A comparison of nine PLS1 algorithms

Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kerne...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemometrics Vol. 23; no. 10; pp. 518 - 529
Main Author Andersson, Martin
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.10.2009
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0886-9383
1099-128X
1099-128X
DOI10.1002/cem.1248

Cover

Abstract Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct‐scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd. Nine PLS1 algorithms were evaluated in terms of their numerical stability and their speed. It was found that the models of Bidiag2, PLSF and the new Krylov PLS1 algorithm were deviating from the precise PLS solution. They were numerically unstable and suboptimal in a least‐squares sense. The most stable were: NIPALS, the non‐orthogonalized PLS1 algorithm, the improved kernel PLS algorithm, and the new direct‐scores PLS1 algorithm. The last two were not only numerically stable but also 2–4 times faster.
AbstractList Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non-orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct-scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. [PUBLICATION ABSTRACT]
Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct‐scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd. Nine PLS1 algorithms were evaluated in terms of their numerical stability and their speed. It was found that the models of Bidiag2, PLSF and the new Krylov PLS1 algorithm were deviating from the precise PLS solution. They were numerically unstable and suboptimal in a least‐squares sense. The most stable were: NIPALS, the non‐orthogonalized PLS1 algorithm, the improved kernel PLS algorithm, and the new direct‐scores PLS1 algorithm. The last two were not only numerically stable but also 2–4 times faster.
Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non-orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct-scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors.
Author Andersson, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Andersson
  fullname: Andersson, Martin
  email: m.andersson@foss.co.jp
  organization: FOSS Japan Ltd., Tokyo Genboku Kaikan 9F, 30-13 Toyo 5-Chome, Koto-Ku, 135-0016 Tokyo, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087605$$DView record in Pascal Francis
BookMark eNp9z11LHDEUgOFQLHS1Qn_CUBTrxawnyUw-LpdF18JWxY_WuxAzmTY2k2yTWXT_vSMrgmK9ysV5kpN3E22EGCxCXzCMMQA5MLYbY1KJD2iEQcoSE3G9gUYgBCslFfQT2sz5FmCY0WqEdiaFid1CJ5djKGJbBBdscTa_wIX2v2Ny_Z8uf0YfW-2z3X46t9DV0eHl9Licn86-Tyfz0lSEiZK3FVhTGSEbQW8oSF0xymVj-I2wdcPahgIVDbNSYGBUiLbBklNWmUbXwDTdQvvrd5dhoVd32nu1SK7TaaUwqMc8NeSpx7zB7q3tIsV_S5t71blsrPc62LjMSgJmTEDNBvn1lbyNyxSGEEUIJoTTmg9o9wnpbLRvkw7G5ef1hIDgDOrBjdfOpJhzsq0yrte9i6FP2vm3_vnt1YV3kso1vXPerv7r1PTwx0vvcm_vn71OfxXjlNfq18lMnR_9nNWXcK1O6AN2LaLa
CODEN JOCHEU
CitedBy_id crossref_primary_10_1016_j_talanta_2011_09_016
crossref_primary_10_1038_srep05437
crossref_primary_10_53879_id_53_11_10683
crossref_primary_10_1007_s00216_011_5139_4
crossref_primary_10_1016_j_talanta_2017_07_094
crossref_primary_10_1002_aic_15172
crossref_primary_10_1016_j_chemolab_2012_11_002
crossref_primary_10_1016_j_postharvbio_2019_111101
crossref_primary_10_1021_ie401448d
crossref_primary_10_1002_bit_24502
crossref_primary_10_1016_j_compchemeng_2021_107365
crossref_primary_10_1002_cem_2898
crossref_primary_10_1177_0967033519855436
crossref_primary_10_21105_joss_06533
crossref_primary_10_1002_bit_28428
crossref_primary_10_1007_s11306_013_0538_5
crossref_primary_10_1016_j_ijleo_2015_05_064
crossref_primary_10_1371_journal_ppat_1004104
crossref_primary_10_1016_j_chemolab_2011_01_005
crossref_primary_10_1149_1945_7111_abe3a2
crossref_primary_10_1016_j_chemolab_2016_03_012
crossref_primary_10_1063_5_0083061
crossref_primary_10_1016_j_talanta_2011_09_025
crossref_primary_10_1016_j_fuel_2018_10_045
crossref_primary_10_1016_j_trac_2019_01_018
crossref_primary_10_1080_19443994_2016_1174742
crossref_primary_10_1021_acs_jcim_4c00359
crossref_primary_10_1016_j_ijpharm_2014_06_061
crossref_primary_10_1007_s11694_016_9402_4
crossref_primary_10_1016_j_ijpharm_2021_120657
crossref_primary_10_1016_j_microc_2020_105690
crossref_primary_10_1016_j_aca_2015_11_028
crossref_primary_10_1016_j_postharvbio_2022_111895
crossref_primary_10_1016_j_econmod_2019_09_046
crossref_primary_10_1016_j_procir_2014_05_014
crossref_primary_10_1111_jfpp_12522
crossref_primary_10_1016_j_chemolab_2018_03_003
crossref_primary_10_1214_10_AOS823
crossref_primary_10_1016_j_biosystemseng_2019_04_012
crossref_primary_10_1016_j_compag_2022_107455
crossref_primary_10_1002_clen_201600333
crossref_primary_10_1002_cem_2515
crossref_primary_10_1007_s11694_023_02022_3
crossref_primary_10_1002_cem_3209
crossref_primary_10_1016_j_biosystemseng_2016_12_008
crossref_primary_10_1111_1556_4029_15011
crossref_primary_10_1016_j_jfs_2024_101301
crossref_primary_10_1016_j_talanta_2013_11_056
crossref_primary_10_1039_c3ay26338j
crossref_primary_10_1002_cem_3452
crossref_primary_10_1002_cem_2884
crossref_primary_10_2139_ssrn_2962775
crossref_primary_10_1016_j_chemolab_2016_03_030
crossref_primary_10_1016_j_aca_2016_04_004
crossref_primary_10_1039_c3an00048f
crossref_primary_10_1016_j_aca_2022_339786
crossref_primary_10_1016_j_chemolab_2012_03_019
crossref_primary_10_1016_j_compag_2017_06_009
crossref_primary_10_1016_j_chemolab_2010_10_009
crossref_primary_10_1016_j_chemolab_2017_04_001
crossref_primary_10_1016_j_jocs_2015_09_007
crossref_primary_10_1002_cem_3287
crossref_primary_10_1002_cem_3441
crossref_primary_10_1016_j_postharvbio_2016_07_007
crossref_primary_10_4028_www_scientific_net_AMR_403_408_3544
crossref_primary_10_1016_j_artmed_2016_11_004
crossref_primary_10_1039_C4AN00007B
crossref_primary_10_1007_s00521_016_2213_z
crossref_primary_10_1016_j_aca_2015_11_002
crossref_primary_10_1016_j_trac_2020_116157
crossref_primary_10_1255_jnirs_1210
crossref_primary_10_1016_j_aca_2011_02_001
crossref_primary_10_1016_j_fuel_2015_10_091
crossref_primary_10_1016_j_chemolab_2022_104532
crossref_primary_10_2139_ssrn_4124962
crossref_primary_10_1002_jrs_5608
crossref_primary_10_1016_j_chemolab_2011_02_004
crossref_primary_10_1002_cem_3433
crossref_primary_10_1016_j_ces_2024_120568
crossref_primary_10_3390_app12157850
crossref_primary_10_3390_foods9081078
crossref_primary_10_1016_j_aca_2021_338716
crossref_primary_10_1002_cem_2582
crossref_primary_10_1002_cem_2589
crossref_primary_10_1016_j_biosystemseng_2022_12_007
crossref_primary_10_1002_cem_3397
crossref_primary_10_1002_cem_3431
crossref_primary_10_1007_s10853_021_06812_2
crossref_primary_10_3390_antib6040024
crossref_primary_10_1002_wics_1325
crossref_primary_10_1002_cem_2581
crossref_primary_10_1002_jeq2_20421
crossref_primary_10_1016_j_chemolab_2015_09_002
crossref_primary_10_1016_j_compchemeng_2020_106766
crossref_primary_10_1039_C9AY01241A
crossref_primary_10_1007_s00216_019_02322_y
crossref_primary_10_1021_acs_chemrev_2c00141
crossref_primary_10_1109_JSTARS_2014_2347414
crossref_primary_10_1016_j_compag_2022_107387
crossref_primary_10_1016_j_bioelechem_2020_107501
crossref_primary_10_1016_j_aca_2013_07_058
crossref_primary_10_1016_j_fuel_2013_07_122
crossref_primary_10_1016_j_jocs_2023_102197
crossref_primary_10_1021_jasms_0c00109
crossref_primary_10_1137_120895639
crossref_primary_10_1016_j_chemolab_2021_104307
crossref_primary_10_1016_j_chemolab_2015_06_016
crossref_primary_10_1016_j_chemolab_2015_10_018
crossref_primary_10_1021_ac101202z
crossref_primary_10_1016_j_foodres_2017_05_006
crossref_primary_10_1002_cem_3028
crossref_primary_10_1002_cem_3144
crossref_primary_10_1016_j_compag_2021_106638
crossref_primary_10_1007_s13738_016_0869_z
crossref_primary_10_1128_mSphere_00005_17
crossref_primary_10_1016_j_matdes_2022_111481
crossref_primary_10_1080_17460441_2018_1542428
crossref_primary_10_1002_jsfa_8002
crossref_primary_10_1016_j_molstruc_2016_10_079
crossref_primary_10_1038_s41598_024_59151_y
crossref_primary_10_1590_2318_0331_282320230008
crossref_primary_10_1007_s11164_016_2638_0
crossref_primary_10_1016_j_aca_2017_01_027
crossref_primary_10_1039_C7CP02321A
crossref_primary_10_3389_fpls_2019_01570
crossref_primary_10_1016_j_aca_2021_339073
crossref_primary_10_1016_j_chemolab_2021_104311
crossref_primary_10_1016_j_chemolab_2023_104876
crossref_primary_10_1007_s00044_016_1686_8
crossref_primary_10_1016_j_chemolab_2021_104313
crossref_primary_10_1016_j_chroma_2024_465171
crossref_primary_10_1016_j_chemolab_2022_104513
crossref_primary_10_1080_07391102_2016_1197152
crossref_primary_10_1002_cem_1356
crossref_primary_10_1002_jrs_5357
crossref_primary_10_1016_j_biosystemseng_2020_02_017
crossref_primary_10_1016_j_chemolab_2020_104141
crossref_primary_10_1080_19440049_2017_1342144
crossref_primary_10_35633_inmateh_62_29
crossref_primary_10_1016_j_heliyon_2024_e35045
crossref_primary_10_1007_s11694_019_00269_3
crossref_primary_10_1016_j_jmva_2021_104812
crossref_primary_10_1002_cem_70008
crossref_primary_10_1016_j_talanta_2015_04_046
crossref_primary_10_1080_00032719_2019_1628246
crossref_primary_10_1016_j_chemolab_2020_104159
crossref_primary_10_1016_j_postharvbio_2019_02_001
crossref_primary_10_1016_j_chemolab_2024_105120
crossref_primary_10_1021_pr300111x
crossref_primary_10_1016_j_lwt_2021_111092
crossref_primary_10_1039_C6AY02501C
crossref_primary_10_1080_00387010_2018_1523194
Cites_doi 10.1002/cem.1180080204
10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
10.1002/cem.1067
10.1137/0113078
10.1137/0702016
10.1002/cem.1112
10.1007/11752790_2
10.1080/03610918808812681
10.1145/355984.355989
10.1016/S0024-3795(98)10101-5
10.1016/0169-7439(93)85002-X
10.1016/S0169-7439(00)00063-0
10.1016/S0731-7085(98)00237-4
10.1016/0169-7439(87)80096-5
10.1021/ac990256r
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright John Wiley and Sons, Limited Oct 2009
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Oct 2009
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/cem.1248
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage 529
ExternalDocumentID 10.1002/cem.1248
1886520901
22087605
10_1002_cem_1248
CEM1248
ark_67375_WNG_RFVG5T0X_N
Genre article
Feature
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c4268-7f40ec4c89d83b309a46379dc7b8e5d6fd3038d6e98106388fd197364cda506a3
IEDL.DBID DR2
ISSN 0886-9383
1099-128X
IngestDate Wed Oct 01 16:09:24 EDT 2025
Fri Jul 11 07:25:17 EDT 2025
Fri Jul 25 11:13:27 EDT 2025
Mon Jul 21 09:14:20 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Thu Oct 16 04:30:44 EDT 2025
Thu Sep 25 07:34:59 EDT 2025
Sun Sep 21 06:18:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Speed
algorithms
Stability
comparison
regression vector
Spectrometer
Algorithm
PLS regression
numerical
PLS
Calculation
Models
Chemometrics
Numerical stability
Food
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4268-7f40ec4c89d83b309a46379dc7b8e5d6fd3038d6e98106388fd197364cda506a3
Notes istex:0D728252638AA50BF7F8884215A9C9072A02021B
ark:/67375/WNG-RFVG5T0X-N
ArticleID:CEM1248
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cem.1248
PQID 221227357
PQPubID 37374
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_cem_1248
proquest_miscellaneous_901668056
proquest_journals_221227357
pascalfrancis_primary_22087605
crossref_citationtrail_10_1002_cem_1248
crossref_primary_10_1002_cem_1248
wiley_primary_10_1002_cem_1248_CEM1248
istex_primary_ark_67375_WNG_RFVG5T0X_N
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
– name: Chichester
PublicationTitle Journal of chemometrics
PublicationTitleAlternate J. Chemometrics
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Kondylis A. PLS methods in regression: model assessment and inference. Ph.D. Thesis, Université de Neuchâtel, 2006.
Paige CC, Saunders MA. A bidiagonalization algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Softw. 1982; 8: 43-71.
Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm. J. Chemom. 1994; 8: 111-125.
Eaton JW. GNU Octave Manual. Network Theory Limited, 2002.
Höskuldsson A. PLS regression methods. J. Chemom. 1993; 18: 251-263.
Golub GH, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 1965; 2: 205-224.
Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating thickness in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal. Chem. 2000; 72: 2099-2108.
Trench WF. An algorithm for the inversion of finite Hankel matrices. J. Ind. Appl. Math. 1965; 13: 1102-1107.
Golub GH, van Loan CF. Matrix Computations (3rd edn). John Hopkins University Press: Baltimore, 1996.
Boley DL, Luuk FT, Vandevoorde D. A fast method to diagonalize a Hankel matrix. Linear Algebra Appl. 1998; 284: 41-52.
Andersson M, Josefson M, Langkilde F, Wahlund KG. Monitoring a film coating process for tables using near infrared reflectance spectrometry. J. Pharm. Biomed. Anal. 1999; 20: 27-37.
Zhu E, Barnes RM. A simple algorithm for PLS regression. J. Chemom. 1995; 9: 363-372.
de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993; 18: 251-263.
Faber NM, Ferré J. On the numerical stability of two widely used PLS algorithms. J. Chemom. 2008; 22: 101-105.
Manne R. Analysis of two Partial-Least-Squares algorithms for multivariate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187-197.
Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172.
Andersson M. Multiple Precision Toolbox for MATLAB under Microsoft Windows, 2008. http://www.sondette.com/math/mp_toolbox.html
Dayal BS, MacGregor JF. Improved PLS algorithms. J. Chemom. 1997; 11: 73-85.
Wu W, Manne R. Fast regression in a Lanczos (or PLS-1) basis: theory and applications. Chemom. Intell. Lab. Syst. 2000; 51: 145-161.
Martens H, Nßs T. Multivariate Calibration (3rd edn). John Wiley: New York, 1989.
Helland IS. On the structure of partial least squares regression. Commun. Stat.-Simul. Comput. 1988; 17: 581-607.
Barrowes B. Multiple Precision Toolbox for MATLAB, 2007. http:-www.mathworks.com-matlabcentral-fileexchange-loadFile.do?objectId=6446
1995; 9
1994; 8
1965; 2
1987; 2
1993; 18
1965; 13
1997; 11
1988; 17
2000; 72
2000; 51
2008
1996
2007
2006
1982; 8
1999; 20
2008; 22
1993
1982
2002
2007; 21
1989
1998; 284
Kondylis A (e_1_2_1_16_2) 2006
Martens H (e_1_2_1_2_2) 1989
Golub GH (e_1_2_1_9_2) 1996
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_26_2
Wold S (e_1_2_1_12_2) 1982
e_1_2_1_24_2
e_1_2_1_25_2
Barrowes B (e_1_2_1_20_2) 2007
Eaton JW (e_1_2_1_11_2) 2002
Höskuldsson A (e_1_2_1_15_2) 1993; 18
e_1_2_1_6_2
e_1_2_1_7_2
Zhu E (e_1_2_1_3_2) 1995; 9
e_1_2_1_4_2
e_1_2_1_5_2
Andersson M (e_1_2_1_21_2) 2008
e_1_2_1_10_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_18_2
References_xml – reference: Golub GH, van Loan CF. Matrix Computations (3rd edn). John Hopkins University Press: Baltimore, 1996.
– reference: Helland IS. On the structure of partial least squares regression. Commun. Stat.-Simul. Comput. 1988; 17: 581-607.
– reference: Barrowes B. Multiple Precision Toolbox for MATLAB, 2007. http:-www.mathworks.com-matlabcentral-fileexchange-loadFile.do?objectId=6446
– reference: Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172.
– reference: Golub GH, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 1965; 2: 205-224.
– reference: Paige CC, Saunders MA. A bidiagonalization algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Softw. 1982; 8: 43-71.
– reference: Manne R. Analysis of two Partial-Least-Squares algorithms for multivariate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187-197.
– reference: de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993; 18: 251-263.
– reference: Zhu E, Barnes RM. A simple algorithm for PLS regression. J. Chemom. 1995; 9: 363-372.
– reference: Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm. J. Chemom. 1994; 8: 111-125.
– reference: Andersson M, Josefson M, Langkilde F, Wahlund KG. Monitoring a film coating process for tables using near infrared reflectance spectrometry. J. Pharm. Biomed. Anal. 1999; 20: 27-37.
– reference: Eaton JW. GNU Octave Manual. Network Theory Limited, 2002.
– reference: Andersson M. Multiple Precision Toolbox for MATLAB under Microsoft Windows, 2008. http://www.sondette.com/math/mp_toolbox.html
– reference: Dayal BS, MacGregor JF. Improved PLS algorithms. J. Chemom. 1997; 11: 73-85.
– reference: Wu W, Manne R. Fast regression in a Lanczos (or PLS-1) basis: theory and applications. Chemom. Intell. Lab. Syst. 2000; 51: 145-161.
– reference: Kondylis A. PLS methods in regression: model assessment and inference. Ph.D. Thesis, Université de Neuchâtel, 2006.
– reference: Faber NM, Ferré J. On the numerical stability of two widely used PLS algorithms. J. Chemom. 2008; 22: 101-105.
– reference: Höskuldsson A. PLS regression methods. J. Chemom. 1993; 18: 251-263.
– reference: Trench WF. An algorithm for the inversion of finite Hankel matrices. J. Ind. Appl. Math. 1965; 13: 1102-1107.
– reference: Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating thickness in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal. Chem. 2000; 72: 2099-2108.
– reference: Martens H, Nßs T. Multivariate Calibration (3rd edn). John Wiley: New York, 1989.
– reference: Boley DL, Luuk FT, Vandevoorde D. A fast method to diagonalize a Hankel matrix. Linear Algebra Appl. 1998; 284: 41-52.
– volume: 2
  start-page: 187
  year: 1987
  end-page: 197
  article-title: Analysis of two Partial‐Least‐Squares algorithms for multivariate calibration.
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 13
  start-page: 1102
  year: 1965
  end-page: 1107
  article-title: An algorithm for the inversion of finite Hankel matrices
  publication-title: J. Ind. Appl. Math.
– volume: 8
  start-page: 43
  year: 1982
  end-page: 71
  article-title: A bidiagonalization algorithm for sparse linear equations and least squares problems
  publication-title: ACM Trans. Math. Softw.
– volume: 51
  start-page: 145
  year: 2000
  end-page: 161
  article-title: Fast regression in a Lanczos (or PLS‐1) basis: theory and applications
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 11
  start-page: 73
  year: 1997
  end-page: 85
  article-title: Improved PLS algorithms
  publication-title: J. Chemom.
– start-page: 34
  year: 2006
  end-page: 51
– year: 1989
– year: 1996
– volume: 18
  start-page: 251
  year: 1993
  end-page: 263
  article-title: PLS regression methods
  publication-title: J. Chemom.
– volume: 20
  start-page: 27
  year: 1999
  end-page: 37
  article-title: Monitoring a film coating process for tables using near infrared reflectance spectrometry
  publication-title: J. Pharm. Biomed. Anal.
– volume: 17
  start-page: 581
  year: 1988
  end-page: 607
  article-title: On the structure of partial least squares regression
  publication-title: Commun. Stat.—Simul. Comput
– volume: 21
  start-page: 165
  year: 2007
  end-page: 172
  article-title: The model space in partial least squares regression
  publication-title: J. Chemom.
– year: 2002
  article-title: GNU Octave Manual
  publication-title: Network Theory Limited
– year: 2006
  article-title: PLS methods in regression: model assessment and inference
  publication-title: Ph.D. Thesis
– volume: 18
  start-page: 251
  year: 1993
  end-page: 263
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 9
  start-page: 363
  year: 1995
  end-page: 372
  publication-title: A simple algorithm for PLS regression
– year: 2007
  publication-title: Multiple Precision Toolbox for MATLAB
– volume: 284
  start-page: 41
  year: 1998
  end-page: 52
  article-title: A fast method to diagonalize a Hankel matrix
  publication-title: Linear Algebra Appl.
– year: 2008
  publication-title: Multiple Precision Toolbox for MATLAB under Microsoft Windows
– start-page: 286
  year: 1982
  end-page: 293
– volume: 8
  start-page: 111
  year: 1994
  end-page: 125
  article-title: A PLS kernel algorithm for data sets with many variables and fewer objects. part 1: theory and algorithm
  publication-title: J. Chemom.
– volume: 22
  start-page: 101
  year: 2008
  end-page: 105
  article-title: On the numerical stability of two widely used PLS algorithms
  publication-title: J. Chemom.
– volume: 2
  start-page: 205
  year: 1965
  end-page: 224
  article-title: Calculating the singular values and pseudo‐inverse of a matrix
  publication-title: SIAM J. Numer. Anal.
– volume: 72
  start-page: 2099
  year: 2000
  end-page: 2108
  article-title: Quantitative analysis of film coating thickness in a fluidized bed process by in‐line NIR spectrometry and multivariate batch calibration
  publication-title: Anal. Chem.
– year: 1993
– ident: e_1_2_1_6_2
  doi: 10.1002/cem.1180080204
– ident: e_1_2_1_7_2
  doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
– ident: e_1_2_1_22_2
  doi: 10.1002/cem.1067
– ident: e_1_2_1_25_2
  doi: 10.1137/0113078
– ident: e_1_2_1_23_2
  doi: 10.1137/0702016
– volume-title: Matrix Computations
  year: 1996
  ident: e_1_2_1_9_2
– year: 2007
  ident: e_1_2_1_20_2
  publication-title: Multiple Precision Toolbox for MATLAB
– volume: 9
  start-page: 363
  year: 1995
  ident: e_1_2_1_3_2
  publication-title: A simple algorithm for PLS regression
– volume-title: Multivariate Calibration
  year: 1989
  ident: e_1_2_1_2_2
– ident: e_1_2_1_4_2
  doi: 10.1002/cem.1112
– ident: e_1_2_1_10_2
– ident: e_1_2_1_17_2
  doi: 10.1007/11752790_2
– ident: e_1_2_1_13_2
  doi: 10.1080/03610918808812681
– ident: e_1_2_1_24_2
  doi: 10.1145/355984.355989
– volume: 18
  start-page: 251
  year: 1993
  ident: e_1_2_1_15_2
  article-title: PLS regression methods
  publication-title: J. Chemom.
– start-page: 286
  volume-title: Lecture Notes in Mathematics
  year: 1982
  ident: e_1_2_1_12_2
– ident: e_1_2_1_26_2
  doi: 10.1016/S0024-3795(98)10101-5
– ident: e_1_2_1_5_2
  doi: 10.1016/0169-7439(93)85002-X
– year: 2006
  ident: e_1_2_1_16_2
  article-title: PLS methods in regression: model assessment and inference
  publication-title: Ph.D. Thesis
– year: 2002
  ident: e_1_2_1_11_2
  article-title: GNU Octave Manual
  publication-title: Network Theory Limited
– ident: e_1_2_1_8_2
  doi: 10.1016/S0169-7439(00)00063-0
– ident: e_1_2_1_18_2
  doi: 10.1016/S0731-7085(98)00237-4
– ident: e_1_2_1_14_2
  doi: 10.1016/0169-7439(87)80096-5
– ident: e_1_2_1_19_2
  doi: 10.1021/ac990256r
– year: 2008
  ident: e_1_2_1_21_2
  publication-title: Multiple Precision Toolbox for MATLAB under Microsoft Windows
SSID ssj0009934
Score 2.3551362
Snippet Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a)...
SourceID unpaywall
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 518
SubjectTerms Algorithms
Analytical chemistry
Chemistry
Comparative studies
comparison
Exact sciences and technology
Foods
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
Least squares method
Mathematical analysis
Mathematical models
numerical
Numerical analysis
Numerical stability
PLS
Regression
regression vector
Spectrometers
speed
stability
Statistical methods
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Vectors (mathematics)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5Be1guy1tkF1YBreDkkpcd-1hV210htlrBFsrJcmwH0HbTqg_x-PWM4ySiCBDilIPHSWbG4_nkxzcAx1RojmhIEG6TlGSsyEgRW06YYjTJDAJ85i4Kn0_Y2TR7NaOzZsHN3YXx_BDdgpuLjHq-dgG-NKWf55vd_eSlttcDTFD8JvQZRSzeg_50cjH84KEjI8LzcLrdH4IT8axln_2p604-6jvTfnXnI9UaTVT62hY74HNvWy3Vty9qPt-Fs3U-Gt8G2Wrij6FcDbabYqC__0Ly-P-q3oH9BqqGQz-27sINW92DvVFbIe4-HA9D3ZUxDBdlWOGXwovXb-NQzT8uVp83n67XD2A6PrkcnZGm6gLRmK05ycsssjrTXBieFmkkVMbSXBidF9xSw0qDWY8bZgWPHd7hpYlFnrJMG0UjptKH0KsWlX0EYZFzdw8WxR13eu7IC3WKkA0DUwnFdQAvWttL3VCSu8oYc-nJlBOJWkundQBPO8mlp-H4jczz2n2dgFpduWNrOZXvJ6fyzfjdKb2MZnISwNGOf7sOSeII-iIawGHrcNmE9Bob4wSxHs0DCLtWNLjbYFGVXWzXErEVYxwhZQDPumHyt_-tnf5HATk6OXfPg3952yHcqje66nOGj6G3WW3tE8RLm-KoCYofk9gPow
  priority: 102
  providerName: Unpaywall
Title A comparison of nine PLS1 algorithms
URI https://api.istex.fr/ark:/67375/WNG-RFVG5T0X-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1248
https://www.proquest.com/docview/221227357
https://www.proquest.com/docview/901668056
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cem.1248
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-128X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-128X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009934
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8heGAv42ObFmBVNqHtKSUftmM_VhUFTVAhRrdOe7Acx2ETJUVNKxh_Ped8oaJtQnvKg89K7s6X-yU-_w5gnwrNEQ0Jj5sw8ghLiJcEhntMMRqSFAE-sweFT4fseEQ-j-m4rqq0Z2Eqfoj2h5uNjPJ9bQNcJcXBI2moNtddTE72nG8QsfJr6vyROQrTLqkAJPMEfoU1vLN-eNBMXMpEa9aod7YyUhVonKzqarEEO9cX-Y36fasmk2UgW2aiwQb8aHSoClCuuot50tX3T-gd_0_JTXhZA1S3V62oLVgx-Tas95u-cK9gv-fqtnmhO83cHO_inp18CVw1uZzOfs1_XhevYTQ4vOgfe3WvBU9jjuZenBHfaKK5SHmURL5QhEWxSHWccENTlqWY63jKjOCBRTk8SwMRR4zoVFGfqegNrObT3LwFN4m5Pf2K4pYxPbaUhTpCoIbhqITi2oFPjd2lronIbT-MiawolEOJWkurtQPvW8mbinzjDzIfS9e1Amp2ZYvVYiq_DY_k-eDrEb3wx3LoQGfJt-2EMLS0fD51YLdxtqwDucDBIESER2MH3HYUDW63VVRupotCIqJijCOQdOBDu0T-9bylw_8qIPuHp_a681zBXXhRbnGVFYZ7sDqfLcw7RErzpFPGRAfWRsOz3vcHgP8Mdw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xeOheGOxDyxiQTWh7SsmH7djiCVWUbmuriZWtD5Msx3EAUVLUDw346zknTVDRNk17yoPPSnzny_1sn38HsEeF5oiGhMdNGHmEJcRLAsM9phgNSYoAn9mLwr0-65ySz0M6XIGD6i5MyQ9Rb7hZzyj-19bB7Yb0_gNrqDZXTYxO_AmsEYbLFIuITh64ozDwkhJCMk_gOqxinvXD_arnUixas2q9sbmRaorqycq6FkvAszHPr9XtLzUaLUPZIha1n8HPahRlCsplcz5LmvruEcHjfw5zA9YXGNU9LCfVJqyY_Dk0WlVpuBewd-jqun6hO87cHF_jfu1-C1w1OhtPLmbnV9OXcNo-GrQ63qLcgqcxTHMvzohvNNFcpDxKIl8owqJYpDpOuKEpy1IMdzxlRvDAAh2epYGII0Z0qqjPVPQKVvNxbl6Dm8TcXoBFcUuaHlvWQh0hVkOPVEJx7cDHSvFSL7jIbUmMkSxZlEOJo5Z21A68qyWvS_6N38h8KGxXC6jJpc1Xi6n80T-WJ-3vx3TgD2XfgZ0l49YdwtAy8_nUga3K2nLhy1NsDEIEeTR2wK1bUeH2ZEXlZjyfSgRVjHHEkg68r-fI3763sPgfBWTrqGefb_5VcBcanUGvK7uf-l-24Glx4lUkHL6F1dlkbrYROM2SncJB7gHeBA7o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJOKLiGisKFZD8KlHP3a3u_GJHBygcCEIeg8mm-3uVghH73IfEf3rnW2vJWfAGJ_6sLNpZ2an82t39jcAm1RojmhIBNzGSUBYRoIssjxgitGYGAT4zB0UPu6yg3PysUd7C_ChPgtT8UM0P9xcZJTvaxfgdmjy7VvWUG2vW5id-ANYIlRwV8-3e3rLHYWJl1QQkgUCv8Nq5tkw3q5nzuWiJWfWG1cbqcZonrzqazEHPJenxVD9_KH6_XkoW-aizgp8q7WoSlCuWtNJ1tK__iB4_E81n8DjGUb1d6pFtQoLtngKy-26NdwabO74uulf6A9yv8Db-CdHnyNf9b8PRpeTi-vxMzjv7J21D4JZu4VAY5rmQZqT0GqiuTA8yZJQKMKSVBidZtxSw3KD6Y4bZgWPHNDhuYlEmjCijaIhU8lzWCwGhX0BfpZydwAWxR1peupYC3WCWA0jUgnFtQfva8NLPeMidy0x-rJiUY4lai2d1h68bSSHFf_GHTJbpe8aATW6cvVqKZVfu_vytPNln56FPdn1YGPOuc2EOHbMfCH1YL32tpzF8hgHoxhBHk098JtRNLjbWVGFHUzHEkEVYxyxpAfvmjXyt-ctPX6vgGzvHbvry38VfAMPT3Y78uiw-2kdHpUbXmW94StYnIym9jXipkm2UcbHb3JjDmw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5Be1guy1tkF1YBreDkkpcd-1hV210htlrBFsrJcmwH0HbTqg_x-PWM4ySiCBDilIPHSWbG4_nkxzcAx1RojmhIEG6TlGSsyEgRW06YYjTJDAJ85i4Kn0_Y2TR7NaOzZsHN3YXx_BDdgpuLjHq-dgG-NKWf55vd_eSlttcDTFD8JvQZRSzeg_50cjH84KEjI8LzcLrdH4IT8axln_2p604-6jvTfnXnI9UaTVT62hY74HNvWy3Vty9qPt-Fs3U-Gt8G2Wrij6FcDbabYqC__0Ly-P-q3oH9BqqGQz-27sINW92DvVFbIe4-HA9D3ZUxDBdlWOGXwovXb-NQzT8uVp83n67XD2A6PrkcnZGm6gLRmK05ycsssjrTXBieFmkkVMbSXBidF9xSw0qDWY8bZgWPHd7hpYlFnrJMG0UjptKH0KsWlX0EYZFzdw8WxR13eu7IC3WKkA0DUwnFdQAvWttL3VCSu8oYc-nJlBOJWkundQBPO8mlp-H4jczz2n2dgFpduWNrOZXvJ6fyzfjdKb2MZnISwNGOf7sOSeII-iIawGHrcNmE9Bob4wSxHs0DCLtWNLjbYFGVXWzXErEVYxwhZQDPumHyt_-tnf5HATk6OXfPg3952yHcqje66nOGj6G3WW3tE8RLm-KoCYofk9gPow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+nine+PLS1+algorithms&rft.jtitle=Journal+of+chemometrics&rft.au=Andersson%2C+Martin&rft.date=2009-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=23&rft.issue=10&rft.spage=518&rft.epage=529&rft_id=info:doi/10.1002%2Fcem.1248&rft.externalDBID=10.1002%252Fcem.1248&rft.externalDocID=CEM1248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon