A comparison of nine PLS1 algorithms
Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kerne...
        Saved in:
      
    
          | Published in | Journal of chemometrics Vol. 23; no. 10; pp. 518 - 529 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Ltd
    
        01.10.2009
     Wiley Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0886-9383 1099-128X 1099-128X  | 
| DOI | 10.1002/cem.1248 | 
Cover
| Abstract | Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct‐scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd.
Nine PLS1 algorithms were evaluated in terms of their numerical stability and their speed. It was found that the models of Bidiag2, PLSF and the new Krylov PLS1 algorithm were deviating from the precise PLS solution. They were numerically unstable and suboptimal in a least‐squares sense. The most stable were: NIPALS, the non‐orthogonalized PLS1 algorithm, the improved kernel PLS algorithm, and the new direct‐scores PLS1 algorithm. The last two were not only numerically stable but also 2–4 times faster. | 
    
|---|---|
| AbstractList | Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non-orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct-scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. [PUBLICATION ABSTRACT] Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct‐scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd. Nine PLS1 algorithms were evaluated in terms of their numerical stability and their speed. It was found that the models of Bidiag2, PLSF and the new Krylov PLS1 algorithm were deviating from the precise PLS solution. They were numerically unstable and suboptimal in a least‐squares sense. The most stable were: NIPALS, the non‐orthogonalized PLS1 algorithm, the improved kernel PLS algorithm, and the new direct‐scores PLS1 algorithm. The last two were not only numerically stable but also 2–4 times faster. Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non-orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct-scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors.  | 
    
| Author | Andersson, Martin | 
    
| Author_xml | – sequence: 1 givenname: Martin surname: Andersson fullname: Andersson, Martin email: m.andersson@foss.co.jp organization: FOSS Japan Ltd., Tokyo Genboku Kaikan 9F, 30-13 Toyo 5-Chome, Koto-Ku, 135-0016 Tokyo, Japan  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087605$$DView record in Pascal Francis | 
    
| BookMark | eNp9z11LHDEUgOFQLHS1Qn_CUBTrxawnyUw-LpdF18JWxY_WuxAzmTY2k2yTWXT_vSMrgmK9ysV5kpN3E22EGCxCXzCMMQA5MLYbY1KJD2iEQcoSE3G9gUYgBCslFfQT2sz5FmCY0WqEdiaFid1CJ5djKGJbBBdscTa_wIX2v2Ny_Z8uf0YfW-2z3X46t9DV0eHl9Licn86-Tyfz0lSEiZK3FVhTGSEbQW8oSF0xymVj-I2wdcPahgIVDbNSYGBUiLbBklNWmUbXwDTdQvvrd5dhoVd32nu1SK7TaaUwqMc8NeSpx7zB7q3tIsV_S5t71blsrPc62LjMSgJmTEDNBvn1lbyNyxSGEEUIJoTTmg9o9wnpbLRvkw7G5ef1hIDgDOrBjdfOpJhzsq0yrte9i6FP2vm3_vnt1YV3kso1vXPerv7r1PTwx0vvcm_vn71OfxXjlNfq18lMnR_9nNWXcK1O6AN2LaLa | 
    
| CODEN | JOCHEU | 
    
| CitedBy_id | crossref_primary_10_1016_j_talanta_2011_09_016 crossref_primary_10_1038_srep05437 crossref_primary_10_53879_id_53_11_10683 crossref_primary_10_1007_s00216_011_5139_4 crossref_primary_10_1016_j_talanta_2017_07_094 crossref_primary_10_1002_aic_15172 crossref_primary_10_1016_j_chemolab_2012_11_002 crossref_primary_10_1016_j_postharvbio_2019_111101 crossref_primary_10_1021_ie401448d crossref_primary_10_1002_bit_24502 crossref_primary_10_1016_j_compchemeng_2021_107365 crossref_primary_10_1002_cem_2898 crossref_primary_10_1177_0967033519855436 crossref_primary_10_21105_joss_06533 crossref_primary_10_1002_bit_28428 crossref_primary_10_1007_s11306_013_0538_5 crossref_primary_10_1016_j_ijleo_2015_05_064 crossref_primary_10_1371_journal_ppat_1004104 crossref_primary_10_1016_j_chemolab_2011_01_005 crossref_primary_10_1149_1945_7111_abe3a2 crossref_primary_10_1016_j_chemolab_2016_03_012 crossref_primary_10_1063_5_0083061 crossref_primary_10_1016_j_talanta_2011_09_025 crossref_primary_10_1016_j_fuel_2018_10_045 crossref_primary_10_1016_j_trac_2019_01_018 crossref_primary_10_1080_19443994_2016_1174742 crossref_primary_10_1021_acs_jcim_4c00359 crossref_primary_10_1016_j_ijpharm_2014_06_061 crossref_primary_10_1007_s11694_016_9402_4 crossref_primary_10_1016_j_ijpharm_2021_120657 crossref_primary_10_1016_j_microc_2020_105690 crossref_primary_10_1016_j_aca_2015_11_028 crossref_primary_10_1016_j_postharvbio_2022_111895 crossref_primary_10_1016_j_econmod_2019_09_046 crossref_primary_10_1016_j_procir_2014_05_014 crossref_primary_10_1111_jfpp_12522 crossref_primary_10_1016_j_chemolab_2018_03_003 crossref_primary_10_1214_10_AOS823 crossref_primary_10_1016_j_biosystemseng_2019_04_012 crossref_primary_10_1016_j_compag_2022_107455 crossref_primary_10_1002_clen_201600333 crossref_primary_10_1002_cem_2515 crossref_primary_10_1007_s11694_023_02022_3 crossref_primary_10_1002_cem_3209 crossref_primary_10_1016_j_biosystemseng_2016_12_008 crossref_primary_10_1111_1556_4029_15011 crossref_primary_10_1016_j_jfs_2024_101301 crossref_primary_10_1016_j_talanta_2013_11_056 crossref_primary_10_1039_c3ay26338j crossref_primary_10_1002_cem_3452 crossref_primary_10_1002_cem_2884 crossref_primary_10_2139_ssrn_2962775 crossref_primary_10_1016_j_chemolab_2016_03_030 crossref_primary_10_1016_j_aca_2016_04_004 crossref_primary_10_1039_c3an00048f crossref_primary_10_1016_j_aca_2022_339786 crossref_primary_10_1016_j_chemolab_2012_03_019 crossref_primary_10_1016_j_compag_2017_06_009 crossref_primary_10_1016_j_chemolab_2010_10_009 crossref_primary_10_1016_j_chemolab_2017_04_001 crossref_primary_10_1016_j_jocs_2015_09_007 crossref_primary_10_1002_cem_3287 crossref_primary_10_1002_cem_3441 crossref_primary_10_1016_j_postharvbio_2016_07_007 crossref_primary_10_4028_www_scientific_net_AMR_403_408_3544 crossref_primary_10_1016_j_artmed_2016_11_004 crossref_primary_10_1039_C4AN00007B crossref_primary_10_1007_s00521_016_2213_z crossref_primary_10_1016_j_aca_2015_11_002 crossref_primary_10_1016_j_trac_2020_116157 crossref_primary_10_1255_jnirs_1210 crossref_primary_10_1016_j_aca_2011_02_001 crossref_primary_10_1016_j_fuel_2015_10_091 crossref_primary_10_1016_j_chemolab_2022_104532 crossref_primary_10_2139_ssrn_4124962 crossref_primary_10_1002_jrs_5608 crossref_primary_10_1016_j_chemolab_2011_02_004 crossref_primary_10_1002_cem_3433 crossref_primary_10_1016_j_ces_2024_120568 crossref_primary_10_3390_app12157850 crossref_primary_10_3390_foods9081078 crossref_primary_10_1016_j_aca_2021_338716 crossref_primary_10_1002_cem_2582 crossref_primary_10_1002_cem_2589 crossref_primary_10_1016_j_biosystemseng_2022_12_007 crossref_primary_10_1002_cem_3397 crossref_primary_10_1002_cem_3431 crossref_primary_10_1007_s10853_021_06812_2 crossref_primary_10_3390_antib6040024 crossref_primary_10_1002_wics_1325 crossref_primary_10_1002_cem_2581 crossref_primary_10_1002_jeq2_20421 crossref_primary_10_1016_j_chemolab_2015_09_002 crossref_primary_10_1016_j_compchemeng_2020_106766 crossref_primary_10_1039_C9AY01241A crossref_primary_10_1007_s00216_019_02322_y crossref_primary_10_1021_acs_chemrev_2c00141 crossref_primary_10_1109_JSTARS_2014_2347414 crossref_primary_10_1016_j_compag_2022_107387 crossref_primary_10_1016_j_bioelechem_2020_107501 crossref_primary_10_1016_j_aca_2013_07_058 crossref_primary_10_1016_j_fuel_2013_07_122 crossref_primary_10_1016_j_jocs_2023_102197 crossref_primary_10_1021_jasms_0c00109 crossref_primary_10_1137_120895639 crossref_primary_10_1016_j_chemolab_2021_104307 crossref_primary_10_1016_j_chemolab_2015_06_016 crossref_primary_10_1016_j_chemolab_2015_10_018 crossref_primary_10_1021_ac101202z crossref_primary_10_1016_j_foodres_2017_05_006 crossref_primary_10_1002_cem_3028 crossref_primary_10_1002_cem_3144 crossref_primary_10_1016_j_compag_2021_106638 crossref_primary_10_1007_s13738_016_0869_z crossref_primary_10_1128_mSphere_00005_17 crossref_primary_10_1016_j_matdes_2022_111481 crossref_primary_10_1080_17460441_2018_1542428 crossref_primary_10_1002_jsfa_8002 crossref_primary_10_1016_j_molstruc_2016_10_079 crossref_primary_10_1038_s41598_024_59151_y crossref_primary_10_1590_2318_0331_282320230008 crossref_primary_10_1007_s11164_016_2638_0 crossref_primary_10_1016_j_aca_2017_01_027 crossref_primary_10_1039_C7CP02321A crossref_primary_10_3389_fpls_2019_01570 crossref_primary_10_1016_j_aca_2021_339073 crossref_primary_10_1016_j_chemolab_2021_104311 crossref_primary_10_1016_j_chemolab_2023_104876 crossref_primary_10_1007_s00044_016_1686_8 crossref_primary_10_1016_j_chemolab_2021_104313 crossref_primary_10_1016_j_chroma_2024_465171 crossref_primary_10_1016_j_chemolab_2022_104513 crossref_primary_10_1080_07391102_2016_1197152 crossref_primary_10_1002_cem_1356 crossref_primary_10_1002_jrs_5357 crossref_primary_10_1016_j_biosystemseng_2020_02_017 crossref_primary_10_1016_j_chemolab_2020_104141 crossref_primary_10_1080_19440049_2017_1342144 crossref_primary_10_35633_inmateh_62_29 crossref_primary_10_1016_j_heliyon_2024_e35045 crossref_primary_10_1007_s11694_019_00269_3 crossref_primary_10_1016_j_jmva_2021_104812 crossref_primary_10_1002_cem_70008 crossref_primary_10_1016_j_talanta_2015_04_046 crossref_primary_10_1080_00032719_2019_1628246 crossref_primary_10_1016_j_chemolab_2020_104159 crossref_primary_10_1016_j_postharvbio_2019_02_001 crossref_primary_10_1016_j_chemolab_2024_105120 crossref_primary_10_1021_pr300111x crossref_primary_10_1016_j_lwt_2021_111092 crossref_primary_10_1039_C6AY02501C crossref_primary_10_1080_00387010_2018_1523194  | 
    
| Cites_doi | 10.1002/cem.1180080204 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# 10.1002/cem.1067 10.1137/0113078 10.1137/0702016 10.1002/cem.1112 10.1007/11752790_2 10.1080/03610918808812681 10.1145/355984.355989 10.1016/S0024-3795(98)10101-5 10.1016/0169-7439(93)85002-X 10.1016/S0169-7439(00)00063-0 10.1016/S0731-7085(98)00237-4 10.1016/0169-7439(87)80096-5 10.1021/ac990256r  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2009 John Wiley & Sons, Ltd. 2015 INIST-CNRS Copyright John Wiley and Sons, Limited Oct 2009  | 
    
| Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: Copyright John Wiley and Sons, Limited Oct 2009  | 
    
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7U5 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1002/cem.1248 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1099-128X | 
    
| EndPage | 529 | 
    
| ExternalDocumentID | 10.1002/cem.1248 1886520901 22087605 10_1002_cem_1248 CEM1248 ark_67375_WNG_RFVG5T0X_N  | 
    
| Genre | article Feature  | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION IQODW 7SC 7U5 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4268-7f40ec4c89d83b309a46379dc7b8e5d6fd3038d6e98106388fd197364cda506a3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0886-9383 1099-128X  | 
    
| IngestDate | Wed Oct 01 16:09:24 EDT 2025 Fri Jul 11 07:25:17 EDT 2025 Fri Jul 25 11:13:27 EDT 2025 Mon Jul 21 09:14:20 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Thu Oct 16 04:30:44 EDT 2025 Thu Sep 25 07:34:59 EDT 2025 Sun Sep 21 06:18:55 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Speed algorithms Stability comparison regression vector Spectrometer Algorithm PLS regression numerical PLS Calculation Models Chemometrics Numerical stability Food  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4268-7f40ec4c89d83b309a46379dc7b8e5d6fd3038d6e98106388fd197364cda506a3 | 
    
| Notes | istex:0D728252638AA50BF7F8884215A9C9072A02021B ark:/67375/WNG-RFVG5T0X-N ArticleID:CEM1248 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cem.1248 | 
    
| PQID | 221227357 | 
    
| PQPubID | 37374 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_cem_1248 proquest_miscellaneous_901668056 proquest_journals_221227357 pascalfrancis_primary_22087605 crossref_citationtrail_10_1002_cem_1248 crossref_primary_10_1002_cem_1248 wiley_primary_10_1002_cem_1248_CEM1248 istex_primary_ark_67375_WNG_RFVG5T0X_N  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2009 | 
    
| PublicationDateYYYYMMDD | 2009-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2009 text: October 2009  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis – name: Chichester  | 
    
| PublicationTitle | Journal of chemometrics | 
    
| PublicationTitleAlternate | J. Chemometrics | 
    
| PublicationYear | 2009 | 
    
| Publisher | John Wiley & Sons, Ltd Wiley Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: Wiley Subscription Services, Inc  | 
    
| References | Kondylis A. PLS methods in regression: model assessment and inference. Ph.D. Thesis, Université de Neuchâtel, 2006. Paige CC, Saunders MA. A bidiagonalization algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Softw. 1982; 8: 43-71. Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm. J. Chemom. 1994; 8: 111-125. Eaton JW. GNU Octave Manual. Network Theory Limited, 2002. Höskuldsson A. PLS regression methods. J. Chemom. 1993; 18: 251-263. Golub GH, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 1965; 2: 205-224. Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating thickness in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal. Chem. 2000; 72: 2099-2108. Trench WF. An algorithm for the inversion of finite Hankel matrices. J. Ind. Appl. Math. 1965; 13: 1102-1107. Golub GH, van Loan CF. Matrix Computations (3rd edn). John Hopkins University Press: Baltimore, 1996. Boley DL, Luuk FT, Vandevoorde D. A fast method to diagonalize a Hankel matrix. Linear Algebra Appl. 1998; 284: 41-52. Andersson M, Josefson M, Langkilde F, Wahlund KG. Monitoring a film coating process for tables using near infrared reflectance spectrometry. J. Pharm. Biomed. Anal. 1999; 20: 27-37. Zhu E, Barnes RM. A simple algorithm for PLS regression. J. Chemom. 1995; 9: 363-372. de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993; 18: 251-263. Faber NM, Ferré J. On the numerical stability of two widely used PLS algorithms. J. Chemom. 2008; 22: 101-105. Manne R. Analysis of two Partial-Least-Squares algorithms for multivariate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187-197. Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172. Andersson M. Multiple Precision Toolbox for MATLAB under Microsoft Windows, 2008. http://www.sondette.com/math/mp_toolbox.html Dayal BS, MacGregor JF. Improved PLS algorithms. J. Chemom. 1997; 11: 73-85. Wu W, Manne R. Fast regression in a Lanczos (or PLS-1) basis: theory and applications. Chemom. Intell. Lab. Syst. 2000; 51: 145-161. Martens H, Nßs T. Multivariate Calibration (3rd edn). John Wiley: New York, 1989. Helland IS. On the structure of partial least squares regression. Commun. Stat.-Simul. Comput. 1988; 17: 581-607. Barrowes B. Multiple Precision Toolbox for MATLAB, 2007. http:-www.mathworks.com-matlabcentral-fileexchange-loadFile.do?objectId=6446 1995; 9 1994; 8 1965; 2 1987; 2 1993; 18 1965; 13 1997; 11 1988; 17 2000; 72 2000; 51 2008 1996 2007 2006 1982; 8 1999; 20 2008; 22 1993 1982 2002 2007; 21 1989 1998; 284 Kondylis A (e_1_2_1_16_2) 2006 Martens H (e_1_2_1_2_2) 1989 Golub GH (e_1_2_1_9_2) 1996 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_26_2 Wold S (e_1_2_1_12_2) 1982 e_1_2_1_24_2 e_1_2_1_25_2 Barrowes B (e_1_2_1_20_2) 2007 Eaton JW (e_1_2_1_11_2) 2002 Höskuldsson A (e_1_2_1_15_2) 1993; 18 e_1_2_1_6_2 e_1_2_1_7_2 Zhu E (e_1_2_1_3_2) 1995; 9 e_1_2_1_4_2 e_1_2_1_5_2 Andersson M (e_1_2_1_21_2) 2008 e_1_2_1_10_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_18_2  | 
    
| References_xml | – reference: Golub GH, van Loan CF. Matrix Computations (3rd edn). John Hopkins University Press: Baltimore, 1996. – reference: Helland IS. On the structure of partial least squares regression. Commun. Stat.-Simul. Comput. 1988; 17: 581-607. – reference: Barrowes B. Multiple Precision Toolbox for MATLAB, 2007. http:-www.mathworks.com-matlabcentral-fileexchange-loadFile.do?objectId=6446 – reference: Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172. – reference: Golub GH, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 1965; 2: 205-224. – reference: Paige CC, Saunders MA. A bidiagonalization algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Softw. 1982; 8: 43-71. – reference: Manne R. Analysis of two Partial-Least-Squares algorithms for multivariate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187-197. – reference: de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993; 18: 251-263. – reference: Zhu E, Barnes RM. A simple algorithm for PLS regression. J. Chemom. 1995; 9: 363-372. – reference: Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm. J. Chemom. 1994; 8: 111-125. – reference: Andersson M, Josefson M, Langkilde F, Wahlund KG. Monitoring a film coating process for tables using near infrared reflectance spectrometry. J. Pharm. Biomed. Anal. 1999; 20: 27-37. – reference: Eaton JW. GNU Octave Manual. Network Theory Limited, 2002. – reference: Andersson M. Multiple Precision Toolbox for MATLAB under Microsoft Windows, 2008. http://www.sondette.com/math/mp_toolbox.html – reference: Dayal BS, MacGregor JF. Improved PLS algorithms. J. Chemom. 1997; 11: 73-85. – reference: Wu W, Manne R. Fast regression in a Lanczos (or PLS-1) basis: theory and applications. Chemom. Intell. Lab. Syst. 2000; 51: 145-161. – reference: Kondylis A. PLS methods in regression: model assessment and inference. Ph.D. Thesis, Université de Neuchâtel, 2006. – reference: Faber NM, Ferré J. On the numerical stability of two widely used PLS algorithms. J. Chemom. 2008; 22: 101-105. – reference: Höskuldsson A. PLS regression methods. J. Chemom. 1993; 18: 251-263. – reference: Trench WF. An algorithm for the inversion of finite Hankel matrices. J. Ind. Appl. Math. 1965; 13: 1102-1107. – reference: Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating thickness in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal. Chem. 2000; 72: 2099-2108. – reference: Martens H, Nßs T. Multivariate Calibration (3rd edn). John Wiley: New York, 1989. – reference: Boley DL, Luuk FT, Vandevoorde D. A fast method to diagonalize a Hankel matrix. Linear Algebra Appl. 1998; 284: 41-52. – volume: 2 start-page: 187 year: 1987 end-page: 197 article-title: Analysis of two Partial‐Least‐Squares algorithms for multivariate calibration. publication-title: Chemom. Intell. Lab. Syst. – volume: 13 start-page: 1102 year: 1965 end-page: 1107 article-title: An algorithm for the inversion of finite Hankel matrices publication-title: J. Ind. Appl. Math. – volume: 8 start-page: 43 year: 1982 end-page: 71 article-title: A bidiagonalization algorithm for sparse linear equations and least squares problems publication-title: ACM Trans. Math. Softw. – volume: 51 start-page: 145 year: 2000 end-page: 161 article-title: Fast regression in a Lanczos (or PLS‐1) basis: theory and applications publication-title: Chemom. Intell. Lab. Syst. – volume: 11 start-page: 73 year: 1997 end-page: 85 article-title: Improved PLS algorithms publication-title: J. Chemom. – start-page: 34 year: 2006 end-page: 51 – year: 1989 – year: 1996 – volume: 18 start-page: 251 year: 1993 end-page: 263 article-title: PLS regression methods publication-title: J. Chemom. – volume: 20 start-page: 27 year: 1999 end-page: 37 article-title: Monitoring a film coating process for tables using near infrared reflectance spectrometry publication-title: J. Pharm. Biomed. Anal. – volume: 17 start-page: 581 year: 1988 end-page: 607 article-title: On the structure of partial least squares regression publication-title: Commun. Stat.—Simul. Comput – volume: 21 start-page: 165 year: 2007 end-page: 172 article-title: The model space in partial least squares regression publication-title: J. Chemom. – year: 2002 article-title: GNU Octave Manual publication-title: Network Theory Limited – year: 2006 article-title: PLS methods in regression: model assessment and inference publication-title: Ph.D. Thesis – volume: 18 start-page: 251 year: 1993 end-page: 263 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom. Intell. Lab. Syst. – volume: 9 start-page: 363 year: 1995 end-page: 372 publication-title: A simple algorithm for PLS regression – year: 2007 publication-title: Multiple Precision Toolbox for MATLAB – volume: 284 start-page: 41 year: 1998 end-page: 52 article-title: A fast method to diagonalize a Hankel matrix publication-title: Linear Algebra Appl. – year: 2008 publication-title: Multiple Precision Toolbox for MATLAB under Microsoft Windows – start-page: 286 year: 1982 end-page: 293 – volume: 8 start-page: 111 year: 1994 end-page: 125 article-title: A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm publication-title: J. Chemom. – volume: 22 start-page: 101 year: 2008 end-page: 105 article-title: On the numerical stability of two widely used PLS algorithms publication-title: J. Chemom. – volume: 2 start-page: 205 year: 1965 end-page: 224 article-title: Calculating the singular values and pseudo‐inverse of a matrix publication-title: SIAM J. Numer. Anal. – volume: 72 start-page: 2099 year: 2000 end-page: 2108 article-title: Quantitative analysis of film coating thickness in a fluidized bed process by in‐line NIR spectrometry and multivariate batch calibration publication-title: Anal. Chem. – year: 1993 – ident: e_1_2_1_6_2 doi: 10.1002/cem.1180080204 – ident: e_1_2_1_7_2 doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# – ident: e_1_2_1_22_2 doi: 10.1002/cem.1067 – ident: e_1_2_1_25_2 doi: 10.1137/0113078 – ident: e_1_2_1_23_2 doi: 10.1137/0702016 – volume-title: Matrix Computations year: 1996 ident: e_1_2_1_9_2 – year: 2007 ident: e_1_2_1_20_2 publication-title: Multiple Precision Toolbox for MATLAB – volume: 9 start-page: 363 year: 1995 ident: e_1_2_1_3_2 publication-title: A simple algorithm for PLS regression – volume-title: Multivariate Calibration year: 1989 ident: e_1_2_1_2_2 – ident: e_1_2_1_4_2 doi: 10.1002/cem.1112 – ident: e_1_2_1_10_2 – ident: e_1_2_1_17_2 doi: 10.1007/11752790_2 – ident: e_1_2_1_13_2 doi: 10.1080/03610918808812681 – ident: e_1_2_1_24_2 doi: 10.1145/355984.355989 – volume: 18 start-page: 251 year: 1993 ident: e_1_2_1_15_2 article-title: PLS regression methods publication-title: J. Chemom. – start-page: 286 volume-title: Lecture Notes in Mathematics year: 1982 ident: e_1_2_1_12_2 – ident: e_1_2_1_26_2 doi: 10.1016/S0024-3795(98)10101-5 – ident: e_1_2_1_5_2 doi: 10.1016/0169-7439(93)85002-X – year: 2006 ident: e_1_2_1_16_2 article-title: PLS methods in regression: model assessment and inference publication-title: Ph.D. Thesis – year: 2002 ident: e_1_2_1_11_2 article-title: GNU Octave Manual publication-title: Network Theory Limited – ident: e_1_2_1_8_2 doi: 10.1016/S0169-7439(00)00063-0 – ident: e_1_2_1_18_2 doi: 10.1016/S0731-7085(98)00237-4 – ident: e_1_2_1_14_2 doi: 10.1016/0169-7439(87)80096-5 – ident: e_1_2_1_19_2 doi: 10.1021/ac990256r – year: 2008 ident: e_1_2_1_21_2 publication-title: Multiple Precision Toolbox for MATLAB under Microsoft Windows  | 
    
| SSID | ssj0009934 | 
    
| Score | 2.3551362 | 
    
| Snippet | Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a)... | 
    
| SourceID | unpaywall proquest pascalfrancis crossref wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 518 | 
    
| SubjectTerms | Algorithms Analytical chemistry Chemistry Comparative studies comparison Exact sciences and technology Foods General and physical chemistry General. Nomenclature, chemical documentation, computer chemistry Least squares method Mathematical analysis Mathematical models numerical Numerical analysis Numerical stability PLS Regression regression vector Spectrometers speed stability Statistical methods Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Vectors (mathematics)  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5Be1guy1tkF1YBreDkkpcd-1hV210htlrBFsrJcmwH0HbTqg_x-PWM4ySiCBDilIPHSWbG4_nkxzcAx1RojmhIEG6TlGSsyEgRW06YYjTJDAJ85i4Kn0_Y2TR7NaOzZsHN3YXx_BDdgpuLjHq-dgG-NKWf55vd_eSlttcDTFD8JvQZRSzeg_50cjH84KEjI8LzcLrdH4IT8axln_2p604-6jvTfnXnI9UaTVT62hY74HNvWy3Vty9qPt-Fs3U-Gt8G2Wrij6FcDbabYqC__0Ly-P-q3oH9BqqGQz-27sINW92DvVFbIe4-HA9D3ZUxDBdlWOGXwovXb-NQzT8uVp83n67XD2A6PrkcnZGm6gLRmK05ycsssjrTXBieFmkkVMbSXBidF9xSw0qDWY8bZgWPHd7hpYlFnrJMG0UjptKH0KsWlX0EYZFzdw8WxR13eu7IC3WKkA0DUwnFdQAvWttL3VCSu8oYc-nJlBOJWkundQBPO8mlp-H4jczz2n2dgFpduWNrOZXvJ6fyzfjdKb2MZnISwNGOf7sOSeII-iIawGHrcNmE9Bob4wSxHs0DCLtWNLjbYFGVXWzXErEVYxwhZQDPumHyt_-tnf5HATk6OXfPg3952yHcqje66nOGj6G3WW3tE8RLm-KoCYofk9gPow priority: 102 providerName: Unpaywall  | 
    
| Title | A comparison of nine PLS1 algorithms | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-RFVG5T0X-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1248 https://www.proquest.com/docview/221227357 https://www.proquest.com/docview/901668056 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cem.1248  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1099-128X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-128X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009934 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8heGAv42ObFmBVNqHtKSUftmM_VhUFTVAhRrdOe7Acx2ETJUVNKxh_Ped8oaJtQnvKg89K7s6X-yU-_w5gnwrNEQ0Jj5sw8ghLiJcEhntMMRqSFAE-sweFT4fseEQ-j-m4rqq0Z2Eqfoj2h5uNjPJ9bQNcJcXBI2moNtddTE72nG8QsfJr6vyROQrTLqkAJPMEfoU1vLN-eNBMXMpEa9aod7YyUhVonKzqarEEO9cX-Y36fasmk2UgW2aiwQb8aHSoClCuuot50tX3T-gd_0_JTXhZA1S3V62oLVgx-Tas95u-cK9gv-fqtnmhO83cHO_inp18CVw1uZzOfs1_XhevYTQ4vOgfe3WvBU9jjuZenBHfaKK5SHmURL5QhEWxSHWccENTlqWY63jKjOCBRTk8SwMRR4zoVFGfqegNrObT3LwFN4m5Pf2K4pYxPbaUhTpCoIbhqITi2oFPjd2lronIbT-MiawolEOJWkurtQPvW8mbinzjDzIfS9e1Amp2ZYvVYiq_DY_k-eDrEb3wx3LoQGfJt-2EMLS0fD51YLdxtqwDucDBIESER2MH3HYUDW63VVRupotCIqJijCOQdOBDu0T-9bylw_8qIPuHp_a681zBXXhRbnGVFYZ7sDqfLcw7RErzpFPGRAfWRsOz3vcHgP8Mdw | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xeOheGOxDyxiQTWh7SsmH7djiCVWUbmuriZWtD5Msx3EAUVLUDw346zknTVDRNk17yoPPSnzny_1sn38HsEeF5oiGhMdNGHmEJcRLAsM9phgNSYoAn9mLwr0-65ySz0M6XIGD6i5MyQ9Rb7hZzyj-19bB7Yb0_gNrqDZXTYxO_AmsEYbLFIuITh64ozDwkhJCMk_gOqxinvXD_arnUixas2q9sbmRaorqycq6FkvAszHPr9XtLzUaLUPZIha1n8HPahRlCsplcz5LmvruEcHjfw5zA9YXGNU9LCfVJqyY_Dk0WlVpuBewd-jqun6hO87cHF_jfu1-C1w1OhtPLmbnV9OXcNo-GrQ63qLcgqcxTHMvzohvNNFcpDxKIl8owqJYpDpOuKEpy1IMdzxlRvDAAh2epYGII0Z0qqjPVPQKVvNxbl6Dm8TcXoBFcUuaHlvWQh0hVkOPVEJx7cDHSvFSL7jIbUmMkSxZlEOJo5Z21A68qyWvS_6N38h8KGxXC6jJpc1Xi6n80T-WJ-3vx3TgD2XfgZ0l49YdwtAy8_nUga3K2nLhy1NsDEIEeTR2wK1bUeH2ZEXlZjyfSgRVjHHEkg68r-fI3763sPgfBWTrqGefb_5VcBcanUGvK7uf-l-24Glx4lUkHL6F1dlkbrYROM2SncJB7gHeBA7o | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJOKLiGisKFZD8KlHP3a3u_GJHBygcCEIeg8mm-3uVghH73IfEf3rnW2vJWfAGJ_6sLNpZ2an82t39jcAm1RojmhIBNzGSUBYRoIssjxgitGYGAT4zB0UPu6yg3PysUd7C_ChPgtT8UM0P9xcZJTvaxfgdmjy7VvWUG2vW5id-ANYIlRwV8-3e3rLHYWJl1QQkgUCv8Nq5tkw3q5nzuWiJWfWG1cbqcZonrzqazEHPJenxVD9_KH6_XkoW-aizgp8q7WoSlCuWtNJ1tK__iB4_E81n8DjGUb1d6pFtQoLtngKy-26NdwabO74uulf6A9yv8Db-CdHnyNf9b8PRpeTi-vxMzjv7J21D4JZu4VAY5rmQZqT0GqiuTA8yZJQKMKSVBidZtxSw3KD6Y4bZgWPHNDhuYlEmjCijaIhU8lzWCwGhX0BfpZydwAWxR1peupYC3WCWA0jUgnFtQfva8NLPeMidy0x-rJiUY4lai2d1h68bSSHFf_GHTJbpe8aATW6cvVqKZVfu_vytPNln56FPdn1YGPOuc2EOHbMfCH1YL32tpzF8hgHoxhBHk098JtRNLjbWVGFHUzHEkEVYxyxpAfvmjXyt-ctPX6vgGzvHbvry38VfAMPT3Y78uiw-2kdHpUbXmW94StYnIym9jXipkm2UcbHb3JjDmw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5Be1guy1tkF1YBreDkkpcd-1hV210htlrBFsrJcmwH0HbTqg_x-PWM4ySiCBDilIPHSWbG4_nkxzcAx1RojmhIEG6TlGSsyEgRW06YYjTJDAJ85i4Kn0_Y2TR7NaOzZsHN3YXx_BDdgpuLjHq-dgG-NKWf55vd_eSlttcDTFD8JvQZRSzeg_50cjH84KEjI8LzcLrdH4IT8axln_2p604-6jvTfnXnI9UaTVT62hY74HNvWy3Vty9qPt-Fs3U-Gt8G2Wrij6FcDbabYqC__0Ly-P-q3oH9BqqGQz-27sINW92DvVFbIe4-HA9D3ZUxDBdlWOGXwovXb-NQzT8uVp83n67XD2A6PrkcnZGm6gLRmK05ycsssjrTXBieFmkkVMbSXBidF9xSw0qDWY8bZgWPHd7hpYlFnrJMG0UjptKH0KsWlX0EYZFzdw8WxR13eu7IC3WKkA0DUwnFdQAvWttL3VCSu8oYc-nJlBOJWkundQBPO8mlp-H4jczz2n2dgFpduWNrOZXvJ6fyzfjdKb2MZnISwNGOf7sOSeII-iIawGHrcNmE9Bob4wSxHs0DCLtWNLjbYFGVXWzXErEVYxwhZQDPumHyt_-tnf5HATk6OXfPg3952yHcqje66nOGj6G3WW3tE8RLm-KoCYofk9gPow | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+nine+PLS1+algorithms&rft.jtitle=Journal+of+chemometrics&rft.au=Andersson%2C+Martin&rft.date=2009-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=23&rft.issue=10&rft.spage=518&rft.epage=529&rft_id=info:doi/10.1002%2Fcem.1248&rft.externalDBID=10.1002%252Fcem.1248&rft.externalDocID=CEM1248 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |