Silk Hydrogels as Soft Substrates for Neural Tissue Engineering
There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed for extracellular matrix functionalization and to provide appropriate mechanical cues. It is challenging, however, to achieve structural inte...
Saved in:
Published in | Advanced functional materials Vol. 23; no. 41; pp. 5140 - 5149 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
06.11.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201300435 |
Cover
Abstract | There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed for extracellular matrix functionalization and to provide appropriate mechanical cues. It is challenging, however, to achieve structural integrity and retain bioactive molecules in hydrogels for complex tissue formation that may take months to develop. This work aims to investigate mechanical and biochemical characteristics of silk hydrogels for soft tissue engineering, specifically for the nervous system. The stiffness of 1 to 8% silk hydrogels, measured by atomic force microscopy, is 4 to 33 kPa. The structural integrity of silk gels is maintained throughout embryonic chick dorsal root ganglion (cDRG) explant culture over 4 days whereas fibrin and collagen gels decrease in mass over time. Neurite extension of cDRGs cultured on 2 and 4% silk hydrogels exhibit greater growth than softer or stiffer gels. Silk hydrogels release <5% of neurotrophin‐3 (NT‐3) over 2 weeks and 11‐day old gels show maintenance of growth factor bioactivity. Finally, fibronectin‐ and NT‐3‐functionalized silk gels elicit increased axonal bundling suggesting their use in bridging nerve injuries. These results support silk hydrogels as soft and sustainable biomaterials for neural tissue engineering.
Silk hydrogels are soft biomaterials of stiffness matching that of nervous system tissues. Significant chick dorsal root ganglion explant outgrowth is exhibited on 2 to 4% w/v silk hydrogels supplemented with neurotrophic factors exemplifying their employment in extracellular matrix functionalization for neural tissue engineering applications. |
---|---|
AbstractList | There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed for extracellular matrix functionalization and to provide appropriate mechanical cues. It is challenging, however, to achieve structural integrity and retain bioactive molecules in hydrogels for complex tissue formation that may take months to develop. This work aims to investigate mechanical and biochemical characteristics of silk hydrogels for soft tissue engineering, specifically for the nervous system. The stiffness of 1 to 8% silk hydrogels, measured by atomic force microscopy, is 4 to 33 kPa. The structural integrity of silk gels is maintained throughout embryonic chick dorsal root ganglion (cDRG) explant culture over 4 days whereas fibrin and collagen gels decrease in mass over time. Neurite extension of cDRGs cultured on 2 and 4% silk hydrogels exhibit greater growth than softer or stiffer gels. Silk hydrogels release <5% of neurotrophin‐3 (NT‐3) over 2 weeks and 11‐day old gels show maintenance of growth factor bioactivity. Finally, fibronectin‐ and NT‐3‐functionalized silk gels elicit increased axonal bundling suggesting their use in bridging nerve injuries. These results support silk hydrogels as soft and sustainable biomaterials for neural tissue engineering. There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed for extracellular matrix functionalization and to provide appropriate mechanical cues. It is challenging, however, to achieve structural integrity and retain bioactive molecules in hydrogels for complex tissue formation that may take months to develop. This work aims to investigate mechanical and biochemical characteristics of silk hydrogels for soft tissue engineering, specifically for the nervous system. The stiffness of 1 to 8% silk hydrogels, measured by atomic force microscopy, is 4 to 33 kPa. The structural integrity of silk gels is maintained throughout embryonic chick dorsal root ganglion (cDRG) explant culture over 4 days whereas fibrin and collagen gels decrease in mass over time. Neurite extension of cDRGs cultured on 2 and 4% silk hydrogels exhibit greater growth than softer or stiffer gels. Silk hydrogels release <5% of neurotrophin-3 (NT-3) over 2 weeks and 11-day old gels show maintenance of growth factor bioactivity. Finally, fibronectin- and NT-3-functionalized silk gels elicit increased axonal bundling suggesting their use in bridging nerve injuries. These results support silk hydrogels as soft and sustainable biomaterials for neural tissue engineering. Silk hydrogels are soft biomaterials of stiffness matching that of nervous system tissues. Significant chick dorsal root ganglion explant outgrowth is exhibited on 2 to 4% w/v silk hydrogels supplemented with neurotrophic factors exemplifying their employment in extracellular matrix functionalization for neural tissue engineering applications. There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed for extracellular matrix functionalization and to provide appropriate mechanical cues. It is challenging, however, to achieve structural integrity and retain bioactive molecules in hydrogels for complex tissue formation that may take months to develop. This work aims to investigate mechanical and biochemical characteristics of silk hydrogels for soft tissue engineering, specifically for the nervous system. The stiffness of 1 to 8% silk hydrogels, measured by atomic force microscopy, is 4 to 33 kPa. The structural integrity of silk gels is maintained throughout embryonic chick dorsal root ganglion (cDRG) explant culture over 4 days whereas fibrin and collagen gels decrease in mass over time. Neurite extension of cDRGs cultured on 2 and 4% silk hydrogels exhibit greater growth than softer or stiffer gels. Silk hydrogels release <5% of neurotrophin‐3 (NT‐3) over 2 weeks and 11‐day old gels show maintenance of growth factor bioactivity. Finally, fibronectin‐ and NT‐3‐functionalized silk gels elicit increased axonal bundling suggesting their use in bridging nerve injuries. These results support silk hydrogels as soft and sustainable biomaterials for neural tissue engineering. Silk hydrogels are soft biomaterials of stiffness matching that of nervous system tissues. Significant chick dorsal root ganglion explant outgrowth is exhibited on 2 to 4% w/v silk hydrogels supplemented with neurotrophic factors exemplifying their employment in extracellular matrix functionalization for neural tissue engineering applications. |
Author | Tortelli, Federico Staii, Cristian De Laporte, Laura Hubbell, Jeffrey A. Atherton, Timothy J. Spedden, Elise Kaplan, David L. Hopkins, Amy M. |
Author_xml | – sequence: 1 givenname: Amy M. surname: Hopkins fullname: Hopkins, Amy M. organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA – sequence: 2 givenname: Laura surname: De Laporte fullname: De Laporte, Laura organization: Institute of Bioengineering, School of Life Sciences and Institute for Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland – sequence: 3 givenname: Federico surname: Tortelli fullname: Tortelli, Federico organization: Institute of Bioengineering, School of Life Sciences and Institute for Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland – sequence: 4 givenname: Elise surname: Spedden fullname: Spedden, Elise organization: Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, MA 02155, USA – sequence: 5 givenname: Cristian surname: Staii fullname: Staii, Cristian organization: Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, MA 02155, USA – sequence: 6 givenname: Timothy J. surname: Atherton fullname: Atherton, Timothy J. organization: Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, MA 02155, USA – sequence: 7 givenname: Jeffrey A. surname: Hubbell fullname: Hubbell, Jeffrey A. organization: Institute of Bioengineering, School of Life Sciences and Institute for Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland – sequence: 8 givenname: David L. surname: Kaplan fullname: Kaplan, David L. email: david.kaplan@tufts.edu organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA |
BookMark | eNqFkEtLw0AURgepYK1uXWfpJnXek6yk1j6UWpVW6m6YZiZlbJrUmQTtvzclUkQQV_fj8p174ZyCVl7kBoALBLsIQnyldLrpYogIhJSwI9BGHPGQQBy1Dhm9noBT798gREIQ2gbXM5utg_FOu2JlMh8oH8yKtAxm1dKXTpXGB2nhgqmpnMqCufW-MsEgX9ncGGfz1Rk4TlXmzfn37ICX4WDeH4eTx9FdvzcJE4o5C6nSRmiMWcRjgnC9XCLC44ThOCIqirCGZKlEnAhIY8E1U5orxTVOFI4SpkkHXDZ3t654r4wv5cb6xGSZyk1ReYmoYAwjRuO62m2qiSu8dyaVW2c3yu0kgnJvSu5NyYOpGqC_gMSWqrRFXhuw2d9Y3GAfNjO7f57I3u3w4ScbNqz1pfk8sMqtJRdEMLmYjuTzYorp0_2NpOQLQVqN5A |
CitedBy_id | crossref_primary_10_1002_mabi_201500367 crossref_primary_10_1016_j_brainresbull_2019_05_013 crossref_primary_10_1007_s10517_023_05718_0 crossref_primary_10_1021_acs_biomac_9b00891 crossref_primary_10_1002_pat_5263 crossref_primary_10_3390_pharmaceutics13030429 crossref_primary_10_1016_j_biotechadv_2019_03_009 crossref_primary_10_1002_ijch_201900052 crossref_primary_10_1016_j_ijbiomac_2020_03_155 crossref_primary_10_1038_s41598_017_06240_w crossref_primary_10_1002_adfm_202000097 crossref_primary_10_3389_fnins_2020_00431 crossref_primary_10_3390_cells10071713 crossref_primary_10_1002_ar_24067 crossref_primary_10_1016_j_actbio_2014_09_032 crossref_primary_10_1016_j_procbio_2022_12_012 crossref_primary_10_1002_adhm_201701164 crossref_primary_10_1063_1_5120738 crossref_primary_10_3390_molecules28135222 crossref_primary_10_1039_D0BM02051F crossref_primary_10_1016_j_carbpol_2015_12_064 crossref_primary_10_1016_j_bea_2024_100132 crossref_primary_10_1016_j_jconrel_2022_02_011 crossref_primary_10_1002_cpz1_688 crossref_primary_10_1016_j_eurpolymj_2024_113449 crossref_primary_10_1016_j_matdes_2020_109401 crossref_primary_10_1021_acsbiomaterials_0c00698 crossref_primary_10_1021_acs_langmuir_7b04108 crossref_primary_10_1002_jbm_a_37837 crossref_primary_10_1002_adfm_202010225 crossref_primary_10_1002_jbm_a_37312 crossref_primary_10_1016_j_jconrel_2014_05_059 crossref_primary_10_3390_pr9060935 crossref_primary_10_5812_ijpr_133552 crossref_primary_10_1021_acsbiomaterials_8b00976 crossref_primary_10_3389_fbioe_2021_639765 crossref_primary_10_1016_j_actbio_2021_12_010 crossref_primary_10_1016_j_pneurobio_2014_11_003 crossref_primary_10_1002_term_2053 crossref_primary_10_3389_fbioe_2023_1260397 crossref_primary_10_1073_pnas_1324214111 crossref_primary_10_1016_j_biomaterials_2018_05_012 crossref_primary_10_1038_s44222_023_00027_7 crossref_primary_10_1002_adfm_201400526 crossref_primary_10_1016_j_jneumeth_2014_03_006 crossref_primary_10_1177_08839115241287215 crossref_primary_10_1002_jbm_a_35465 crossref_primary_10_1016_j_colsurfb_2015_07_015 crossref_primary_10_1063_5_0074631 crossref_primary_10_1016_j_addr_2021_01_006 crossref_primary_10_1115_1_4065434 crossref_primary_10_1016_j_cej_2020_128379 crossref_primary_10_3390_ijms23031415 crossref_primary_10_1002_adhm_201801092 crossref_primary_10_1021_acsami_1c10656 crossref_primary_10_1016_j_bioactmat_2021_12_005 crossref_primary_10_1039_D1BM01129D crossref_primary_10_1186_s13024_018_0258_4 crossref_primary_10_1021_acsbiomaterials_1c00493 crossref_primary_10_1039_C8PY00644J crossref_primary_10_1186_s12929_018_0491_8 crossref_primary_10_4103_1673_5374_306097 crossref_primary_10_1016_j_bioactmat_2021_05_056 crossref_primary_10_1016_j_bej_2022_108476 crossref_primary_10_1002_cbic_201800118 crossref_primary_10_1021_acsbiomaterials_6b00469 crossref_primary_10_1016_j_carbpol_2019_115335 crossref_primary_10_1016_j_biomaterials_2018_02_001 crossref_primary_10_1021_acsbiomaterials_6b00500 crossref_primary_10_1093_brain_awaa268 crossref_primary_10_1016_j_biomaterials_2014_04_020 crossref_primary_10_1039_C5TB00448A crossref_primary_10_1039_C4TB00878B crossref_primary_10_1002_adhm_201400762 crossref_primary_10_3390_pharmaceutics16101341 crossref_primary_10_1039_C5RA12173F crossref_primary_10_32725_jab_2019_012 crossref_primary_10_1002_smll_201901176 crossref_primary_10_3390_ijms140816124 crossref_primary_10_1021_acsbiomaterials_8b01481 crossref_primary_10_1016_j_actbio_2014_11_045 crossref_primary_10_1039_D0RA03964K crossref_primary_10_1016_j_carbpol_2020_116593 crossref_primary_10_1016_j_compositesb_2023_110551 crossref_primary_10_1016_j_mtbio_2025_101556 crossref_primary_10_1016_j_nanoen_2020_105242 crossref_primary_10_1016_j_reactfunctpolym_2020_104501 crossref_primary_10_1016_j_polymdegradstab_2019_04_006 crossref_primary_10_1002_adhm_201700014 crossref_primary_10_1007_s00466_024_02536_7 crossref_primary_10_1039_D0PY00187B crossref_primary_10_1002_adhm_201700954 crossref_primary_10_3390_ijms242216269 crossref_primary_10_1007_s12551_019_00587_2 crossref_primary_10_3390_pharmaceutics12060574 crossref_primary_10_1002_slct_202401700 crossref_primary_10_1002_smll_202310614 crossref_primary_10_1016_j_biomaterials_2015_01_044 crossref_primary_10_1016_j_ijbiomac_2023_126619 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1016_j_coche_2016_01_001 crossref_primary_10_1021_acsomega_1c00013 crossref_primary_10_1016_j_ejpb_2014_12_029 crossref_primary_10_1021_acs_biomac_7b00376 crossref_primary_10_1021_acsbiomaterials_9b01451 crossref_primary_10_1007_s11064_018_2691_8 crossref_primary_10_1016_j_msec_2017_03_133 crossref_primary_10_1002_jbm_a_35851 crossref_primary_10_1016_j_cej_2020_128278 crossref_primary_10_1021_acsbiomaterials_5b00215 crossref_primary_10_1088_1741_2552_aac96d crossref_primary_10_3390_molecules21010048 crossref_primary_10_1016_j_neuint_2021_105034 crossref_primary_10_1038_s41598_017_11919_1 crossref_primary_10_3389_fcell_2020_00823 crossref_primary_10_1039_D0BM02049D crossref_primary_10_1002_adhm_202100898 crossref_primary_10_2478_aut_2020_0047 crossref_primary_10_1039_C4RA04529G crossref_primary_10_3389_fbioe_2020_622923 crossref_primary_10_4103_1673_5374_232471 crossref_primary_10_1002_jccs_202400303 crossref_primary_10_1016_j_colsurfb_2024_114034 crossref_primary_10_1021_acsami_8b05853 crossref_primary_10_3390_pharmaceutics12070613 crossref_primary_10_1002_bip_22806 crossref_primary_10_1016_j_bioactmat_2022_11_019 crossref_primary_10_1002_adfm_201909146 crossref_primary_10_3389_fncel_2020_00151 crossref_primary_10_1016_j_nanoen_2024_110367 crossref_primary_10_1080_09205063_2021_1958185 crossref_primary_10_1002_adma_202102184 crossref_primary_10_1016_j_biomaterials_2017_10_002 crossref_primary_10_1002_term_2880 crossref_primary_10_1002_mabi_201500013 crossref_primary_10_3390_polym14030400 crossref_primary_10_1016_j_actbio_2017_12_026 crossref_primary_10_1002_polb_24895 crossref_primary_10_1093_rb_rbab048 crossref_primary_10_1002_adhm_201700939 crossref_primary_10_1088_1758_5090_ad0979 crossref_primary_10_3390_ijms231911525 crossref_primary_10_1007_s10856_020_06422_5 crossref_primary_10_1016_j_biomaterials_2013_10_080 crossref_primary_10_1016_j_fmre_2023_12_013 crossref_primary_10_3390_ijms241512139 crossref_primary_10_3389_fbioe_2021_697981 crossref_primary_10_1002_jbm_a_35956 crossref_primary_10_3390_gels8050301 crossref_primary_10_1039_C7RA08272J crossref_primary_10_1016_j_smaim_2022_11_004 crossref_primary_10_1016_j_carbpol_2022_119334 crossref_primary_10_1186_s40824_023_00431_5 crossref_primary_10_1016_j_smaim_2022_11_007 crossref_primary_10_1021_bm401162g |
Cites_doi | 10.1111/j.1460-9568.2008.06327.x 10.1016/j.jneumeth.2011.03.006 10.1038/nmat1092 10.1002/jbm.a.34152 10.1126/science.1072165 10.1902/jop.2009.090231 10.1016/j.biomaterials.2010.08.109 10.1073/pnas.79.19.6080 10.1113/jphysiol.1977.sp011813 10.1016/j.jneumeth.2011.03.020 10.1016/j.biomaterials.2011.02.020 10.1038/nprot.2011.379 10.1016/j.biomaterials.2004.11.040 10.1016/0896-6273(95)90285-6 10.1088/1741-2560/8/5/056003 10.1016/j.dental.2006.06.045 10.1002/adfm.201100755 10.1089/ten.tea.2010.0654 10.1089/ten.2004.10.1287 10.1016/j.jneumeth.2005.08.015 10.1016/j.actbio.2010.02.018 10.1016/0021-9290(93)90042-D 10.1016/j.actbio.2010.02.020 10.1016/j.biomaterials.2010.12.023 10.1016/S0959-4388(02)00372-0 10.1007/s12195-010-0137-8 10.1016/j.ijdevneu.2003.12.002 10.1098/rsif.2005.0065 10.1002/bit.22766 10.1523/JNEUROSCI.17-01-00470.1997 10.1242/jcs.094151 10.1016/j.jconrel.2010.03.026 10.1039/B610522J 10.1016/0012-1606(88)90055-3 10.1073/pnas.69.7.1962 10.1016/j.progpolymsci.2007.05.013 10.1016/j.actbio.2012.03.033 10.1146/annurev.bioeng.5.011303.120731 10.1053/j.oto.2004.06.001 10.1163/156856207781494377 10.1016/0736-5748(96)00017-2 10.1089/neu.2006.0169 10.1073/pnas.0606150103 10.1097/00001756-200212200-00007 10.1089/ten.tec.2008.0650 10.1016/j.biomaterials.2010.09.033 10.1088/1748-6041/6/1/015002 10.1016/j.sna.2011.04.024 10.1089/ten.teb.2011.0240 10.1097/SAP.0b013e3182240346 10.1016/j.biomaterials.2007.11.003 10.1016/j.bpj.2011.12.025 10.1054/jocn.2002.1080 10.1115/1.3108415 10.1016/j.biomaterials.2004.05.012 10.1097/SAP.0b013e3181e6cff7 10.1096/fj.09.151282 10.1016/j.jmbbm.2009.12.001 10.1016/j.actbio.2008.11.008 10.1016/j.jconrel.2010.01.035 10.1002/dneu.20866 10.1016/j.matchemphys.2010.10.026 10.1021/bm0345460 10.1016/j.biomaterials.2011.08.047 10.1021/ma071551d 10.1016/j.biomaterials.2009.11.075 10.1038/nn.2973 10.1016/j.actbio.2012.10.033 10.1016/j.biomaterials.2011.03.037 10.1016/S0142-9612(03)00544-1 10.1002/jbm.a.33112 10.1007/s10856-010-4176-4 10.1016/j.biomaterials.2007.03.009 10.1163/156856209X445285 10.2741/A178 10.1089/ten.tea.2011.0030 10.1016/j.biomaterials.2005.08.007 10.1126/scitranslmed.3002614 10.1016/j.brainres.2007.02.024 10.1088/1741-2560/2/4/003 10.1101/gad.1758709 10.1002/jbm.a.32043 10.1016/j.jbiomech.2010.12.006 10.1016/j.biomaterials.2008.12.051 10.1016/0014-5793(80)80654-5 10.1021/bm1010504 10.1016/S0378-4371(00)00434-9 10.1016/S0168-3659(00)00296-0 10.1016/S0142-9612(03)00158-3 10.1242/jcs.009852 10.1038/nmat2745 10.1016/j.biomaterials.2004.02.047 10.1016/j.biomaterials.2009.11.073 10.1126/science.3055291 10.1016/S0142-9612(00)00350-1 10.1016/j.biomaterials.2011.04.051 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7TK |
DOI | 10.1002/adfm.201300435 |
DatabaseName | Istex CrossRef Neurosciences Abstracts |
DatabaseTitle | CrossRef Neurosciences Abstracts |
DatabaseTitleList | CrossRef Neurosciences Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 5149 |
ExternalDocumentID | 10_1002_adfm_201300435 ADFM201300435 ark_67375_WNG_QWN24PJB_4 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TK |
ID | FETCH-LOGICAL-c4265-4ade7d225869312c42b1369c52983a882d03ba79c704976d5ad6aa6d2ca28c5d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Aug 24 03:43:58 EDT 2025 Tue Jul 01 01:30:08 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Sun Sep 21 06:11:44 EDT 2025 Sun Sep 21 06:16:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4265-4ade7d225869312c42b1369c52983a882d03ba79c704976d5ad6aa6d2ca28c5d3 |
Notes | ArticleID:ADFM201300435 istex:FBE3FE5BC12150B2192C4964C83E0F3378EC0757 ark:/67375/WNG-QWN24PJB-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1475521549 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1475521549 crossref_primary_10_1002_adfm_201300435 crossref_citationtrail_10_1002_adfm_201300435 wiley_primary_10_1002_adfm_201300435_ADFM201300435 istex_primary_ark_67375_WNG_QWN24PJB_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 6, 2013 |
PublicationDateYYYYMMDD | 2013-11-06 |
PublicationDate_xml | – month: 11 year: 2013 text: November 6, 2013 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | A. R. Nectow, K. G. Marra, D. L. Kaplan, Tissue Eng. Part B-Rev. 2012, 18, 40. J. Viventi, D. H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y. S. Kim, A. E. Avrin, V. R. Tiruvadi, S. W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. L. Xiao, Y. G. Huang, D. Contreras, J. A. Rogers, B. Litt, Nat. Neurosci. 2011, 14, 1599. A. Hari, B. Djohar, T. Skutella, S. Montazeri, Int. J. Dev. Neurosci. 2004, 22, 113. G.-L. Chang, T.-K. Hung, W. W. Feng, J. Biomech. Eng. 1988, 110. E. Spedden, J. D. White, D. Kaplan, C. Staii, MRS Online P. Libr. 2012, 1420. K. Jansen, J. F. A. van der Werff, P. B. van Wachem, J. P. A. Nicolai, L. de Leij, M. J. A. van Luyn, Biomaterials 2004, 25, 483. X. Luo, C. L. Weaver, D. D. Zhou, R. Greenberg, X. T. Cui, Biomaterials 2011, 32, 5551. D. Koch, W. J. Rosoff, J. Jiang, H. M. Geller, J. S. Urbach, Biophys. J. 2012, 102, 452. M. Schwartz, N. Spirman, Proc. Natl. Acad. Sci. USA 1982, 79, 6080. L. De Laporte, A. L. Yan, L. D. Shea, Biomaterials 2009, 30, 2361. L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey, Neuroreport 2002, 13, 2411. M. Lietz, L. Dreesmann, M. Hoss, S. Oberhoffner, B. Schlosshauer, Biomaterials 2006, 27, 1425. M. D. Wood, D. Hunter, S. E. Mackinnon, S. E. Sakiyama-Elbert, J. Biomater. Sci.-Polym. E. 2010, 21, 771. J. S. Belkas, M. S. Shoichet, R. Midha, Oper. Tech. Orthop. 2004, 190. H. Lee, R. V. Bellamkonda, W. Sun, M. E. Levenston, J. Neural Eng. 2005, 2, 81. K. R. Legate, S. A. Wickstroem, R. Faessler, Genes Dev. 2009, 23, 397. A. H. Taub, R. Hogri, A. Magal, M. Mintz, Y. Shacham-Diamand, J. Biomed. Mater. Res. A 2012, 100A, 1854. X. Hu, Q. Lu, L. Sun, P. Cebe, X. Wang, X. Zhang, D. L. Kaplan, Biomacromolecules 2010, 11, 3178. A. Markus, T. D. Patel, W. D. Snider, Curr. Opin. Neurobiol. 2002, 12, 523. L. L. Norman, H. Aranda-Espinoza, Cell Mol. Bioeng. 2010, 3, 398. V. S. Polikov, P. A. Tresco, W. M. Reichert, J. Neurosci. Methods 2005, 148, 1. L. E. Kokai, A. M. Ghaznavi, K. G. Marra, Biomaterials 2010, 31, 2313. U. J. Kim, J. Y. Park, C. M. Li, H. J. Jin, R. Valluzzi, D. L. Kaplan, Biomacromolecules 2004, 5, 786. Y. P. Zheng, A. F. T. Mak, P. Ann. Int. I.E.E.E. E.M.B.S. 1997, 19, 2246. B. S. Elkin, E. U. Azeloglu, K. D. Costa, B. Morrison, J. Neurotrauma 2007, 24, 812. A. Mercanzini, S. Reddy, D. Velluto, P. Colin, A. Maillard, J.-C. Bensadoun, A. Bertsch, J. A. Hubbell, P. Renaud, Proc. Ann. Int. I.E.E.E. E.M.B.S. 2007, 6613. L. De Laporte, A. des Rieux, H. M. Tuinstra, M. L. Zelivyanskaya, N. M. De Clerck, A. A. Postnov, V. Preat, L. D. Shea, J. Biomed. Mater. Res. A 2011, 98A, 372. A. P. Balgude, X. Yu, A. Szymanski, R. V. Bellamkonda, Biomaterials 2001, 22, 1077. D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511. N. C. f. I. P. a. C. Centers for Disease Control and Prevention, in Injury Prevention & Control, Vol. 2012, Atlanta 2012. R. Mooney, S. Haeger, R. Lawal, M. Mason, N. Shrestha, A. Laperle, K. Bjugstad, M. Mahoney, Tissue Eng. Part A 2011, 17, 2805. H. G. E. Hentschel, A. van Ooyen, Physica A 2000, 288, 369. T. D. Gordon, L. Schloesser, D. E. Humphries, M. Spector, Tissue Eng. 2004, 10, 1287. D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, D. L. Kaplan, Nat. Protocols 2011, 6, 1612. T. T. Yu, M. S. Shoichet, Biomaterials 2005, 26, 1507. S. D. Sanford, J. C. Gatlin, T. Hokfelt, K. H. Pfenninger, Eur. J. Neurosci. 2008, 28, 268. A. Kostic, J. Sap, M. P. Sheetz, J. Cell Sci. 2007, 120, 3895. M. D. Wood, G. H. Borschel, S. E. Sakiyama-Elbert, J. Biomed. Mater. Res. Part A 2009, 89A, 909. K. M. Lorentz, S. Kontos, P. Frey, J. A. Hubbell, Biomaterials 2011, 32, 430. E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Biomaterials 2007, 28, 3012. M. D. Wood, A. M. Moore, D. A. Hunter, S. Tuffaha, G. H. Borschel, S. E. Mackinnon, S. E. Sakiyama-Elbert, Acta Biomater. 2009, 5, 959. Y. B. Lu, K. Franze, G. Seifert, C. Steinhauser, F. Kirchhoff, H. Wolburg, J. Guck, P. Janmey, E. Q. Wei, J. Kas, A. Reichenbach, Proc. Natl. Acad. Sci. USA 2006, 103, 17759. H. O. Nornes, G. D. Das, Proc. Natl. Acad. Sci. USA 1972, 69, 1962. J. M. Wu, Y. Y. Xu, Z. H. Li, X. Y. Yuan, P. F. Wang, X. Z. Zhang, Y. Q. Liu, J. Guan, Y. Guo, R. X. Li, H. Zhang, J. Mater. Sci. Mater. Med. 2011, 22, 107. A. Conovaloff, A. Panitch, J. Neural Eng. 2011, 8, 056003. L. Fang, Y.-N. Wang, X.-L. Cui, S.-Y. Fang, J.-Y. Ge, Y. Sun, Z.-H. Liu, J. Cell Sci. 2012, 125, 1500. C. T. Drinnan, G. Zhang, M. A. Alexander, A. S. Pulido, L. J. Suggs, J. Controlled Release 2010, 147, 180. X. Q. Wang, J. A. Kluge, G. G. Leisk, D. L. Kaplan, Biomaterials 2008, 29, 1054. C.-M. Cheng, P. R. LeDuc, Y.-W. Lin, J. Biomech. 2011, 44, 856. Z. Fanti, M. Elena Martinez-Perez, F. F. De-Miguel, Dev. Neurobiol. 2011, 71, 870. P. Singh, C. Carraher, J. E. Schwarzbauer, in Annu. Rev. Cell Dev. Biol., Vol. 26 (Eds: R. Schekman, L. Goldstein, R. Lehmann), Annual Reviews, Palo Alto 2010, 397. I. Levental, P. C. Georges, P. A. Janmey, Soft Matter 2007, 3, 299. S. Madduri, M. Papaloizos, B. Gander, Biomaterials 2010, 31, 2323. M. Ahearne, K. K. Liu, A. J. El Haj, K. Y. Then, S. Rauz, Y. Yang, Tissue Eng. Part C-Methods 2010, 16, 319. M. Ahearne, Y. Yang, A. J. El Haj, K. Y. Then, K. K. Liu, J. R. Soc. Interface 2005, 2, 455. T. Freier, R. Montenegro, H. S. Koh, M. S. Shoichet, Biomaterials 2005, 26, 4624. Y.-C. Lin, M. Ramadan, M. Hronik-Tupaj, D. L. Kaplan, B. J. Philips, W. Sivak, J. P. Rubin, K. G. Marra, Ann. Plast. Surg. 2011, 67, 147. M. E. Bilozur, E. D. Hay, Dev. Biol. 1988, 125, 19. S. Johansson, G. Svineng, K. Wennerberg, A. Armulik, L. Lohikangas, Front. Biosci. 1997, 2, D126. T. B. Kuhn, M. F. Schmidt, S. B. Kater, Neuron 1995, 14, 275. C. E. Schmidt, J. B. Leach, Annu. Rev. Biomed. Eng. 2003, 5, 293. C. R. Wittmer, T. Claudepierre, M. Reber, P. Wiedemann, J. A. Garlick, D. Kaplan, C. Egles, Adv. Funct. Mater. 2011, 21, 4232. N. Guziewicz, A. Best, B. Perez-Ramirez, D. L. Kaplan, Biomaterials 2011, 32, 2642. Y. Luo, M. S. Shoichet, Nat. Mater. 2004, 3, 249. S. Sakashita, E. Engvall, E. Ruoslahti, FEBS Lett. 1980, 116, 243. L. De Laporte, A. Huang, M. M. Ducommun, M. L. Zelivyanska, M. O. Aviles, A. F. Adler, L. D. Shea, Acta Biomater. 2010, 6, 2889. D. M. Snow, E. M. Brown, P. C. Letourneau, Int. J. Dev. Neurosci. 1996, 14, 331. C. Vepari, D. L. Kaplan, Prog. Polym. Sci. 2007, 32, 991. T. Wen, J. H. Gong, Z. J. Peng, D. Y. Jiang, C. B. Wang, Z. Q. Fu, H. Z. Miao, Mater. Chem. Phys. 2011, 125, 500. Y. Zhong, R. V. Bellamkonda, Brain Res. 2007, 1148, 15. B. Panilaitis, G. H. Altman, J. S. Chen, H. J. Jin, V. Karageorgiou, D. L. Kaplan, Biomaterials 2003, 24, 3079. M. M. Martino, F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Mueller, E. Livne, S. A. Eming, J. A. Hubbell, Sci. Transl. Med. 2011, 3, 100ra89. E. Azemi, C. F. Lagenaur, X. T. Cui, Biomaterials 2011, 32, 681. M. M. Martino, J. A. Hubbell, FASEB J. 2010, 24, 4711. S. Liao, F. Watari, Y. Zhu, M. Uo, T. Akasaka, W. Wang, G. Xu, F. Cui, Dent. Mater. 2007, 23, 1120. H. B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, R. J. Gilbert, Acta Biomater. 2010, 6, 2970. E. M. Pritchard, C. Szybala, D. Boison, D. L. Kaplan, J. Controlled Release 2010, 144, 159. J. P. Frampton, M. R. Hynd, M. L. Shuler, W. Shain, Biomed. Mater. 2011, 6, 015002. J. Ivaska, J. Heino, Annu. Rev. Cell Dev. Biol. 2011, 27, 291. M. D. Wood, M. R. MacEwan, A. R. French, A. M. Moore, D. A. Hunter, S. E. Mackinnon, D. W. Moran, G. H. Borschel, S. E. Sakiyama-Elbert, Biotechnol. Bioeng. 2010, 106, 970. M. A. Dichter, G. D. Fischbach, J. Physiol. (Lond.) 1977, 267, 281. A. M. Ghaznavi, L. E. Kokai, M. L. Lovett, D. L. Kaplan, K. G. Marra, Ann. Plast. Surg. 2011, 66, 273. O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, C. Egles, J. Periodontol. 2009, 80, 1852. M. Ishihara, N. Mochizuki-Oda, K. Iwatsuki, H. Kishima, Y. Iwamoto, Y.-Ii. Ohnishi, M. Umegaki, T. Yoshimine, J. Neurosci. Methods 2011, 198, 181. J. Cao, C. Sun, H. Zhao, Z. Xiao, B. Chen, J. Gao, T. Zheng, W. Wu, S. Wu, J. Wang, J. Dai, Biomaterials 2011, 32, 3939. Q. Zhang, Y. Zhao, Y. Shuqin, Y. Yang, H. Zhao, M. Li, S. Lu, D. Kaplan, Acta Biomater. 2012, 8, 2628. C. Deister, S. Aljabari, C. E. Schmidt, J. Biomater. Sci.-Polym. E. 2007, 18, 983. W. J. Zhang, X. L. Wang, S. Y. Wang, J. Zhao, L. Y. Xu, C. Zhu, D. L. Zeng, J. Chen, Z. Y. Zhang, D. L. Kaplan, X. Q. Jiang, Biomaterials 2011, 32, 9415. S. E. Sakiyama-Elbert, J. A. Hubbell, J. Controlled Release 2000, 69, 149. A. A. Fomani, R. R. Mansour, Sens. Actuators A 2011, 168, 233. R. D. Gurgo, K. S. Bedi, V. Nurcombe, J. Clin. Neurosci. 2002, 9, 613. J. B. Munson, D. L. Shelton, S. B. McMahon, J. Neurosci. 1997, 17, 470. X. Hu, D. Kaplan, P. Cebe, Macromolecules 2008, 41, 3939. K. J. Lampe, A. L. Antaris, S. C. Heilshorn, Acta Biomater. 2012, 9, 5590. J. B. Scott, M. Afshari, R. Kotek, J. M. Saul, Biomaterials 2011, 32, 4830. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, D. L. Kaplan, Biomaterials 2005, 26, 147. J. A. Kluge, N. C. Rosiello, G. G. Leisk, D. L. Kaplan, A. L. Dorfmann, J. Mech. Behav. Biomed. Mater. 2010, 3, 278. J. Y. Rho, R. B. Ashman, C. H. Turner, J. Biomech. 1993, 26, 111. J. Dodd, T. M. Jessell, Science 1988, 242, 692. I. Allodi, M.-S. Guzman-Lenis, J. Hernandez, X. Navarro, E. Udina, J. Neurosci. Methods 2011, 198, 53. B. J. Dickson, Science 2002, 298, 1959. A. J. Man, H. E. Davis, A. Itoh, J. K. Leach, P. Bannerman, Tissue Eng. Part A 2011, 17, 2931. 1993; 26 2004; 22 2010; 11 2010; 16 2009; 80 2010; 106 2004; 25 2002; 12 2010; 147 2007; 1148 2002; 13 2010; 144 2012; 100A 2004; 3 2004; 5 2012; 18 1997; 2 2011; 14 2011; 17 2005; 26 2012; 125 2007; 32 2011; 198 2007; 28 2011; 125 2010; 21 2011; 168 2010; 26 2010; 24 2006; 27 2011; 71 2008; 29 2005; 148 2008; 28 1997; 19 2011; 66 1997; 17 2011; 22 2003; 5 2011; 21 2011; 67 2007; 3 2000; 288 2010; 3 2011; 27 2007; 23 2007; 24 2010; 6 2010; 9 2009; 23 2009; 89A 1980; 116 2007; 18 1982; 79 2010; 31 2012; 102 2012 2002; 9 2000; 69 1995; 14 2002; 298 2007; 120 1988; 125 2007 2011; 32 1988; 242 2004 1996; 14 2001; 22 1972; 69 2011; 3 2011; 6 1977; 267 2011; 8 2004; 10 2009; 30 2011; 98A 2003; 24 2011; 44 1988; 110 2008; 41 2009; 5 2005; 2 2006; 103 2012; 8 2012; 9 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 Mercanzini A. (e_1_2_7_10_2) 2007 e_1_2_7_4_2 Singh P. (e_1_2_7_25_2) 2010 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 N. C. f. I. P. a. C. Centers for Disease Control and Prevention (e_1_2_7_1_2) 2012 e_1_2_7_93_2 e_1_2_7_70_2 Ivaska J. (e_1_2_7_87_2) 2011 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 Spedden E. (e_1_2_7_96_2) 2012 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 Zheng Y. P. (e_1_2_7_64_2) 1997; 19 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_2 |
References_xml | – reference: H. Lee, R. V. Bellamkonda, W. Sun, M. E. Levenston, J. Neural Eng. 2005, 2, 81. – reference: E. Azemi, C. F. Lagenaur, X. T. Cui, Biomaterials 2011, 32, 681. – reference: S. Johansson, G. Svineng, K. Wennerberg, A. Armulik, L. Lohikangas, Front. Biosci. 1997, 2, D126. – reference: M. D. Wood, D. Hunter, S. E. Mackinnon, S. E. Sakiyama-Elbert, J. Biomater. Sci.-Polym. E. 2010, 21, 771. – reference: A. M. Ghaznavi, L. E. Kokai, M. L. Lovett, D. L. Kaplan, K. G. Marra, Ann. Plast. Surg. 2011, 66, 273. – reference: Y. B. Lu, K. Franze, G. Seifert, C. Steinhauser, F. Kirchhoff, H. Wolburg, J. Guck, P. Janmey, E. Q. Wei, J. Kas, A. Reichenbach, Proc. Natl. Acad. Sci. USA 2006, 103, 17759. – reference: T. D. Gordon, L. Schloesser, D. E. Humphries, M. Spector, Tissue Eng. 2004, 10, 1287. – reference: B. J. Dickson, Science 2002, 298, 1959. – reference: L. Fang, Y.-N. Wang, X.-L. Cui, S.-Y. Fang, J.-Y. Ge, Y. Sun, Z.-H. Liu, J. Cell Sci. 2012, 125, 1500. – reference: H. B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, R. J. Gilbert, Acta Biomater. 2010, 6, 2970. – reference: J. S. Belkas, M. S. Shoichet, R. Midha, Oper. Tech. Orthop. 2004, 190. – reference: J. P. Frampton, M. R. Hynd, M. L. Shuler, W. Shain, Biomed. Mater. 2011, 6, 015002. – reference: J. Cao, C. Sun, H. Zhao, Z. Xiao, B. Chen, J. Gao, T. Zheng, W. Wu, S. Wu, J. Wang, J. Dai, Biomaterials 2011, 32, 3939. – reference: A. H. Taub, R. Hogri, A. Magal, M. Mintz, Y. Shacham-Diamand, J. Biomed. Mater. Res. A 2012, 100A, 1854. – reference: M. M. Martino, F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Mueller, E. Livne, S. A. Eming, J. A. Hubbell, Sci. Transl. Med. 2011, 3, 100ra89. – reference: L. E. Kokai, A. M. Ghaznavi, K. G. Marra, Biomaterials 2010, 31, 2313. – reference: J. Viventi, D. H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y. S. Kim, A. E. Avrin, V. R. Tiruvadi, S. W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. L. Xiao, Y. G. Huang, D. Contreras, J. A. Rogers, B. Litt, Nat. Neurosci. 2011, 14, 1599. – reference: A. J. Man, H. E. Davis, A. Itoh, J. K. Leach, P. Bannerman, Tissue Eng. Part A 2011, 17, 2931. – reference: Y. Luo, M. S. Shoichet, Nat. Mater. 2004, 3, 249. – reference: A. Mercanzini, S. Reddy, D. Velluto, P. Colin, A. Maillard, J.-C. Bensadoun, A. Bertsch, J. A. Hubbell, P. Renaud, Proc. Ann. Int. I.E.E.E. E.M.B.S. 2007, 6613. – reference: S. D. Sanford, J. C. Gatlin, T. Hokfelt, K. H. Pfenninger, Eur. J. Neurosci. 2008, 28, 268. – reference: T. Wen, J. H. Gong, Z. J. Peng, D. Y. Jiang, C. B. Wang, Z. Q. Fu, H. Z. Miao, Mater. Chem. Phys. 2011, 125, 500. – reference: M. Schwartz, N. Spirman, Proc. Natl. Acad. Sci. USA 1982, 79, 6080. – reference: L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, D. L. Kaplan, Biomaterials 2005, 26, 147. – reference: M. Ahearne, Y. Yang, A. J. El Haj, K. Y. Then, K. K. Liu, J. R. Soc. Interface 2005, 2, 455. – reference: S. E. Sakiyama-Elbert, J. A. Hubbell, J. Controlled Release 2000, 69, 149. – reference: E. M. Pritchard, C. Szybala, D. Boison, D. L. Kaplan, J. Controlled Release 2010, 144, 159. – reference: I. Allodi, M.-S. Guzman-Lenis, J. Hernandez, X. Navarro, E. Udina, J. Neurosci. Methods 2011, 198, 53. – reference: T. B. Kuhn, M. F. Schmidt, S. B. Kater, Neuron 1995, 14, 275. – reference: U. J. Kim, J. Y. Park, C. M. Li, H. J. Jin, R. Valluzzi, D. L. Kaplan, Biomacromolecules 2004, 5, 786. – reference: J. B. Scott, M. Afshari, R. Kotek, J. M. Saul, Biomaterials 2011, 32, 4830. – reference: W. J. Zhang, X. L. Wang, S. Y. Wang, J. Zhao, L. Y. Xu, C. Zhu, D. L. Zeng, J. Chen, Z. Y. Zhang, D. L. Kaplan, X. Q. Jiang, Biomaterials 2011, 32, 9415. – reference: T. Freier, R. Montenegro, H. S. Koh, M. S. Shoichet, Biomaterials 2005, 26, 4624. – reference: A. A. Fomani, R. R. Mansour, Sens. Actuators A 2011, 168, 233. – reference: Z. Fanti, M. Elena Martinez-Perez, F. F. De-Miguel, Dev. Neurobiol. 2011, 71, 870. – reference: D. M. Snow, E. M. Brown, P. C. Letourneau, Int. J. Dev. Neurosci. 1996, 14, 331. – reference: T. T. Yu, M. S. Shoichet, Biomaterials 2005, 26, 1507. – reference: S. Sakashita, E. Engvall, E. Ruoslahti, FEBS Lett. 1980, 116, 243. – reference: C. Vepari, D. L. Kaplan, Prog. Polym. Sci. 2007, 32, 991. – reference: C. E. Schmidt, J. B. Leach, Annu. Rev. Biomed. Eng. 2003, 5, 293. – reference: Y. Zhong, R. V. Bellamkonda, Brain Res. 2007, 1148, 15. – reference: R. Mooney, S. Haeger, R. Lawal, M. Mason, N. Shrestha, A. Laperle, K. Bjugstad, M. Mahoney, Tissue Eng. Part A 2011, 17, 2805. – reference: A. Kostic, J. Sap, M. P. Sheetz, J. Cell Sci. 2007, 120, 3895. – reference: K. R. Legate, S. A. Wickstroem, R. Faessler, Genes Dev. 2009, 23, 397. – reference: J. A. Kluge, N. C. Rosiello, G. G. Leisk, D. L. Kaplan, A. L. Dorfmann, J. Mech. Behav. Biomed. Mater. 2010, 3, 278. – reference: D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, D. L. Kaplan, Nat. Protocols 2011, 6, 1612. – reference: V. S. Polikov, P. A. Tresco, W. M. Reichert, J. Neurosci. Methods 2005, 148, 1. – reference: J. Ivaska, J. Heino, Annu. Rev. Cell Dev. Biol. 2011, 27, 291. – reference: D. Koch, W. J. Rosoff, J. Jiang, H. M. Geller, J. S. Urbach, Biophys. J. 2012, 102, 452. – reference: S. Liao, F. Watari, Y. Zhu, M. Uo, T. Akasaka, W. Wang, G. Xu, F. Cui, Dent. Mater. 2007, 23, 1120. – reference: X. Luo, C. L. Weaver, D. D. Zhou, R. Greenberg, X. T. Cui, Biomaterials 2011, 32, 5551. – reference: R. D. Gurgo, K. S. Bedi, V. Nurcombe, J. Clin. Neurosci. 2002, 9, 613. – reference: M. Ishihara, N. Mochizuki-Oda, K. Iwatsuki, H. Kishima, Y. Iwamoto, Y.-Ii. Ohnishi, M. Umegaki, T. Yoshimine, J. Neurosci. Methods 2011, 198, 181. – reference: A. Conovaloff, A. Panitch, J. Neural Eng. 2011, 8, 056003. – reference: X. Hu, Q. Lu, L. Sun, P. Cebe, X. Wang, X. Zhang, D. L. Kaplan, Biomacromolecules 2010, 11, 3178. – reference: K. M. Lorentz, S. Kontos, P. Frey, J. A. Hubbell, Biomaterials 2011, 32, 430. – reference: C.-M. Cheng, P. R. LeDuc, Y.-W. Lin, J. Biomech. 2011, 44, 856. – reference: N. Guziewicz, A. Best, B. Perez-Ramirez, D. L. Kaplan, Biomaterials 2011, 32, 2642. – reference: P. Singh, C. Carraher, J. E. Schwarzbauer, in Annu. Rev. Cell Dev. Biol., Vol. 26 (Eds: R. Schekman, L. Goldstein, R. Lehmann), Annual Reviews, Palo Alto 2010, 397. – reference: H. O. Nornes, G. D. Das, Proc. Natl. Acad. Sci. USA 1972, 69, 1962. – reference: I. Levental, P. C. Georges, P. A. Janmey, Soft Matter 2007, 3, 299. – reference: M. M. Martino, J. A. Hubbell, FASEB J. 2010, 24, 4711. – reference: C. T. Drinnan, G. Zhang, M. A. Alexander, A. S. Pulido, L. J. Suggs, J. Controlled Release 2010, 147, 180. – reference: J. Y. Rho, R. B. Ashman, C. H. Turner, J. Biomech. 1993, 26, 111. – reference: S. Madduri, M. Papaloizos, B. Gander, Biomaterials 2010, 31, 2323. – reference: E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Biomaterials 2007, 28, 3012. – reference: M. Lietz, L. Dreesmann, M. Hoss, S. Oberhoffner, B. Schlosshauer, Biomaterials 2006, 27, 1425. – reference: L. De Laporte, A. Huang, M. M. Ducommun, M. L. Zelivyanska, M. O. Aviles, A. F. Adler, L. D. Shea, Acta Biomater. 2010, 6, 2889. – reference: L. L. Norman, H. Aranda-Espinoza, Cell Mol. Bioeng. 2010, 3, 398. – reference: M. D. Wood, A. M. Moore, D. A. Hunter, S. Tuffaha, G. H. Borschel, S. E. Mackinnon, S. E. Sakiyama-Elbert, Acta Biomater. 2009, 5, 959. – reference: K. Jansen, J. F. A. van der Werff, P. B. van Wachem, J. P. A. Nicolai, L. de Leij, M. J. A. van Luyn, Biomaterials 2004, 25, 483. – reference: E. Spedden, J. D. White, D. Kaplan, C. Staii, MRS Online P. Libr. 2012, 1420. – reference: D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511. – reference: L. De Laporte, A. des Rieux, H. M. Tuinstra, M. L. Zelivyanskaya, N. M. De Clerck, A. A. Postnov, V. Preat, L. D. Shea, J. Biomed. Mater. Res. A 2011, 98A, 372. – reference: M. D. Wood, G. H. Borschel, S. E. Sakiyama-Elbert, J. Biomed. Mater. Res. Part A 2009, 89A, 909. – reference: C. R. Wittmer, T. Claudepierre, M. Reber, P. Wiedemann, J. A. Garlick, D. Kaplan, C. Egles, Adv. Funct. Mater. 2011, 21, 4232. – reference: M. A. Dichter, G. D. Fischbach, J. Physiol. (Lond.) 1977, 267, 281. – reference: B. Panilaitis, G. H. Altman, J. S. Chen, H. J. Jin, V. Karageorgiou, D. L. Kaplan, Biomaterials 2003, 24, 3079. – reference: Y. P. Zheng, A. F. T. Mak, P. Ann. Int. I.E.E.E. E.M.B.S. 1997, 19, 2246. – reference: B. S. Elkin, E. U. Azeloglu, K. D. Costa, B. Morrison, J. Neurotrauma 2007, 24, 812. – reference: A. R. Nectow, K. G. Marra, D. L. Kaplan, Tissue Eng. Part B-Rev. 2012, 18, 40. – reference: M. E. Bilozur, E. D. Hay, Dev. Biol. 1988, 125, 19. – reference: Y.-C. Lin, M. Ramadan, M. Hronik-Tupaj, D. L. Kaplan, B. J. Philips, W. Sivak, J. P. Rubin, K. G. Marra, Ann. Plast. Surg. 2011, 67, 147. – reference: M. D. Wood, M. R. MacEwan, A. R. French, A. M. Moore, D. A. Hunter, S. E. Mackinnon, D. W. Moran, G. H. Borschel, S. E. Sakiyama-Elbert, Biotechnol. Bioeng. 2010, 106, 970. – reference: N. C. f. I. P. a. C. Centers for Disease Control and Prevention, in Injury Prevention & Control, Vol. 2012, Atlanta 2012. – reference: C. Deister, S. Aljabari, C. E. Schmidt, J. Biomater. Sci.-Polym. E. 2007, 18, 983. – reference: M. Ahearne, K. K. Liu, A. J. El Haj, K. Y. Then, S. Rauz, Y. Yang, Tissue Eng. Part C-Methods 2010, 16, 319. – reference: X. Q. Wang, J. A. Kluge, G. G. Leisk, D. L. Kaplan, Biomaterials 2008, 29, 1054. – reference: H. G. E. Hentschel, A. van Ooyen, Physica A 2000, 288, 369. – reference: G.-L. Chang, T.-K. Hung, W. W. Feng, J. Biomech. Eng. 1988, 110. – reference: O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, C. Egles, J. Periodontol. 2009, 80, 1852. – reference: A. Markus, T. D. Patel, W. D. Snider, Curr. Opin. Neurobiol. 2002, 12, 523. – reference: L. De Laporte, A. L. Yan, L. D. Shea, Biomaterials 2009, 30, 2361. – reference: J. M. Wu, Y. Y. Xu, Z. H. Li, X. Y. Yuan, P. F. Wang, X. Z. Zhang, Y. Q. Liu, J. Guan, Y. Guo, R. X. Li, H. Zhang, J. Mater. Sci. Mater. Med. 2011, 22, 107. – reference: A. Hari, B. Djohar, T. Skutella, S. Montazeri, Int. J. Dev. Neurosci. 2004, 22, 113. – reference: L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey, Neuroreport 2002, 13, 2411. – reference: A. P. Balgude, X. Yu, A. Szymanski, R. V. Bellamkonda, Biomaterials 2001, 22, 1077. – reference: Q. Zhang, Y. Zhao, Y. Shuqin, Y. Yang, H. Zhao, M. Li, S. Lu, D. Kaplan, Acta Biomater. 2012, 8, 2628. – reference: J. B. Munson, D. L. Shelton, S. B. McMahon, J. Neurosci. 1997, 17, 470. – reference: X. Hu, D. Kaplan, P. Cebe, Macromolecules 2008, 41, 3939. – reference: K. J. Lampe, A. L. Antaris, S. C. Heilshorn, Acta Biomater. 2012, 9, 5590. – reference: J. Dodd, T. M. Jessell, Science 1988, 242, 692. – volume: 32 start-page: 681 year: 2011 publication-title: Biomaterials – start-page: 190 year: 2004 publication-title: Oper. Tech. Orthop. – volume: 23 start-page: 1120 year: 2007 publication-title: Dent. Mater. – volume: 67 start-page: 147 year: 2011 publication-title: Ann. Plast. Surg. – volume: 29 start-page: 1054 year: 2008 publication-title: Biomaterials – volume: 17 start-page: 470 year: 1997 publication-title: J. Neurosci. – volume: 80 start-page: 1852 year: 2009 publication-title: J. Periodontol. – volume: 288 start-page: 369 year: 2000 publication-title: Physica A – start-page: 6613 year: 2007 publication-title: Proc. Ann. Int. I.E.E.E. E.M.B.S. – volume: 9 start-page: 5590 year: 2012 publication-title: Acta Biomater. – volume: 27 start-page: 1425 year: 2006 publication-title: Biomaterials – volume: 24 start-page: 3079 year: 2003 publication-title: Biomaterials – volume: 28 start-page: 268 year: 2008 publication-title: Eur. J. Neurosci. – volume: 22 start-page: 113 year: 2004 publication-title: Int. J. Dev. Neurosci. – volume: 198 start-page: 53 year: 2011 publication-title: J. Neurosci. Methods – volume: 2 start-page: 81 year: 2005 publication-title: J. Neural Eng. – volume: 32 start-page: 5551 year: 2011 publication-title: Biomaterials – volume: 24 start-page: 4711 year: 2010 publication-title: FASEB J. – volume: 3 start-page: 299 year: 2007 publication-title: Soft Matter – volume: 14 start-page: 1599 year: 2011 publication-title: Nat. Neurosci. – volume: 66 start-page: 273 year: 2011 publication-title: Ann. Plast. Surg. – volume: 103 start-page: 17759 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 771 year: 2010 publication-title: J. Biomater. Sci.‐Polym. E. – volume: 2 start-page: 455 year: 2005 publication-title: J. R. Soc. Interface – volume: 3 start-page: 249 year: 2004 publication-title: Nat. Mater. – volume: 9 start-page: 511 year: 2010 publication-title: Nat. Mater. – volume: 30 start-page: 2361 year: 2009 publication-title: Biomaterials – volume: 5 start-page: 293 year: 2003 publication-title: Annu. Rev. Biomed. Eng. – volume: 2 start-page: D126 year: 1997 publication-title: Front. Biosci. – volume: 3 start-page: 278 year: 2010 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 110 year: 1988 publication-title: J. Biomech. Eng. – volume: 9 start-page: 613 year: 2002 publication-title: J. Clin. Neurosci. – volume: 69 start-page: 1962 year: 1972 publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 2642 year: 2011 publication-title: Biomaterials – volume: 8 start-page: 2628 year: 2012 publication-title: Acta Biomater. – volume: 267 start-page: 281 year: 1977 publication-title: J. Physiol. (Lond.) – volume: 147 start-page: 180 year: 2010 publication-title: J. Controlled Release – volume: 198 start-page: 181 year: 2011 publication-title: J. Neurosci. Methods – volume: 31 start-page: 2323 year: 2010 publication-title: Biomaterials – volume: 10 start-page: 1287 year: 2004 publication-title: Tissue Eng. – volume: 17 start-page: 2805 year: 2011 publication-title: Tissue Eng. Part A – volume: 14 start-page: 275 year: 1995 publication-title: Neuron – volume: 32 start-page: 3939 year: 2011 publication-title: Biomaterials – volume: 28 start-page: 3012 year: 2007 publication-title: Biomaterials – volume: 44 start-page: 856 year: 2011 publication-title: J. Biomech. – volume: 25 start-page: 483 year: 2004 publication-title: Biomaterials – volume: 5 start-page: 959 year: 2009 publication-title: Acta Biomater. – volume: 21 start-page: 4232 year: 2011 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4624 year: 2005 publication-title: Biomaterials – volume: 298 start-page: 1959 year: 2002 publication-title: Science – volume: 89A start-page: 909 year: 2009 publication-title: J. Biomed. Mater. Res. Part A – volume: 23 start-page: 397 year: 2009 publication-title: Genes Dev. – start-page: 1420 year: 2012 publication-title: MRS Online P. Libr. – volume: 3 start-page: 398 year: 2010 publication-title: Cell Mol. Bioeng. – volume: 98A start-page: 372 year: 2011 publication-title: J. Biomed. Mater. Res. A – volume: 120 start-page: 3895 year: 2007 publication-title: J. Cell Sci. – volume: 242 start-page: 692 year: 1988 publication-title: Science – volume: 13 start-page: 2411 year: 2002 publication-title: Neuroreport – volume: 32 start-page: 430 year: 2011 publication-title: Biomaterials – volume: 26 start-page: 111 year: 1993 publication-title: J. Biomech. – volume: 27 start-page: 291 year: 2011 – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protocols – volume: 125 start-page: 500 year: 2011 publication-title: Mater. Chem. Phys. – volume: 100A start-page: 1854 year: 2012 publication-title: J. Biomed. Mater. Res. A – volume: 6 start-page: 2970 year: 2010 publication-title: Acta Biomater. – volume: 24 start-page: 812 year: 2007 publication-title: J. Neurotrauma – volume: 125 start-page: 1500 year: 2012 publication-title: J. Cell Sci. – volume: 148 start-page: 1 year: 2005 publication-title: J. Neurosci. Methods – volume: 32 start-page: 9415 year: 2011 publication-title: Biomaterials – volume: 6 start-page: 2889 year: 2010 publication-title: Acta Biomater. – volume: 168 start-page: 233 year: 2011 publication-title: Sens. Actuators A – volume: 26 start-page: 397 year: 2010 – volume: 71 start-page: 870 year: 2011 publication-title: Dev. Neurobiol. – volume: 11 start-page: 3178 year: 2010 publication-title: Biomacromolecules – volume: 3 start-page: 100ra89 year: 2011 publication-title: Sci. Transl. Med. – volume: 16 start-page: 319 year: 2010 publication-title: Tissue Eng. Part C‐Methods – volume: 22 start-page: 107 year: 2011 publication-title: J. Mater. Sci. Mater. Med. – volume: 8 start-page: 056003 year: 2011 publication-title: J. Neural Eng. – volume: 26 start-page: 147 year: 2005 publication-title: Biomaterials – volume: 12 start-page: 523 year: 2002 publication-title: Curr. Opin. Neurobiol. – volume: 5 start-page: 786 year: 2004 publication-title: Biomacromolecules – volume: 144 start-page: 159 year: 2010 publication-title: J. Controlled Release – volume: 14 start-page: 331 year: 1996 publication-title: Int. J. Dev. Neurosci. – volume: 106 start-page: 970 year: 2010 publication-title: Biotechnol. Bioeng. – volume: 6 start-page: 015002 year: 2011 publication-title: Biomed. Mater. – volume: 79 start-page: 6080 year: 1982 publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 40 year: 2012 publication-title: Tissue Eng. Part B‐Rev. – year: 2012 – volume: 116 start-page: 243 year: 1980 publication-title: FEBS Lett. – volume: 17 start-page: 2931 year: 2011 publication-title: Tissue Eng. Part A – volume: 22 start-page: 1077 year: 2001 publication-title: Biomaterials – volume: 69 start-page: 149 year: 2000 publication-title: J. Controlled Release – volume: 32 start-page: 991 year: 2007 publication-title: Prog. Polym. Sci. – volume: 102 start-page: 452 year: 2012 publication-title: Biophys. J. – volume: 41 start-page: 3939 year: 2008 publication-title: Macromolecules – volume: 19 start-page: 2246 year: 1997 publication-title: P. Ann. Int. I.E.E.E. E.M.B.S. – volume: 125 start-page: 19 year: 1988 publication-title: Dev. Biol. – volume: 18 start-page: 983 year: 2007 publication-title: J. Biomater. Sci.‐Polym. E. – volume: 32 start-page: 4830 year: 2011 publication-title: Biomaterials – volume: 1148 start-page: 15 year: 2007 publication-title: Brain Res. – volume: 26 start-page: 1507 year: 2005 publication-title: Biomaterials – volume: 31 start-page: 2313 year: 2010 publication-title: Biomaterials – ident: e_1_2_7_35_2 doi: 10.1111/j.1460-9568.2008.06327.x – ident: e_1_2_7_46_2 doi: 10.1016/j.jneumeth.2011.03.006 – start-page: 1420 year: 2012 ident: e_1_2_7_96_2 publication-title: MRS Online P. Libr. – ident: e_1_2_7_41_2 doi: 10.1038/nmat1092 – ident: e_1_2_7_11_2 doi: 10.1002/jbm.a.34152 – ident: e_1_2_7_34_2 doi: 10.1126/science.1072165 – ident: e_1_2_7_57_2 doi: 10.1902/jop.2009.090231 – ident: e_1_2_7_59_2 doi: 10.1016/j.biomaterials.2010.08.109 – ident: e_1_2_7_71_2 doi: 10.1073/pnas.79.19.6080 – ident: e_1_2_7_103_2 doi: 10.1113/jphysiol.1977.sp011813 – ident: e_1_2_7_2_2 doi: 10.1016/j.jneumeth.2011.03.020 – ident: e_1_2_7_15_2 doi: 10.1016/j.biomaterials.2011.02.020 – ident: e_1_2_7_101_2 doi: 10.1038/nprot.2011.379 – ident: e_1_2_7_75_2 doi: 10.1016/j.biomaterials.2004.11.040 – ident: e_1_2_7_78_2 doi: 10.1016/0896-6273(95)90285-6 – ident: e_1_2_7_68_2 doi: 10.1088/1741-2560/8/5/056003 – ident: e_1_2_7_60_2 doi: 10.1016/j.dental.2006.06.045 – ident: e_1_2_7_83_2 doi: 10.1002/adfm.201100755 – ident: e_1_2_7_45_2 doi: 10.1089/ten.tea.2010.0654 – ident: e_1_2_7_61_2 doi: 10.1089/ten.2004.10.1287 – ident: e_1_2_7_6_2 doi: 10.1016/j.jneumeth.2005.08.015 – ident: e_1_2_7_21_2 doi: 10.1016/j.actbio.2010.02.018 – ident: e_1_2_7_63_2 doi: 10.1016/0021-9290(93)90042-D – ident: e_1_2_7_73_2 doi: 10.1016/j.actbio.2010.02.020 – ident: e_1_2_7_56_2 doi: 10.1016/j.biomaterials.2010.12.023 – ident: e_1_2_7_85_2 doi: 10.1016/S0959-4388(02)00372-0 – ident: e_1_2_7_43_2 doi: 10.1007/s12195-010-0137-8 – ident: e_1_2_7_36_2 doi: 10.1016/j.ijdevneu.2003.12.002 – ident: e_1_2_7_67_2 doi: 10.1098/rsif.2005.0065 – ident: e_1_2_7_89_2 doi: 10.1002/bit.22766 – ident: e_1_2_7_38_2 doi: 10.1523/JNEUROSCI.17-01-00470.1997 – ident: e_1_2_7_69_2 doi: 10.1242/jcs.094151 – ident: e_1_2_7_93_2 doi: 10.1016/j.jconrel.2010.03.026 – ident: e_1_2_7_30_2 doi: 10.1039/B610522J – ident: e_1_2_7_24_2 doi: 10.1016/0012-1606(88)90055-3 – ident: e_1_2_7_98_2 doi: 10.1073/pnas.69.7.1962 – ident: e_1_2_7_52_2 doi: 10.1016/j.progpolymsci.2007.05.013 – ident: e_1_2_7_84_2 doi: 10.1016/j.actbio.2012.03.033 – ident: e_1_2_7_14_2 doi: 10.1146/annurev.bioeng.5.011303.120731 – ident: e_1_2_7_33_2 doi: 10.1053/j.oto.2004.06.001 – ident: e_1_2_7_37_2 doi: 10.1163/156856207781494377 – volume-title: Injury Prevention & Control year: 2012 ident: e_1_2_7_1_2 – volume: 19 start-page: 2246 year: 1997 ident: e_1_2_7_64_2 publication-title: P. Ann. Int. I.E.E.E. E.M.B.S. – ident: e_1_2_7_79_2 – ident: e_1_2_7_23_2 doi: 10.1016/0736-5748(96)00017-2 – ident: e_1_2_7_27_2 doi: 10.1089/neu.2006.0169 – ident: e_1_2_7_28_2 doi: 10.1073/pnas.0606150103 – ident: e_1_2_7_44_2 doi: 10.1097/00001756-200212200-00007 – ident: e_1_2_7_66_2 doi: 10.1089/ten.tec.2008.0650 – ident: e_1_2_7_13_2 doi: 10.1016/j.biomaterials.2010.09.033 – ident: e_1_2_7_47_2 doi: 10.1088/1748-6041/6/1/015002 – ident: e_1_2_7_5_2 doi: 10.1016/j.sna.2011.04.024 – ident: e_1_2_7_80_2 doi: 10.1089/ten.teb.2011.0240 – ident: e_1_2_7_81_2 doi: 10.1097/SAP.0b013e3182240346 – ident: e_1_2_7_102_2 doi: 10.1016/j.biomaterials.2007.11.003 – ident: e_1_2_7_31_2 doi: 10.1016/j.bpj.2011.12.025 – ident: e_1_2_7_3_2 doi: 10.1054/jocn.2002.1080 – ident: e_1_2_7_29_2 doi: 10.1115/1.3108415 – ident: e_1_2_7_76_2 doi: 10.1016/j.biomaterials.2004.05.012 – ident: e_1_2_7_19_2 doi: 10.1097/SAP.0b013e3181e6cff7 – ident: e_1_2_7_40_2 doi: 10.1096/fj.09.151282 – ident: e_1_2_7_58_2 doi: 10.1016/j.jmbbm.2009.12.001 – ident: e_1_2_7_91_2 doi: 10.1016/j.actbio.2008.11.008 – ident: e_1_2_7_8_2 doi: 10.1016/j.jconrel.2010.01.035 – ident: e_1_2_7_70_2 doi: 10.1002/dneu.20866 – start-page: 291 volume-title: Annu. Rev. Cell Dev. Biol. year: 2011 ident: e_1_2_7_87_2 – ident: e_1_2_7_62_2 doi: 10.1016/j.matchemphys.2010.10.026 – ident: e_1_2_7_55_2 doi: 10.1021/bm0345460 – ident: e_1_2_7_77_2 doi: 10.1016/j.biomaterials.2011.08.047 – ident: e_1_2_7_53_2 doi: 10.1021/ma071551d – ident: e_1_2_7_18_2 doi: 10.1016/j.biomaterials.2009.11.075 – ident: e_1_2_7_4_2 doi: 10.1038/nn.2973 – ident: e_1_2_7_88_2 doi: 10.1016/j.actbio.2012.10.033 – ident: e_1_2_7_65_2 doi: 10.1016/j.biomaterials.2011.03.037 – ident: e_1_2_7_17_2 doi: 10.1016/S0142-9612(03)00544-1 – ident: e_1_2_7_20_2 doi: 10.1002/jbm.a.33112 – ident: e_1_2_7_92_2 doi: 10.1007/s10856-010-4176-4 – ident: e_1_2_7_74_2 doi: 10.1016/j.biomaterials.2007.03.009 – ident: e_1_2_7_90_2 doi: 10.1163/156856209X445285 – ident: e_1_2_7_39_2 doi: 10.2741/A178 – ident: e_1_2_7_49_2 doi: 10.1089/ten.tea.2011.0030 – ident: e_1_2_7_16_2 doi: 10.1016/j.biomaterials.2005.08.007 – start-page: 6613 year: 2007 ident: e_1_2_7_10_2 publication-title: Proc. Ann. Int. I.E.E.E. E.M.B.S. – ident: e_1_2_7_100_2 doi: 10.1126/scitranslmed.3002614 – ident: e_1_2_7_9_2 doi: 10.1016/j.brainres.2007.02.024 – ident: e_1_2_7_7_2 doi: 10.1088/1741-2560/2/4/003 – ident: e_1_2_7_86_2 doi: 10.1101/gad.1758709 – ident: e_1_2_7_95_2 doi: 10.1002/jbm.a.32043 – ident: e_1_2_7_42_2 doi: 10.1016/j.jbiomech.2010.12.006 – ident: e_1_2_7_22_2 doi: 10.1016/j.biomaterials.2008.12.051 – ident: e_1_2_7_26_2 doi: 10.1016/0014-5793(80)80654-5 – ident: e_1_2_7_54_2 doi: 10.1021/bm1010504 – ident: e_1_2_7_99_2 doi: 10.1016/S0378-4371(00)00434-9 – ident: e_1_2_7_94_2 doi: 10.1016/S0168-3659(00)00296-0 – ident: e_1_2_7_50_2 doi: 10.1016/S0142-9612(03)00158-3 – start-page: 397 volume-title: Annu. Rev. Cell Dev. Biol. year: 2010 ident: e_1_2_7_25_2 – ident: e_1_2_7_32_2 doi: 10.1242/jcs.009852 – ident: e_1_2_7_82_2 doi: 10.1038/nmat2745 – ident: e_1_2_7_51_2 doi: 10.1016/j.biomaterials.2004.02.047 – ident: e_1_2_7_72_2 doi: 10.1016/j.biomaterials.2009.11.073 – ident: e_1_2_7_97_2 doi: 10.1126/science.3055291 – ident: e_1_2_7_48_2 doi: 10.1016/S0142-9612(00)00350-1 – ident: e_1_2_7_12_2 doi: 10.1016/j.biomaterials.2011.04.051 |
SSID | ssj0017734 |
Score | 2.5030289 |
Snippet | There is great need for soft biomaterials that match the stiffness of human tissues for tissue engineering and regeneration. Hydrogels are frequently employed... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5140 |
SubjectTerms | biomedical applications biomimetics extracellular matrix engineering hydrogels tissue engineering |
Title | Silk Hydrogels as Soft Substrates for Neural Tissue Engineering |
URI | https://api.istex.fr/ark:/67375/WNG-QWN24PJB-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201300435 https://www.proquest.com/docview/1475521549 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA6iL_rgLdaLCKJPq93s1X2s1loKFq_SvoVJsivS0koPUH-9M9l2bQUR9G13SXazM5mZL8d8YexEe7ooAA1QqyR1fD9NHeWCnchPPYiVn8aUjXzbCGtNv94O2jNZ_Bk_RD7hRpZh_TUZOKjhxRdpKJiUMslpOQZDPjph1wuJPL_ykPNHuVGULSuHLm3wcttT1saiuJivPheVlkjAb3OQcxa42shTXWMwbXO24aRzPh6pc_3xjc7xPz-1zlYnsJSXs360wRaS3iZbmSEr3EJY_9Lt8Nq7GfSfMaByGPJH9OGcXI-luB1yBMCc2D7wTU9WoXzmDdusWb1-uqo5k-MXHI1hO3B8MElk0N5LYey5Ah8qFHGsAxGXPEBkboqegijWEY4yotAEYEKA0AgNoqQD4-2wxV6_l-wyDp6KFVH1EfscJELZk0EBoUNisGqpwJyp-KWecJPTERldmbEqC0mCkblgCuwsL_-asXL8WPLUajMvBoMO7WWLAtlq3Mj7VkP4d_VL6RfY8VTdEi2Mlk2gl_THQxwcRQG2FAfSBSas8n75pixXqrf53d5fKu2zZbq2SY_hAVscDcbJIaKfkTqyPfwTUaz5Yw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xOJQeWqAg0gd1JVROC1nvK3ukLSFQErUQRG7W2N6tUFCC8pAKv74z3uw2QaqQ6HEt27s74_F8tmc-A-yZwNQlkgEaneVeGOa5p310G_l5gKkO85SzkduduHUVnvWiMpqQc2EKfohqw40tw83XbOC8IX34lzUUbc6p5HweQz5_GVbdIR3joouKQcpPkuJgOfY5xMvvlbyNdXm42H7BL62yiH8vgM556Op8T_M16PKri5CT_sF0og_MwyNCx__6rXV4NUOm4qgYShuwlA024eUcX-EbQvY3t33Rurej4S_yqQLH4pKmccGzj2O5HQvCwIIJP6inrtOpmOthC66ax92vLW92A4NnyHNHXog2SyyZfCNOA19SofaDODWRTBsBEji39UBjkpqEFhpJbCO0MWJspUHZMJENtmFlMBxkOyAw0Klmtj4moMNManc5KBJ6yCw1bdTAK-WvzIyenG_JuFUFsbJULBhVCaYG-1X9u4KY4581Pzt1VtVw1OdwtiRS150T9fO6I8MfZ19UWINPpb4VGRmfnOAgG07HtD5KIvpSWkvXQDrtPfFOdfSt2a6e3j6n0Ud40eq2z9X5aef7O1jjcpcDGb-Hlclomn0gMDTRu264_wEBDv2B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9tIKHxMMbHtDI2jITYU6BxEqd5ZGNd-apgA9E362wnCBW1qB_Str9-d06btZPQJHiMZTv2nc_388f9DLBrI1uXSAZoTV4EcVwUgQnRb-QXEWYmLjKORj5vq9Z1fNJJOjNR_CU_RLXhxpbh52s28AdXHPwlDUVXcCQ5H8eQy38Ji7EiX8mw6HtFIBWmaXmurEK-4RV2prSNdXkwX37OLS2yhH_OYc5Z5OpdT3MFcNro8sZJd388Mvv29z98js_p1Rt4PcGl4rAcSKvwIu-twfIMW-E64fq7-65o_XKD_i15VIFD8YMmccFzj-e4HQpCwILpPqimK69RMVPDBlw3v159aQWT9xcCS347CWJ0eerI4Bsqi0JJiSaMVGYTmTUiJGju6pHBNLMpLTNS5RJ0ClE5aVE2bOKit7DQ6_fydyAwMplhrj6mn8NcGv80KBJ2yB0VbdQgmIpf2wk5Ob-Rca9LWmWpWTC6EkwNPlX5H0pajkdz7nltVtlw0OXLbGmib9rf9OVNW8YXJ591XIOdqbo1mRifm2Av74-HtDpKE2opraRrIL3y_vNPfXjUPK--Np9SaBuWLo6a-uy4ffoeXnGyD4BUW7AwGozzD4SERuajH-x_AP2__DA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+Hydrogels+as+Soft+Substrates+for+Neural+Tissue+Engineering&rft.jtitle=Advanced+functional+materials&rft.au=Hopkins%2C+Amy+M.&rft.au=De+Laporte%2C+Laura&rft.au=Tortelli%2C+Federico&rft.au=Spedden%2C+Elise&rft.date=2013-11-06&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=41&rft.spage=5140&rft.epage=5149&rft_id=info:doi/10.1002%2Fadfm.201300435&rft.externalDBID=10.1002%252Fadfm.201300435&rft.externalDocID=ADFM201300435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |