
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_3390_agronomy13123071
crossref_primary_10_1016_j_fcr_2023_108844
crossref_primary_10_1007_s11368_016_1374_9
crossref_primary_10_1109_TGRS_2019_2921392
crossref_primary_10_1002_ps_7443
crossref_primary_10_3390_rs14174196
crossref_primary_10_1016_j_rsase_2021_100657
crossref_primary_10_3390_rs10122026
crossref_primary_10_1016_j_compag_2021_106581
crossref_primary_10_1016_j_catena_2016_11_016
crossref_primary_10_1016_j_saa_2022_121186
crossref_primary_10_1016_j_jag_2014_10_001
crossref_primary_10_3390_rs12142291
crossref_primary_10_1007_s42247_022_00409_4
crossref_primary_10_3390_rs12132139
crossref_primary_10_1111_2041_210X_13994
crossref_primary_10_1080_01431161_2022_2150098
crossref_primary_10_1016_j_rse_2018_06_037
crossref_primary_10_1016_j_jag_2019_04_019
crossref_primary_10_1016_j_jag_2018_02_006
crossref_primary_10_3389_fenvs_2024_1430818
crossref_primary_10_3390_rs10122015
crossref_primary_10_1016_j_rse_2021_112724
crossref_primary_10_1109_LGRS_2019_2903231
crossref_primary_10_3390_rs11030244
crossref_primary_10_1016_j_rse_2021_112728
crossref_primary_10_3390_rs6043427
crossref_primary_10_1016_j_jag_2020_102242
crossref_primary_10_3390_rs14246284
crossref_primary_10_1029_2018RG000608
crossref_primary_10_3390_rs12101586
crossref_primary_10_1016_j_atmosenv_2022_119098
crossref_primary_10_1016_j_agrformet_2019_107793
crossref_primary_10_3390_rs6076324
crossref_primary_10_1016_j_isprsjprs_2020_09_015
crossref_primary_10_3390_rs14051247
crossref_primary_10_14358_PERS_21_00045R2
crossref_primary_10_1109_JSTARS_2023_3338979
crossref_primary_10_3390_agriculture11030258
crossref_primary_10_1016_j_isprsjprs_2019_08_002
crossref_primary_10_1016_j_jag_2021_102454
crossref_primary_10_1016_j_isprsjprs_2015_01_008
crossref_primary_10_1016_j_rse_2022_113085
crossref_primary_10_1109_MGRS_2015_2510084
crossref_primary_10_3390_rs5031355
crossref_primary_10_1016_j_geodrs_2021_e00399
crossref_primary_10_1016_j_isprsjprs_2016_03_010
crossref_primary_10_3389_fmicb_2018_00343
crossref_primary_10_1016_j_ecolmodel_2020_109398
crossref_primary_10_1016_j_rse_2013_07_012
crossref_primary_10_3390_rs71013098
crossref_primary_10_1016_j_ecolind_2021_108126
crossref_primary_10_1109_JSTARS_2018_2810704
crossref_primary_10_1007_s40808_021_01243_z
crossref_primary_10_1016_j_eng_2020_07_001
crossref_primary_10_1186_s13007_023_01088_w
crossref_primary_10_3390_agronomy15010241
crossref_primary_10_1016_j_agrformet_2022_109152
crossref_primary_10_1063_5_0140372
crossref_primary_10_1016_j_isprsjprs_2014_09_016
crossref_primary_10_1016_j_compag_2020_105692
crossref_primary_10_1016_j_scitotenv_2014_08_060
crossref_primary_10_1016_j_agrformet_2018_12_008
crossref_primary_10_3390_rs11121468
crossref_primary_10_1080_10106049_2022_2146764
crossref_primary_10_5194_bg_21_473_2024
crossref_primary_10_3390_rs15245653
crossref_primary_10_3390_rs10050775
crossref_primary_10_1016_j_envsoft_2017_12_001
crossref_primary_10_1080_01431161_2019_1674461
crossref_primary_10_3390_rs12091383
crossref_primary_10_1109_TGRS_2024_3425517
crossref_primary_10_1016_j_isprsjprs_2015_05_005
crossref_primary_10_1007_s00521_022_08030_6
crossref_primary_10_3390_rs11040387
crossref_primary_10_1016_j_agwat_2020_106346
crossref_primary_10_3390_rs13030403
crossref_primary_10_1016_j_rse_2019_01_031
crossref_primary_10_1016_j_compag_2024_108959
crossref_primary_10_1109_JSTARS_2021_3132228
crossref_primary_10_1016_j_rse_2019_01_039
crossref_primary_10_3390_rs9111113
crossref_primary_10_1016_j_scitotenv_2021_149805
crossref_primary_10_3389_fphy_2019_00247
crossref_primary_10_3390_rs11030327
crossref_primary_10_3390_rs11161923
crossref_primary_10_3390_rs9030248
crossref_primary_10_1016_j_isprsjprs_2013_09_012
crossref_primary_10_1016_j_isprsjprs_2017_09_012
crossref_primary_10_1109_JSTARS_2016_2641583
crossref_primary_10_3390_rs8060488
crossref_primary_10_1007_s12524_021_01466_8
crossref_primary_10_1016_j_compag_2023_108308
crossref_primary_10_3390_rs15092289
crossref_primary_10_1016_j_compag_2024_109717
crossref_primary_10_1016_j_eja_2012_12_001
crossref_primary_10_1016_j_isprsjprs_2017_10_011
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_1016_j_jag_2019_102037
crossref_primary_10_1109_JSTARS_2017_2748341
crossref_primary_10_1109_JSTARS_2015_2442584
crossref_primary_10_1016_j_jaridenv_2022_104880
crossref_primary_10_1109_TGRS_2022_3211554
crossref_primary_10_3390_agronomy13041119
crossref_primary_10_1186_s13007_021_00796_5
crossref_primary_10_3390_s21124118
crossref_primary_10_1016_j_rse_2020_112168
crossref_primary_10_3390_rs16091614
crossref_primary_10_1016_j_isprsjprs_2017_10_004
crossref_primary_10_1016_j_jag_2018_08_004
crossref_primary_10_3390_rs10121942
crossref_primary_10_1080_10106049_2024_2309174
crossref_primary_10_3390_rs10050786
crossref_primary_10_1016_j_isprsjprs_2018_03_005
crossref_primary_10_1007_s00521_016_2666_0
crossref_primary_10_3390_rs13091810
crossref_primary_10_1016_j_resourpol_2018_10_008
crossref_primary_10_1080_15481603_2018_1492213
crossref_primary_10_1016_j_compag_2024_108730
crossref_primary_10_1016_j_rse_2016_10_009
crossref_primary_10_3390_rs14184531
crossref_primary_10_1016_j_rse_2024_114228
crossref_primary_10_3390_rs11161909
crossref_primary_10_1016_j_agwat_2022_108056
crossref_primary_10_3390_f15101739
crossref_primary_10_3390_rs15143664
crossref_primary_10_3390_rs13245141
crossref_primary_10_1029_2020MS002214
crossref_primary_10_3390_rs70810400
crossref_primary_10_3389_fpls_2019_00730
crossref_primary_10_3390_rs8040324
crossref_primary_10_1016_j_rse_2021_112453
crossref_primary_10_3390_f15101720
crossref_primary_10_1016_j_isprsjprs_2017_08_012
crossref_primary_10_3390_rs10020185
crossref_primary_10_3390_f7100226
crossref_primary_10_1016_j_compag_2019_105089
crossref_primary_10_1016_j_rse_2019_111614
crossref_primary_10_3390_w13010022
crossref_primary_10_1016_j_fcr_2023_108860
crossref_primary_10_1016_j_rse_2020_112101
crossref_primary_10_1016_j_ecolind_2022_109102
crossref_primary_10_1016_j_rse_2022_112958
crossref_primary_10_1109_LGRS_2020_3014676
crossref_primary_10_1016_j_isprsjprs_2021_04_002
crossref_primary_10_3390_rs12071116
crossref_primary_10_3390_geographies1030011
crossref_primary_10_3390_rs10020172
crossref_primary_10_1007_s11540_024_09803_3
crossref_primary_10_1109_TGRS_2023_3284992
crossref_primary_10_1016_j_compag_2024_108942
crossref_primary_10_3390_rs70911249
crossref_primary_10_1080_01431161_2022_2074809
crossref_primary_10_1109_JSTARS_2021_3065582
crossref_primary_10_3390_rs11121459
crossref_primary_10_1016_j_isprsjprs_2015_04_013
crossref_primary_10_1016_j_rse_2021_112304
crossref_primary_10_3389_fpls_2023_1196634
crossref_primary_10_1016_j_compag_2022_107003
crossref_primary_10_1016_j_isprsjprs_2019_06_007
crossref_primary_10_1016_j_isprsjprs_2020_07_004
crossref_primary_10_1111_rge_12245
crossref_primary_10_3390_w10101428
crossref_primary_10_1109_TGRS_2017_2767205
crossref_primary_10_1016_j_rse_2014_06_006
crossref_primary_10_1016_j_rse_2024_114260
crossref_primary_10_1016_j_jag_2016_06_019
crossref_primary_10_1016_j_jag_2024_103905
crossref_primary_10_1016_j_envpol_2020_115412
crossref_primary_10_1063_1_5064655
crossref_primary_10_3390_rs13214314
crossref_primary_10_1016_j_jag_2023_103367
crossref_primary_10_3390_rs12060915
crossref_primary_10_3390_rs16122058
crossref_primary_10_3390_agronomy9100663
crossref_primary_10_5194_amt_8_1337_2015
crossref_primary_10_3390_rs13112099
crossref_primary_10_1016_j_catena_2018_10_004
crossref_primary_10_3389_frans_2022_872646
crossref_primary_10_1029_2022WR032073
crossref_primary_10_3390_agriculture13010009
crossref_primary_10_1016_j_ecoinf_2024_102816
crossref_primary_10_1080_01431161_2024_2368929
crossref_primary_10_1111_nph_19807
crossref_primary_10_1016_j_compag_2024_109658
crossref_primary_10_1016_j_oregeorev_2017_10_009
crossref_primary_10_1016_j_jag_2023_103479
crossref_primary_10_1080_22797254_2017_1324743
crossref_primary_10_1016_j_agrformet_2017_04_011
crossref_primary_10_3390_rs71012635
crossref_primary_10_3390_app9071459
crossref_primary_10_1016_j_rse_2015_06_002
crossref_primary_10_1016_j_rse_2024_114048
crossref_primary_10_3390_rs10091458
crossref_primary_10_1016_j_isprsjprs_2019_11_018
crossref_primary_10_3390_agronomy14040750
crossref_primary_10_3390_rs13040821
crossref_primary_10_1080_01431161_2021_1998714
crossref_primary_10_1109_TGRS_2019_2926392
crossref_primary_10_1016_j_compag_2022_106806
crossref_primary_10_3390_rs70709347
crossref_primary_10_3390_rs14071662
crossref_primary_10_3390_rs12183073
crossref_primary_10_1016_j_marenvres_2022_105701
crossref_primary_10_3390_rs15010100
crossref_primary_10_1007_s11119_023_10106_9
crossref_primary_10_1016_j_isprsjprs_2020_10_004
crossref_primary_10_3390_s16060834
crossref_primary_10_1016_j_jag_2015_01_016
crossref_primary_10_1016_j_jag_2023_103498
crossref_primary_10_1109_TGRS_2017_2687421
crossref_primary_10_3390_rs13010084
crossref_primary_10_3390_rs14040934
crossref_primary_10_1016_j_rse_2018_02_067
crossref_primary_10_1007_s12524_019_01024_3
crossref_primary_10_1016_j_isprsjprs_2023_09_009
crossref_primary_10_1016_j_jag_2016_10_001
crossref_primary_10_1007_s11119_022_09940_0
crossref_primary_10_1016_j_scitotenv_2024_177180
crossref_primary_10_3390_rs13234898
crossref_primary_10_1016_j_rse_2024_114072
crossref_primary_10_1016_j_foreco_2023_121034
crossref_primary_10_1016_j_rse_2020_112176
crossref_primary_10_1142_S0219691319410029
crossref_primary_10_1016_j_compag_2020_105899
crossref_primary_10_3390_rs12162574
crossref_primary_10_3390_s18041120
crossref_primary_10_3390_rs12244015
crossref_primary_10_1080_2150704X_2022_2114108
crossref_primary_10_3390_rs12223770
crossref_primary_10_3390_rs13040806
crossref_primary_10_1007_s41064_022_00218_8
crossref_primary_10_1109_JSTARS_2018_2823361
crossref_primary_10_1016_j_jclepro_2020_123870
crossref_primary_10_3390_rs11172050
crossref_primary_10_3390_rs8110883
crossref_primary_10_3389_fmars_2023_1065123
crossref_primary_10_1080_10095020_2024_2313329
crossref_primary_10_3390_rs14225801
crossref_primary_10_3390_agronomy15030526
crossref_primary_10_1016_j_rse_2023_113966
crossref_primary_10_3390_rs14153515
crossref_primary_10_3390_rs14235977
crossref_primary_10_1080_02681102_2020_1811945
crossref_primary_10_3390_rs12183028
crossref_primary_10_3390_rs14010146
crossref_primary_10_1016_j_eja_2022_126664
crossref_primary_10_3390_rs11182076
crossref_primary_10_1016_j_rse_2019_03_002
crossref_primary_10_1088_1755_1315_918_1_012011
crossref_primary_10_1080_01431161_2023_2283903
crossref_primary_10_3390_rs6064927
crossref_primary_10_3390_rs14184452
Cites_doi 10.1016/j.rse.2006.05.018
10.1080/014311697217558
10.1016/S0034-4257(98)00083-2
10.1016/S0034-4257(00)00139-5
10.1016/j.rse.2006.07.014
10.1016/S0034-4257(98)00046-7
10.1016/S0034-4257(02)00010-X
10.1016/j.rse.2009.11.004
10.1016/S0176-1617(96)80285-9
10.1080/01431160802036458
10.1023/B:STCO.0000035301.49549.88
10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2
10.1016/S0034-4257(03)00131-7
10.1016/j.rse.2008.01.006
10.1078/0176-1617-00887
10.5589/m09-010
10.1093/forestscience/49.3.381
10.1016/j.scitotenv.2007.11.007
10.1109/TGRS.2008.918765
10.1016/j.agrformet.2003.08.015
10.1016/j.jag.2006.11.003
10.1080/01431169408954177
10.1016/j.rse.2004.03.013
10.1080/014311698214433
10.1109/TGRS.2005.857915
10.1016/j.rse.2010.01.007
10.1016/j.rse.2008.06.005
10.1109/LGRS.2009.2039191
10.1016/j.rse.2005.04.018
10.1109/TGRS.2005.848410
10.1016/j.compag.2010.05.006
10.1016/j.rse.2004.06.016
10.1016/j.rse.2007.04.012
10.1016/0076-6879(87)48036-1
10.1109/TGRS.2004.827260
10.1016/0034-4257(91)90009-U
10.1016/j.jag.2009.02.003
10.1016/j.jag.2010.02.003
10.1016/S0176-1617(96)80081-2
10.1016/j.isprsjprs.2008.01.001
10.1016/j.rse.2009.12.006
10.1046/j.1469-8137.1999.00424.x
10.1016/j.rse.2007.12.003
10.1109/36.934080
10.1016/1011-1344(93)06963-4
10.1016/j.rse.2008.09.014
10.1016/0034-4257(95)00018-V
10.1016/S0176-1617(96)80071-X
10.1016/j.rse.2010.09.012
10.1016/S0034-4257(99)00067-X
10.1061/(ASCE)IR.1943-4774.0000169
10.1080/01431169408954109
10.1029/2005JD006017
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.rse.2011.11.002
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 139
ExternalDocumentID 25618742
10_1016_j_rse_2011_11_002
S003442571100397X
GeographicLocations Iberian Peninsula
Southern Europe
Europe
Spain
GeographicLocations_xml – name: Spain
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
HMC
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HVGLF
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7S9
L.6
ID FETCH-LOGICAL-c426t-1665426ceee9b2512de6260c9b4dcff12d4b9c7dba54d12625f52e54ce7e63833
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sat Sep 27 19:53:48 EDT 2025
Mon Jul 21 09:14:33 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Wed Oct 01 02:18:05 EDT 2025
Fri Feb 23 02:25:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biophysical parameter retrieval
Support vector regression (SVR)
Regression algorithms
Kernel ridge regression (KRR)
Sentinel-3
Sentinel-2
Machine learning
Gaussian Processes regression (GPR)
Parameter estimation
data
Spot
adaptation
accuracy
vegetation
Image
artificial intelligence
Test method
Learning algorithm
Ability
Availability
time resolution
Fitting
Space remote sensing
Landsat
Biophysics
monitoring
Real time
Landsat satellite
regression
Nonlinearity
Parameter
Reflectance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-1665426ceee9b2512de6260c9b4dcff12d4b9c7dba54d12625f52e54ce7e63833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1710231005
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_1710231005
pascalfrancis_primary_25618742
crossref_primary_10_1016_j_rse_2011_11_002
crossref_citationtrail_10_1016_j_rse_2011_11_002
elsevier_sciencedirect_doi_10_1016_j_rse_2011_11_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-15
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Buermann, Dong, Zeng, Myneni, Dickinson (bb0060) 2001; 14
Lichtenthaler (bb0245) 1987; 148
Verrelst, Schaepman, Malenovský, Clevers (bb0350) 2010; 114
Botha, Leblon, Zebarth, Watmough (bb0055) 2007; 9
Datt (bb0090) 1998; 66
Stagakis, Markos, Sykioti, Kyparissis (bb0320) 2010; 114
Gitelson, Gritz, Merzlyak (bb0145) 2003; 160
Bannari, Pacheco, Staenz, McNairn, Omari (bb0030) 2006; 104
Smola, Schölkopf (bb0315) 2004; 14
Shawe-Taylor, Cristianini (bb0305) 2004
Atzberger (bb0015) 2004; 93
Guanter, Alonso, Moreno (bb0165) 2005; 43
Hastie, Tibshirani, Friedman (bb0175) 2009
French, Hunsaker, Clarke, Fitzgerald, Pinter (bb0125) 2010; 136
Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J., in press. Retrieval of vegetation biophysical parameters using gausian processes techniques.
Richter, Atzberger, Vuolo, Weihs, D'Urso (bb0280) 2009; 35
Bacour, Baret, Béal, Weiss, Pavageau (bb0025) 2006; 105
Nieke, Frerick, Stroede, Mavrocordatos, Berruti (bb0260) 2009; vol. 7452
Fernández, Moreno, Gandía, Martínez, Vuolo, Morales (bb0115) 2005
Verger, Baret, Weiss (bb0340) 2008; 112
le Maire, François, Soudani, Berveiller, Pontailler, Bréda (bb0240) 2008; 112
Carter (bb0075) 1994; 15
Haykin (bb0180) Oct. 1999
.
Houborg, Anderson, Daughtry (bb0195) 2009; 113
Gitelson, Merzlyak, Lichtenthaler (bb0155) 1996; 148
Delegido, Alonso, González, Moreno (bb0095) 2010; 12
Darvishzadeh, Skidmore, Schlerf, Atzberger (bb0080) 2008; 112
Whittaker, Marks (bb0355) 1975
Hansen, Schjoerring (bb0170) 2003; 86
Pasolli, Melgani, Blanzieri (bb0265) 2010; 99
Kakani, Reddy, Zhao, Sailaja (bb0220) 2003; 120
Hirose, Ackerly, Traw, Ramseier, Bazzaz (bb0190) 1997; 78
Bicheron, Leroy (bb0050) 1999; 67
Camps-Valls, Gómez-Chova, Muñoz-Marí, Calpe-Maravilla (bb0070) 2009
Darvishzadeh, Skidmore, Schlerf, Atzberger, Corsi, Cho (bb0085) 2008; 63
Barnsley, Settle, Cutter, Lobb, Teston (bb0045) 2004; 42
Gitelson, Vina, Verma, Rundquist, Arkebauer, Keydan (bb0160) 2006; 111
Fava, Colombo, Bocchi, Meroni, Sitzia, Fois (bb0110) 2009; 11
Jacquemoud, Bacour, Poilvé, Frangi (bb0205) 2000; 74
Drusch, Gascon, Berger (bb0100) 2010
Filella, Penuelas (bb0120) 1994; 15
Hilker, Coops, Wulder, Black, Guy (bb0185) 2008; 404
Schepers, Blackmer, Wilhelm, Resende (bb0290) 1996; 148
Verger, Baret, Camacho (bb0335) 2011; 115
Houborg, Boegh (bb0200) 2008; 112
Arenas-García, Camps-Valls (bb0010) Oct. 2008; 46
Gamon, Surfus (bb0130) 1999; 143
Gitelson, Merzlyak (bb0150) 1997; 18
Lichtenthaler, Lang, Sowinska, Heisel, Miehe (bb0250) 1996; 148
Schölkopf, Smola (bb0300) 2002
(bb0065) Dec 2009
Baret, Buis (bb0035) 2008
Atzberger, Guérif, Baret, Werner (bb0020) 2010; 73
Gitelson, Merzlyak (bb0140) 1994; 22
Jacquemoud, Baret, Andrieu, Danson, Jaggard (bb0210) 1995; 52
Jiménez-Muñoz, Sobrino, Guanter, Moreno, Plaza, Martínez (bb0215) 2005
Kempeneers, Zarco-Tejada, North, de Backer, Delalieux, Sepulcre-Canto (bb0225) 2008; 29
ESA (bb0105) 2004
Sims, Gamon (bb0310) 2002; 81
Knudby, LeDrew, Brenning (bb0235) 2010; 114
Gandía, Fernández, Garcia, Moreno (bb0135) 2004
Rasmussen, Williams (bb0275) 2006
Baret, Guyot (bb0040) 1991; 35
Pozdnyakov, Shuchman, Korosov, Hatt (bb0270) 2005; 97
Thenkabail, Enclona, Ashton, Meer (bb0325) 2004; 91
Thenkabail, Smith, Pauw (bb0330) 2000; 71
Kimes, Nelson, Manry, Fung (bb0230) 1998; 19
Alonso, Moreno (bb0005) 2005
Schiller, Doerffer (bb0295) 2005; 43
Zarco-Tejada, Miller, Noland, Mohammed, Sampson (bb0360) 2001; 39
Sampson, Zarco-Tejada, Mohammed, Miller, Noland (bb0285) 2003; 49
Martimort, Berger, Carnicero, Bello, Fernandez, Gascon (bb0255) 2007
Richter (10.1016/j.rse.2011.11.002_bb0280) 2009; 35
Baret (10.1016/j.rse.2011.11.002_bb0040) 1991; 35
Guanter (10.1016/j.rse.2011.11.002_bb0165) 2005; 43
Kakani (10.1016/j.rse.2011.11.002_bb0220) 2003; 120
Fernández (10.1016/j.rse.2011.11.002_bb0115) 2005
Arenas-García (10.1016/j.rse.2011.11.002_bb0010) 2008; 46
Gitelson (10.1016/j.rse.2011.11.002_bb0155) 1996; 148
Verrelst (10.1016/j.rse.2011.11.002_bb0350) 2010; 114
Buermann (10.1016/j.rse.2011.11.002_bb0060) 2001; 14
Pasolli (10.1016/j.rse.2011.11.002_bb0265) 2010; 99
Verger (10.1016/j.rse.2011.11.002_bb0340) 2008; 112
Hastie (10.1016/j.rse.2011.11.002_bb0175) 2009
Thenkabail (10.1016/j.rse.2011.11.002_bb0325) 2004; 91
Jacquemoud (10.1016/j.rse.2011.11.002_bb0210) 1995; 52
Drusch (10.1016/j.rse.2011.11.002_bb0100)
Sims (10.1016/j.rse.2011.11.002_bb0310) 2002; 81
Whittaker (10.1016/j.rse.2011.11.002_bb0355) 1975
Gitelson (10.1016/j.rse.2011.11.002_bb0140) 1994; 22
Schölkopf (10.1016/j.rse.2011.11.002_bb0300) 2002
Gitelson (10.1016/j.rse.2011.11.002_bb0160) 2006; 111
Hilker (10.1016/j.rse.2011.11.002_bb0185) 2008; 404
Hansen (10.1016/j.rse.2011.11.002_bb0170) 2003; 86
Schiller (10.1016/j.rse.2011.11.002_bb0295) 2005; 43
Stagakis (10.1016/j.rse.2011.11.002_bb0320) 2010; 114
Smola (10.1016/j.rse.2011.11.002_bb0315) 2004; 14
Barnsley (10.1016/j.rse.2011.11.002_bb0045) 2004; 42
Nieke (10.1016/j.rse.2011.11.002_bb0260) 2009; vol. 7452
Rasmussen (10.1016/j.rse.2011.11.002_bb0275) 2006
Alonso (10.1016/j.rse.2011.11.002_bb0005) 2005
Hirose (10.1016/j.rse.2011.11.002_bb0190) 1997; 78
Zarco-Tejada (10.1016/j.rse.2011.11.002_bb0360) 2001; 39
Kimes (10.1016/j.rse.2011.11.002_bb0230) 1998; 19
Shawe-Taylor (10.1016/j.rse.2011.11.002_bb0305) 2004
Jiménez-Muñoz (10.1016/j.rse.2011.11.002_bb0215) 2005
Darvishzadeh (10.1016/j.rse.2011.11.002_bb0080) 2008; 112
Delegido (10.1016/j.rse.2011.11.002_bb0095) 2010; 12
Pozdnyakov (10.1016/j.rse.2011.11.002_bb0270) 2005; 97
Filella (10.1016/j.rse.2011.11.002_bb0120) 1994; 15
Datt (10.1016/j.rse.2011.11.002_bb0090) 1998; 66
Darvishzadeh (10.1016/j.rse.2011.11.002_bb0085) 2008; 63
Haykin (10.1016/j.rse.2011.11.002_bb0180) 1999
Bannari (10.1016/j.rse.2011.11.002_bb0030) 2006; 104
Thenkabail (10.1016/j.rse.2011.11.002_bb0330) 2000; 71
Houborg (10.1016/j.rse.2011.11.002_bb0200) 2008; 112
Botha (10.1016/j.rse.2011.11.002_bb0055) 2007; 9
Camps-Valls (10.1016/j.rse.2011.11.002_bb0070) 2009
Carter (10.1016/j.rse.2011.11.002_bb0075) 1994; 15
10.1016/j.rse.2011.11.002_bb0345
Houborg (10.1016/j.rse.2011.11.002_bb0195) 2009; 113
Bacour (10.1016/j.rse.2011.11.002_bb0025) 2006; 105
Fava (10.1016/j.rse.2011.11.002_bb0110) 2009; 11
French (10.1016/j.rse.2011.11.002_bb0125) 2010; 136
Sampson (10.1016/j.rse.2011.11.002_bb0285) 2003; 49
Lichtenthaler (10.1016/j.rse.2011.11.002_bb0245) 1987; 148
Kempeneers (10.1016/j.rse.2011.11.002_bb0225) 2008; 29
Lichtenthaler (10.1016/j.rse.2011.11.002_bb0250) 1996; 148
(10.1016/j.rse.2011.11.002_bb0065) 2009
Schepers (10.1016/j.rse.2011.11.002_bb0290) 1996; 148
Gandía (10.1016/j.rse.2011.11.002_bb0135) 2004
Jacquemoud (10.1016/j.rse.2011.11.002_bb0205) 2000; 74
le Maire (10.1016/j.rse.2011.11.002_bb0240) 2008; 112
Gitelson (10.1016/j.rse.2011.11.002_bb0145) 2003; 160
Atzberger (10.1016/j.rse.2011.11.002_bb0015) 2004; 93
ESA (10.1016/j.rse.2011.11.002_bb0105)
Atzberger (10.1016/j.rse.2011.11.002_bb0020) 2010; 73
Bicheron (10.1016/j.rse.2011.11.002_bb0050) 1999; 67
Martimort (10.1016/j.rse.2011.11.002_bb0255) 2007
Gitelson (10.1016/j.rse.2011.11.002_bb0150) 1997; 18
Baret (10.1016/j.rse.2011.11.002_bb0035) 2008
Verger (10.1016/j.rse.2011.11.002_bb0335) 2011; 115
Gamon (10.1016/j.rse.2011.11.002_bb0130) 1999; 143
Knudby (10.1016/j.rse.2011.11.002_bb0235) 2010; 114
References_xml – volume: 143
  start-page: 105
  year: 1999
  end-page: 117
  ident: bb0130
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: The New Phytologist
– volume: 148
  start-page: 599
  year: 1996
  end-page: 612
  ident: bb0250
  article-title: Detection of vegetation stress via a new high resolution fluorescence imaging system
  publication-title: Journal of Plant Physiology
– year: 2009
  ident: bb0175
  article-title: The elements of statistical learning: data mining, inference, and prediction
– volume: 73
  start-page: 165
  year: 2010
  end-page: 173
  ident: bb0020
  article-title: Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat
  publication-title: Computers and Electronics in Agriculture
– volume: 86
  start-page: 542
  year: 2003
  end-page: 553
  ident: bb0170
  article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
  publication-title: Remote Sensing of Environment
– year: 2006
  ident: bb0275
  article-title: Gaussian Processes for Machine Learning
– year: 2005
  ident: bb0005
  article-title: Advances and limitations in a parametric geometric correction of CHRIS/PROBA data
  publication-title: Proceedings of the 3rd CHRIS/Proba Workshop
– volume: 148
  start-page: 350
  year: 1987
  end-page: 382
  ident: bb0245
  article-title: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes
  publication-title: Methods in Enzymology
– volume: 78
  start-page: 2339
  year: 1997
  end-page: 2350
  ident: bb0190
  article-title: CO2 elevation, canopy photosynthesis, and optimal leaf area index
  publication-title: Ecology
– volume: 114
  start-page: 977
  year: 2010
  end-page: 994
  ident: bb0320
  article-title: Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations
  publication-title: Remote Sensing of Environment
– year: 2004
  ident: bb0105
  article-title: SPARC data acquisition report
– volume: vol. 7452
  year: 2009
  ident: bb0260
  publication-title: Status of the optical payload and processor development of ESA's sentinel 3 mission
– volume: 81
  start-page: 337
  year: 2002
  end-page: 354
  ident: bb0310
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: 415
  year: 2011
  end-page: 426
  ident: bb0335
  article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations
  publication-title: Remote Sensing of Environment
– volume: 42
  start-page: 1512
  year: 2004
  end-page: 1520
  ident: bb0045
  article-title: The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2005
  ident: bb0215
  article-title: Fractional vegetation cover estimation from proba/CHRIS data: methods, analysis of angular effects and application to the land surface emissivity retrieval
  publication-title: Proceedings of the 3rd CHRIS/Proba Workshop
– volume: 74
  start-page: 471
  year: 2000
  end-page: 481
  ident: bb0205
  article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode
  publication-title: Remote Sensing of Environment
– year: 2010
  ident: bb0100
  article-title: Sentinel-2 mission requirements document
– volume: 12
  start-page: 165
  year: 2010
  end-page: 174
  ident: bb0095
  article-title: Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC)
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 91
  start-page: 354
  year: 2004
  end-page: 376
  ident: bb0325
  article-title: Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 233
  year: 2009
  end-page: 243
  ident: bb0110
  article-title: Identification of hyperspectral vegetation indices for Mediterranean pasture characterization
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– year: 2005
  ident: bb0115
  article-title: Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns
  publication-title: Proceedings of the SPARC Workshop
– volume: 22
  start-page: 247
  year: 1994
  end-page: 252
  ident: bb0140
  article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves
  publication-title: Journal of Photochemistry and Photobiology. B, Biology
– year: 2004
  ident: bb0305
  article-title: Kernel Methods for Pattern Analysis
– year: 2009
  ident: bb0070
  article-title: Biophysical parameter estimation with adaptive Gaussian Processes
  publication-title: IEEE International Geoscience and Remote Sensing Symposium, IGARSS'2009. Capetown, South Africa
– volume: 404
  start-page: 411
  year: 2008
  end-page: 423
  ident: bb0185
  article-title: The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements
  publication-title: The Science of the Total Environment
– volume: 114
  start-page: 1230
  year: 2010
  end-page: 1241
  ident: bb0235
  article-title: Predictive mapping of reef fish species richness, diversity and biomass in zanzibar using IKONOS imagery and machine-learning techniques
  publication-title: Remote Sensing of Environment
– volume: 111
  year: 2006
  ident: bb0160
  article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity
  publication-title: Journal of Geophysical Research D: Atmospheres
– volume: 35
  start-page: 230
  year: 2009
  end-page: 247
  ident: bb0280
  article-title: Experimental assessment of the sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize
  publication-title: Canadian Journal of Remote Sensing
– year: 2004
  ident: bb0135
  article-title: Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign
  publication-title: Proceedings of the 2nd CHRIS/PROBAWorkshop
– volume: 114
  start-page: 647
  year: 2010
  end-page: 656
  ident: bb0350
  article-title: Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval
  publication-title: Remote Sensing of Environment
– volume: 15
  year: 1994
  ident: bb0075
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: International Journal of Remote Sensing
– volume: 18
  start-page: 2691
  year: 1997
  end-page: 2697
  ident: bb0150
  article-title: Remote estimation of chlorophyll content in higher plant leaves
  publication-title: International Journal of Remote Sensing
– volume: 104
  start-page: 447
  year: 2006
  end-page: 459
  ident: bb0030
  article-title: Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data
  publication-title: Remote Sensing of Environment
– volume: 97
  start-page: 352
  year: 2005
  end-page: 370
  ident: bb0270
  article-title: Operational algorithm for the retrieval of water quality in the Great Lakes
  publication-title: Remote Sensing of Environment
– volume: 148
  start-page: 501
  year: 1996
  end-page: 508
  ident: bb0155
  article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm
  publication-title: Journal of Plant Physiology
– start-page: 18
  year: 2007
  end-page: 23
  ident: bb0255
  article-title: The optical high-resolution mission for GMES operational services
  publication-title: European Space Agency Bulletin
– year: Oct. 1999
  ident: bb0180
  article-title: Neural Networks – A Comprehensive Foundation
– year: 2002
  ident: bb0300
  article-title: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond
– volume: 63
  start-page: 409
  year: 2008
  end-page: 426
  ident: bb0085
  article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 71
  start-page: 158
  year: 2000
  end-page: 182
  ident: bb0330
  article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
  publication-title: Remote Sensing of Environment
– volume: 35
  start-page: 161
  year: 1991
  end-page: 173
  ident: bb0040
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sensing of Environment
– volume: 99
  start-page: 464
  year: 2010
  end-page: 468
  ident: bb0265
  article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
  publication-title: IEEE Geoscience and Remote Sensing Society
– volume: 136
  start-page: 232
  year: 2010
  end-page: 239
  ident: bb0125
  article-title: Combining remotely sensed data and ground-based radiometers to estimate crop cover and surface temperatures at daily time steps
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bb0315
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
– volume: 160
  start-page: 271
  year: 2003
  end-page: 282
  ident: bb0145
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: Journal of Plant Physiology
– volume: 93
  start-page: 53
  year: 2004
  end-page: 67
  ident: bb0015
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sensing of Environment
– volume: 112
  start-page: 3846
  year: 2008
  end-page: 3864
  ident: bb0240
  article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
  publication-title: Remote Sensing of Environment
– volume: 43
  start-page: 1585
  year: 2005
  end-page: 1591
  ident: bb0295
  article-title: Improved determination of coastal water constituent concentrations from MERIS data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 66
  start-page: 111
  year: 1998
  end-page: 121
  ident: bb0090
  article-title: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves
  publication-title: Remote Sensing of Environment
– volume: 19
  start-page: 2639
  year: 1998
  end-page: 2662
  ident: bb0230
  article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
  publication-title: International Journal of Remote Sensing
– volume: 39
  start-page: 1491
  year: 2001
  end-page: 1507
  ident: bb0360
  article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 120
  start-page: 191
  year: 2003
  end-page: 218
  ident: bb0220
  article-title: Field crop responses to ultraviolet-B radiation: A review
  publication-title: Agricultural and Forest Meteorology
– volume: 29
  start-page: 5093
  year: 2008
  end-page: 5111
  ident: bb0225
  article-title: Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery
  publication-title: International Journal of Remote Sensing
– volume: 9
  start-page: 360
  year: 2007
  end-page: 374
  ident: bb0055
  article-title: Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 14
  start-page: 3536
  year: 2001
  end-page: 3550
  ident: bb0060
  article-title: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations
  publication-title: Journal of Climate
– reference: Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J., in press. Retrieval of vegetation biophysical parameters using gausian processes techniques.
– volume: 52
  start-page: 163
  year: 1995
  end-page: 172
  ident: bb0210
  article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors
  publication-title: Remote Sensing of Environment
– year: Dec 2009
  ident: bb0065
  publication-title: Kernel methods for Remote Sensing Data Analysis
– volume: 46
  start-page: 2872
  year: Oct. 2008
  end-page: 2881
  ident: bb0010
  article-title: Efficient kernel orthonormalized PLS for remote sensing applications
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 113
  start-page: 259
  year: 2009
  end-page: 274
  ident: bb0195
  article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of lai and leaf chlorophyll content at the field scale
  publication-title: Remote Sensing of Environment
– volume: 112
  start-page: 2592
  year: 2008
  end-page: 2604
  ident: bb0080
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sensing of Environment
– start-page: 55
  year: 1975
  end-page: 118
  ident: bb0355
  article-title: Methods of assessing terrestrial productivity
  publication-title: Primary Productivity of the Biosphere
– volume: 67
  start-page: 251
  year: 1999
  end-page: 266
  ident: bb0050
  article-title: A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model
  publication-title: Remote Sensing of Environment
– volume: 49
  start-page: 381
  year: 2003
  end-page: 391
  ident: bb0285
  article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods
  publication-title: Forest Science
– volume: 112
  start-page: 186
  year: 2008
  end-page: 202
  ident: bb0200
  article-title: Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and
  publication-title: Remote Sensing of Environment
– volume: 105
  start-page: 313
  year: 2006
  end-page: 325
  ident: bb0025
  article-title: Neural network estimation of LAI, fAPAR, fCover and LAI××Cab, from top of canopy MERIS reflectance data: Principles and validation
  publication-title: Remote Sensing of Environment
– volume: 148
  start-page: 523
  year: 1996
  end-page: 529
  ident: bb0290
  article-title: Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply
  publication-title: Journal of Plant Physiology
– volume: 15
  start-page: 1459
  year: 1994
  end-page: 1470
  ident: bb0120
  article-title: The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status
  publication-title: International Journal of Remote Sensing
– reference: .
– volume: 112
  start-page: 2789
  year: 2008
  end-page: 2803
  ident: bb0340
  article-title: Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products
  publication-title: Remote Sensing of Environment
– start-page: 172
  year: 2008
  end-page: 301
  ident: bb0035
  article-title: Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems
  publication-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Application
– volume: 43
  start-page: 2908
  year: 2005
  end-page: 2917
  ident: bb0165
  article-title: A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 104
  start-page: 447
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2011.11.002_bb0030
  article-title: Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.05.018
– volume: 18
  start-page: 2691
  issue: 12
  year: 1997
  ident: 10.1016/j.rse.2011.11.002_bb0150
  article-title: Remote estimation of chlorophyll content in higher plant leaves
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311697217558
– volume: 67
  start-page: 251
  issue: 3
  year: 1999
  ident: 10.1016/j.rse.2011.11.002_bb0050
  article-title: A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(98)00083-2
– volume: 74
  start-page: 471
  issue: 3
  year: 2000
  ident: 10.1016/j.rse.2011.11.002_bb0205
  article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00139-5
– volume: 105
  start-page: 313
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2011.11.002_bb0025
  article-title: Neural network estimation of LAI, fAPAR, fCover and LAI××Cab, from top of canopy MERIS reflectance data: Principles and validation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.07.014
– volume: 66
  start-page: 111
  issue: 2
  year: 1998
  ident: 10.1016/j.rse.2011.11.002_bb0090
  article-title: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(98)00046-7
– volume: 81
  start-page: 337
  issue: 2–3
  year: 2002
  ident: 10.1016/j.rse.2011.11.002_bb0310
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00010-X
– year: 2002
  ident: 10.1016/j.rse.2011.11.002_bb0300
– volume: 114
  start-page: 647
  issue: 3
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0350
  article-title: Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.11.004
– volume: 148
  start-page: 501
  issue: 3–4
  year: 1996
  ident: 10.1016/j.rse.2011.11.002_bb0155
  article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(96)80285-9
– volume: 29
  start-page: 5093
  issue: 17–18
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0225
  article-title: Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160802036458
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0315
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035301.49549.88
– year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0005
  article-title: Advances and limitations in a parametric geometric correction of CHRIS/PROBA data
– volume: 14
  start-page: 3536
  issue: 17
  year: 2001
  ident: 10.1016/j.rse.2011.11.002_bb0060
  article-title: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations
  publication-title: Journal of Climate
  doi: 10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2
– volume: 86
  start-page: 542
  issue: 4
  year: 2003
  ident: 10.1016/j.rse.2011.11.002_bb0170
  article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00131-7
– ident: 10.1016/j.rse.2011.11.002_bb0100
– volume: 112
  start-page: 2789
  issue: 6
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0340
  article-title: Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.01.006
– volume: 160
  start-page: 271
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2011.11.002_bb0145
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: Journal of Plant Physiology
  doi: 10.1078/0176-1617-00887
– volume: 35
  start-page: 230
  issue: 3
  year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0280
  article-title: Experimental assessment of the sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.5589/m09-010
– volume: 49
  start-page: 381
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2011.11.002_bb0285
  article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods
  publication-title: Forest Science
  doi: 10.1093/forestscience/49.3.381
– start-page: 55
  year: 1975
  ident: 10.1016/j.rse.2011.11.002_bb0355
  article-title: Methods of assessing terrestrial productivity
– year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0070
  article-title: Biophysical parameter estimation with adaptive Gaussian Processes
– year: 2006
  ident: 10.1016/j.rse.2011.11.002_bb0275
– ident: 10.1016/j.rse.2011.11.002_bb0105
– year: 1999
  ident: 10.1016/j.rse.2011.11.002_bb0180
– volume: 404
  start-page: 411
  issue: 2–3
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0185
  article-title: The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2007.11.007
– year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0115
  article-title: Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns
– volume: 46
  start-page: 2872
  issue: 10
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0010
  article-title: Efficient kernel orthonormalized PLS for remote sensing applications
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2008.918765
– volume: 120
  start-page: 191
  issue: 1–4
  year: 2003
  ident: 10.1016/j.rse.2011.11.002_bb0220
  article-title: Field crop responses to ultraviolet-B radiation: A review
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2003.08.015
– volume: 9
  start-page: 360
  issue: 4
  year: 2007
  ident: 10.1016/j.rse.2011.11.002_bb0055
  article-title: Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2006.11.003
– volume: 15
  start-page: 1459
  issue: 7
  year: 1994
  ident: 10.1016/j.rse.2011.11.002_bb0120
  article-title: The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169408954177
– volume: 91
  start-page: 354
  issue: 3–4
  year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0325
  article-title: Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.03.013
– volume: 19
  start-page: 2639
  issue: 14
  year: 1998
  ident: 10.1016/j.rse.2011.11.002_bb0230
  article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311698214433
– volume: 43
  start-page: 2908
  issue: 12
  year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0165
  article-title: A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2005.857915
– volume: 114
  start-page: 1230
  issue: 6
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0235
  article-title: Predictive mapping of reef fish species richness, diversity and biomass in zanzibar using IKONOS imagery and machine-learning techniques
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.01.007
– volume: 112
  start-page: 3846
  issue: 10
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0240
  article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.06.005
– volume: 99
  start-page: 464
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0265
  article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
  publication-title: IEEE Geoscience and Remote Sensing Society
  doi: 10.1109/LGRS.2009.2039191
– volume: 97
  start-page: 352
  issue: 3
  year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0270
  article-title: Operational algorithm for the retrieval of water quality in the Great Lakes
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.04.018
– volume: 43
  start-page: 1585
  issue: 7
  year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0295
  article-title: Improved determination of coastal water constituent concentrations from MERIS data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2005.848410
– start-page: 18
  year: 2007
  ident: 10.1016/j.rse.2011.11.002_bb0255
  article-title: The optical high-resolution mission for GMES operational services
  publication-title: European Space Agency Bulletin
– volume: 73
  start-page: 165
  issue: 2
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0020
  article-title: Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.05.006
– year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0065
– volume: 93
  start-page: 53
  issue: 1–2
  year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0015
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.06.016
– volume: 112
  start-page: 186
  issue: 1
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0200
  article-title: Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.04.012
– volume: vol. 7452
  year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0260
– volume: 148
  start-page: 350
  year: 1987
  ident: 10.1016/j.rse.2011.11.002_bb0245
  article-title: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes
  publication-title: Methods in Enzymology
  doi: 10.1016/0076-6879(87)48036-1
– volume: 42
  start-page: 1512
  issue: 7
  year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0045
  article-title: The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.827260
– volume: 35
  start-page: 161
  issue: 2–3
  year: 1991
  ident: 10.1016/j.rse.2011.11.002_bb0040
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(91)90009-U
– ident: 10.1016/j.rse.2011.11.002_bb0345
– year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0305
– volume: 11
  start-page: 233
  issue: 4
  year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0110
  article-title: Identification of hyperspectral vegetation indices for Mediterranean pasture characterization
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2009.02.003
– volume: 12
  start-page: 165
  issue: 3
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0095
  article-title: Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC)
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2010.02.003
– volume: 148
  start-page: 599
  issue: 5
  year: 1996
  ident: 10.1016/j.rse.2011.11.002_bb0250
  article-title: Detection of vegetation stress via a new high resolution fluorescence imaging system
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(96)80081-2
– volume: 63
  start-page: 409
  issue: 4
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0085
  article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2008.01.001
– year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0175
– volume: 114
  start-page: 977
  issue: 5
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0320
  article-title: Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.12.006
– volume: 143
  start-page: 105
  issue: 1
  year: 1999
  ident: 10.1016/j.rse.2011.11.002_bb0130
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: The New Phytologist
  doi: 10.1046/j.1469-8137.1999.00424.x
– volume: 112
  start-page: 2592
  issue: 5
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0080
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.12.003
– volume: 39
  start-page: 1491
  issue: 7
  year: 2001
  ident: 10.1016/j.rse.2011.11.002_bb0360
  article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.934080
– start-page: 172
  year: 2008
  ident: 10.1016/j.rse.2011.11.002_bb0035
  article-title: Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems
  publication-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Application
– volume: 22
  start-page: 247
  issue: 3
  year: 1994
  ident: 10.1016/j.rse.2011.11.002_bb0140
  article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves
  publication-title: Journal of Photochemistry and Photobiology. B, Biology
  doi: 10.1016/1011-1344(93)06963-4
– year: 2004
  ident: 10.1016/j.rse.2011.11.002_bb0135
  article-title: Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign
– volume: 113
  start-page: 259
  issue: 1
  year: 2009
  ident: 10.1016/j.rse.2011.11.002_bb0195
  article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of lai and leaf chlorophyll content at the field scale
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.09.014
– year: 2005
  ident: 10.1016/j.rse.2011.11.002_bb0215
  article-title: Fractional vegetation cover estimation from proba/CHRIS data: methods, analysis of angular effects and application to the land surface emissivity retrieval
– volume: 52
  start-page: 163
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2011.11.002_bb0210
  article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00018-V
– volume: 148
  start-page: 523
  issue: 5
  year: 1996
  ident: 10.1016/j.rse.2011.11.002_bb0290
  article-title: Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(96)80071-X
– volume: 115
  start-page: 415
  issue: 2
  year: 2011
  ident: 10.1016/j.rse.2011.11.002_bb0335
  article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.09.012
– volume: 71
  start-page: 158
  issue: 2
  year: 2000
  ident: 10.1016/j.rse.2011.11.002_bb0330
  article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00067-X
– volume: 136
  start-page: 232
  issue: 4
  year: 2010
  ident: 10.1016/j.rse.2011.11.002_bb0125
  article-title: Combining remotely sensed data and ground-based radiometers to estimate crop cover and surface temperatures at daily time steps
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)IR.1943-4774.0000169
– volume: 15
  issue: 3
  year: 1994
  ident: 10.1016/j.rse.2011.11.002_bb0075
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169408954109
– volume: 78
  start-page: 2339
  issue: 8
  year: 1997
  ident: 10.1016/j.rse.2011.11.002_bb0190
  article-title: CO2 elevation, canopy photosynthesis, and optimal leaf area index
  publication-title: Ecology
– volume: 111
  issue: 8
  year: 2006
  ident: 10.1016/j.rse.2011.11.002_bb0160
  article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity
  publication-title: Journal of Geophysical Research D: Atmospheres
  doi: 10.1029/2005JD006017
SSID ssj0015871
Score 2.5660834
Snippet ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms algorithms
Animal, plant and microbial ecology
Applied geophysics
artificial intelligence
Biological and medical sciences
Biophysical parameter retrieval
chlorophyll
confidence interval
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gaussian Processes regression (GPR)
General aspects. Techniques
Internal geophysics
Kernel ridge regression (KRR)
Landsat
leaf area index
leaves
Machine learning
monitoring
neural networks
reflectance
Regression algorithms
remote sensing
Sentinel-2
Sentinel-3
Spain
Support vector regression (SVR)
Teledetection and vegetation maps
vegetation cover
Title Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
URI https://dx.doi.org/10.1016/j.rse.2011.11.002
https://www.proquest.com/docview/1710231005
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CSmkhhNRtaF5mCz0VtrGklWX1FkIStyXpoQ34tuxj5Lg4krDsQy797Z1ZrRxCQg45SppFYmd25lvtzHyMfc4sggqjQVg7MkJmAycMCgpbgB7kJhpqX-F9eTUcX8sfk3SywU67WhhKqwy-v_Xp3luHO8dhNo_r2YxqfBNJFkdNzzCqTqiCXWbEYvD13zrNI0pHWcual0hB0t3Jps_xWjTQdvGkRp7hz8oTsWmr1g3OWNFSXTzy2j4Une-w7YAh-Un7me_YBpQ9tnt2X7KGD8OabXrsTeA5v7nrsdcXnsj37j2rLn0WJfBAGzHlC5i2ObEl1_NptZgtb24bjpiWm1lVB3VyahV-Syk0KE9cXGio3_ivmlD8qvTdWf2Q35SEVMJcxFyXjovkA7s-P_tzOhaBfEFYDNpLEREtcTzEGAq5IRDkgPY-NjfS2aLAa2lymzmjU-miGLdRRRpDKi1kgGs6SXbZZlmV8JFxhATgpJSFNYUcIR5zIzsgR5KnoMG4PTbopl3Z0JmcCDLmqktB-6tQU4o0hTsWhZraY1_WQ-q2LcdzwrLTpXpgWwrDxnPD-g_0vn4RokRiMkSBT50hKFyUdNKiS6hWjYoIt9HRSbr_sncfsLd4FVOyW5Qess3lYgVHiH6Wpu_Nu89enXz_Ob76Dw3vBoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NITQkNEFhYsCGkXhCMmsSu2l4Q9NGgXU8sEl9s2zH6Tp1SdS0D3vZb9-d43SamPbAY5uzUvnOd5_rz_cBfE4tggqjHbd2aLhI-zk3aMht4XQ_M9FA-xve49PB6Fz8msjJBhx2d2GIVhlyf5vTfbYO3xyE2TyoZzO645sIijhqeoZVdfIEngoZp7QD-3qz5nlEcpi2snmJ4GTeHW16kteicW0bT-rkGf5aeaA4vah1g1NWtFoX_6RtX4uOX8J2AJHse_s7X8GGK3uwc3R3Zw0fhkXb9GArCJ1fXPfg2Q-v5Hv9Gqqxp1E6FnQjpmzhpi0ptmR6Pq0Ws-XFVcMQ1DIzq-rgT0a9wq-IQ4P2JMaFkfqN_akJxq9K357VD_lLLKTSzXnMdJkznryB8-Ojs8MRD-oL3GLVXvKIdInjARZRlxlCQbmjzY_NjMhtUeBnYTKb5kZLkUcx7qMKGTsprEsdLuok2YHNsirdW2CICVwuhCisKcQQAVk-tH3KJJl02pl8F_rdtCsbWpOTQsZcdRy0S4WeUuQp3LIo9NQufFkPqdu-HI8Zi86X6l5wKawbjw3bv-f39YsQJpKUIRp86gJB4aqkoxZdumrVqIiAG52dyHf_9-6PsDU6G5-ok5-nv9_Dc3wSE_Mtkh9gc7lYuT2EQkuz70P9FgqHCBU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+regression+algorithms+for+biophysical+parameter+retrieval%3A+Opportunities+for+Sentinel-2+and+-3&rft.jtitle=Remote+sensing+of+environment&rft.au=VERRELST%2C+Jochem&rft.au=MUNOZ%2C+Jordi&rft.au=ALONSO%2C+Luis&rft.au=DELEGIDO%2C+Jesus&rft.date=2012-03-15&rft.pub=Elsevier&rft.issn=0034-4257&rft.volume=118&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.rse.2011.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=25618742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon