In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington’s Disease
White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in th...
Saved in:
Published in | Genes Vol. 12; no. 5; p. 712 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
10.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4425 2073-4425 |
DOI | 10.3390/genes12050712 |
Cover
Abstract | White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4. |
---|---|
AbstractList | White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4. White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington's disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington's disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4. White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32⁺ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4. |
Author | Pyo, Soonil Yu, Ji-Hea Nam, Bae-Geun Seo, Jung-Hwa Kim, Min-Gi Cho, Sung-Rae |
AuthorAffiliation | 1 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; onlyjin112@yuhs.ac (J.-H.Y.); nbg6824@naver.com (B.-G.N.); neuro94@naver.com (S.P.); zugula@naver.com (J.-H.S.) 2 Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea; mg0521k@naver.com 3 Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul 03722, Korea 4 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea |
AuthorAffiliation_xml | – name: 3 Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul 03722, Korea – name: 4 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea – name: 1 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; onlyjin112@yuhs.ac (J.-H.Y.); nbg6824@naver.com (B.-G.N.); neuro94@naver.com (S.P.); zugula@naver.com (J.-H.S.) – name: 2 Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea; mg0521k@naver.com |
Author_xml | – sequence: 1 givenname: Ji-Hea surname: Yu fullname: Yu, Ji-Hea – sequence: 2 givenname: Bae-Geun orcidid: 0000-0003-4535-5684 surname: Nam fullname: Nam, Bae-Geun – sequence: 3 givenname: Min-Gi orcidid: 0000-0002-6921-3085 surname: Kim fullname: Kim, Min-Gi – sequence: 4 givenname: Soonil surname: Pyo fullname: Pyo, Soonil – sequence: 5 givenname: Jung-Hwa orcidid: 0000-0002-8489-7972 surname: Seo fullname: Seo, Jung-Hwa – sequence: 6 givenname: Sung-Rae orcidid: 0000-0003-1429-2684 surname: Cho fullname: Cho, Sung-Rae |
BookMark | eNqNkU9PFTEUxRuDAUSW7pu4cTPYTtv5szEhD5CXoCQKbJu-vttnyUw7th3w7fwGrv16fhI7PBKFxEg3vcn9nZOcc1-gLecdIPSKkgPGWvJ2BQ4iLYkgNS2fod2S1KzgvBRbf807aD_Ga5IfJyUhYhvtME6qpm7bXfRj7vCVvfH4-NsQIEbrHfYGf4Ih-FVQfW_dCp8onXzA57MLjg976KwPKkHEH9Z5dipNoiMwVtsUsXJLPHfLUWfgcwpWJdXhjzAGny0T6DvaOnw6upTNk3e_vv-M-MhGUBFeoudGdRH27_89dHlyfDE7Lc7O389nh2eFzolSYZTgumqVaUtoczLTVLUp2xyw0vXCEAGM1yrHpQtmKs0JZwIo57UButAVZXvoYOM7ukGtb1XXySHYXoW1pERO5coH5WbBu41gGBc9LDW4FNQfkVdWPtw4-0Wu_I1sqCCingze3BsE_3WEmGRvo4auUw78GGUpBG0bXtXNE1BW8YYyMqGvH6HXfgwuVzdRJRNUiCpTxYbSwccYwPw3LHvE59Pe3TlHs90_VL8BlhvPKA |
CitedBy_id | crossref_primary_10_3389_fnagi_2024_1306312 crossref_primary_10_3389_fnins_2022_884667 crossref_primary_10_3390_cells13040343 |
Cites_doi | 10.3390/cells8101204 10.1016/j.biopsych.2017.10.019 10.1016/j.brainresrev.2011.01.001 10.1371/journal.pone.0076310 10.1093/cercor/bhr360 10.1073/pnas.1818042116 10.1038/nature08436 10.1523/JNEUROSCI.22-05-01592.2002 10.1002/hipo.23087 10.1002/hbm.22055 10.1038/nrneurol.2014.24 10.3389/fncel.2013.00275 10.4049/jimmunol.133.4.1710 10.1002/hbm.21205 10.1016/S0165-6147(00)01884-8 10.1523/JNEUROSCI.1291-11.2011 10.1007/s12035-015-9205-3 10.1152/physiolgenomics.00021.2002 10.1186/1471-2202-11-114 10.1093/hmg/ddv016 10.1016/j.nicl.2016.02.014 10.1038/sj.gt.3301529 10.1146/annurev.pharmtox.44.101802.121631 10.3402/pba.v6.32981 10.1007/s11682-011-9121-8 10.1038/s41593-020-0637-3 10.1111/j.1469-7580.2005.00454.x 10.1155/2016/1431349 10.1038/nrm.2016.8 10.1038/nature09553 10.1016/j.omtm.2018.07.006 10.1523/JNEUROSCI.3491-13.2014 10.1016/j.neuroscience.2016.01.028 10.1016/j.brainres.2013.04.030 10.1038/nrn917 10.1038/nature09820 10.3390/ijms17091550 10.1523/JNEUROSCI.23-07-02557.2003 10.1016/S1474-4422(10)70276-3 10.1016/j.neuroimage.2009.10.015 10.1371/journal.pone.0019926 10.1097/00005072-199505000-00002 10.1101/cshperspect.a021287 10.1371/journal.pone.0116069 10.5483/BMBRep.2011.44.12.793 10.1038/mt.2016.124 10.1097/00005072-199111000-00005 10.1097/01.wnn.0000152205.79033.73 10.1016/j.stem.2010.04.002 10.1523/JNEUROSCI.23-12-04967.2003 10.1038/nature11039 10.1021/cb500724t 10.1258/la.2008.007147 10.1523/JNEUROSCI.4527-08.2009 10.3233/JHD-150173 10.1155/2015/794632 10.1016/S0092-8674(02)00678-5 10.1016/j.neuron.2015.02.026 10.1038/cddis.2017.504 10.1002/1531-8249(200101)49:1<29::AID-ANA7>3.0.CO;2-B 10.1002/mds.28109 10.15252/embj.201592652 10.1016/j.celrep.2018.06.110 10.1016/j.nicl.2018.01.029 10.1523/JNEUROSCI.3883-04.2004 10.1016/j.neuron.2011.05.004 10.1002/cpmo.58 10.1016/j.cell.2009.01.023 10.1007/978-1-4939-7825-0_6 10.1006/nimg.2001.0765 10.1007/s10334-019-00742-6 10.1046/j.1471-4159.2003.01706.x 10.1146/annurev.pharmtox.43.100901.140257 10.1089/hgtb.2013.076 10.1523/JNEUROSCI.23-28-09418.2003 10.1016/j.stemcr.2016.12.010 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM ADTOC UNPAY |
DOI | 10.3390/genes12050712 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4425 |
ExternalDocumentID | 10.3390/genes12050712 PMC8150572 10_3390_genes12050712 |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GroupedDBID | --- 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM ADRAZ ADTOC C1A IPNFZ ITC RIG UNPAY |
ID | FETCH-LOGICAL-c425t-fa54c69af92e9000f867f294026c7bf05e347a0201b3f6c40435e1447fe1bc613 |
IEDL.DBID | UNPAY |
ISSN | 2073-4425 |
IngestDate | Wed Oct 01 16:53:13 EDT 2025 Tue Sep 30 17:07:06 EDT 2025 Fri Sep 05 10:38:06 EDT 2025 Fri Sep 05 13:18:05 EDT 2025 Fri Jul 25 12:12:12 EDT 2025 Wed Oct 01 03:36:30 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-fa54c69af92e9000f867f294026c7bf05e347a0201b3f6c40435e1447fe1bc613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 J.-H.Y. and B.-G.N. equally contributed to this study. |
ORCID | 0000-0003-4535-5684 0000-0002-8489-7972 0000-0003-1429-2684 0000-0002-6921-3085 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-4425/12/5/712/pdf?version=1620659844 |
PMID | 34068799 |
PQID | 2532351556 |
PQPubID | 2032392 |
ParticipantIDs | unpaywall_primary_10_3390_genes12050712 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150572 proquest_miscellaneous_2551984678 proquest_miscellaneous_2536481308 proquest_journals_2532351556 crossref_primary_10_3390_genes12050712 crossref_citationtrail_10_3390_genes12050712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210510 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210510 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Genes |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Xing (ref_21) 2014; 34 Polito (ref_18) 2005; 207 Lu (ref_75) 2002; 109 Yang (ref_46) 2003; 23 Dumas (ref_3) 2012; 33 Gregory (ref_8) 2015; 4 Tang (ref_49) 2017; 8 Pierpaoli (ref_79) 2001; 13 McCollum (ref_11) 2013; 1518 Dehghan (ref_23) 2016; 318 Caron (ref_15) 2019; 116 Akamatsu (ref_35) 2009; 29 Khoueiry (ref_76) 2017; 8 Xu (ref_42) 2001; 8 Winner (ref_48) 2015; 7 ref_17 Lie (ref_31) 2004; 44 Chen (ref_59) 2018; 8 Delmaire (ref_82) 2013; 34 Magavi (ref_47) 2002; 198 (ref_68) 2011; 67 Kuan (ref_45) 2004; 24 Gholizadeh (ref_67) 2013; 24 Gao (ref_52) 2016; 2016 Ross (ref_6) 2014; 10 Wilkins (ref_50) 2003; 23 Gatto (ref_7) 2019; 32 Macchi (ref_74) 2014; 8 Imitola (ref_20) 2003; 14 Huang (ref_78) 2015; 85 Xiang (ref_55) 2011; 31 ref_22 McColgan (ref_1) 2018; 83 Tabrizi (ref_2) 2011; 10 Schoenfeld (ref_43) 2019; 29 ref_65 Myers (ref_9) 1991; 50 Maki (ref_71) 2013; 7 Li (ref_36) 2005; 2 Bacmeister (ref_54) 2020; 23 Gerdes (ref_72) 1984; 133 Miller (ref_73) 2018; 24 Ferrante (ref_57) 2003; 23 Hudry (ref_66) 2018; 10 Olsson (ref_41) 2008; 42 Tye (ref_62) 2011; 471 Marques (ref_70) 2012; 6 Rosas (ref_14) 2018; 20 Beglinger (ref_53) 2005; 18 ref_32 Smith (ref_44) 1995; 54 ref_30 Sim (ref_34) 2011; 44 Kim (ref_28) 2009; 461 Casella (ref_16) 2020; 35 MacDonald (ref_10) 2001; 49 Takahashi (ref_25) 2016; 17 ref_39 Zawadzka (ref_77) 2010; 6 Jin (ref_12) 2015; 24 Huber (ref_63) 2012; 484 Franklin (ref_19) 2002; 3 Seo (ref_24) 2016; 24 Rosas (ref_80) 2010; 49 Bohanna (ref_81) 2011; 5 Haubensak (ref_64) 2010; 468 Luders (ref_4) 2012; 22 Collins (ref_61) 2017; 67 Lin (ref_27) 2015; 2015 Faria (ref_5) 2016; 11 Farshim (ref_38) 2018; 1780 Ettle (ref_51) 2016; 53 Ferrante (ref_56) 2002; 22 ref_40 Kim (ref_33) 2015; 34 Menalled (ref_37) 2002; 23 Dedeoglu (ref_58) 2003; 85 Kootstra (ref_60) 2003; 43 Ihrie (ref_69) 2011; 70 Kim (ref_29) 2009; 136 Teo (ref_13) 2016; 25 Pandian (ref_26) 2014; 9 |
References_xml | – ident: ref_22 doi: 10.3390/cells8101204 – volume: 83 start-page: 456 year: 2018 ident: ref_1 article-title: Brain regions showing white matter loss in huntington’s disease are enriched for synaptic and metabolic genes publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.10.019 – volume: 67 start-page: 147 year: 2011 ident: ref_68 article-title: Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2011.01.001 – ident: ref_65 doi: 10.1371/journal.pone.0076310 – volume: 22 start-page: 2858 year: 2012 ident: ref_4 article-title: Multimodal mri analysis of the corpus callosum reveals white matter differences in presymptomatic and early huntington’s disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr360 – volume: 116 start-page: 9622 year: 2019 ident: ref_15 article-title: Intrinsic mutant htt-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in huntington disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1818042116 – volume: 461 start-page: 649 year: 2009 ident: ref_28 article-title: Direct reprogramming of human neural stem cells by oct4 publication-title: Nature doi: 10.1038/nature08436 – volume: 22 start-page: 1592 year: 2002 ident: ref_56 article-title: Therapeutic effects of coenzyme q10 and remacemide in transgenic mouse models of huntington’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-05-01592.2002 – volume: 6 start-page: 34 year: 2012 ident: ref_70 article-title: The path from the choroid plexus to the subventricular zone: Go with the flow! publication-title: Front. Cell. Neurosci. – volume: 29 start-page: 848 year: 2019 ident: ref_43 article-title: New neurons restore structural and behavioral abnormalities in a rat model of ptsd publication-title: Hippocampus doi: 10.1002/hipo.23087 – volume: 34 start-page: 2141 year: 2013 ident: ref_82 article-title: The structural correlates of functional deficits in early huntington’s disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22055 – volume: 10 start-page: 204 year: 2014 ident: ref_6 article-title: Huntington disease: Natural history, biomarkers and prospects for therapeutics publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2014.24 – volume: 7 start-page: 275 year: 2013 ident: ref_71 article-title: Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00275 – volume: 133 start-page: 1710 year: 1984 ident: ref_72 article-title: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody ki-67 publication-title: J. Immunol. doi: 10.4049/jimmunol.133.4.1710 – volume: 33 start-page: 203 year: 2012 ident: ref_3 article-title: Early changes in white matter pathways of the sensorimotor cortex in premanifest huntington’s disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21205 – volume: 23 start-page: 32 year: 2002 ident: ref_37 article-title: Mouse models of huntington’s disease publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(00)01884-8 – volume: 31 start-page: 9544 year: 2011 ident: ref_55 article-title: Peroxisome-proliferator-activated receptor γ coactivator 1 α contributes to dysmyelination in experimental models of huntington’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1291-11.2011 – volume: 53 start-page: 3046 year: 2016 ident: ref_51 article-title: Oligodendroglia and myelin in neurodegenerative diseases: More than just bystanders? publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9205-3 – volume: 14 start-page: 171 year: 2003 ident: ref_20 article-title: Genetic programs and responses of neural stem/progenitor cells during demyelination: Potential insights into repair mechanisms in multiple sclerosis publication-title: Physiol. Genom. doi: 10.1152/physiolgenomics.00021.2002 – ident: ref_32 doi: 10.1186/1471-2202-11-114 – volume: 24 start-page: 2508 year: 2015 ident: ref_12 article-title: Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv016 – volume: 11 start-page: 450 year: 2016 ident: ref_5 article-title: Linking white matter and deep gray matter alterations in premanifest huntington disease publication-title: Neurolimage Clin. doi: 10.1016/j.nicl.2016.02.014 – volume: 8 start-page: 1323 year: 2001 ident: ref_42 article-title: Quantitative comparison of expression with adeno-associated virus (aav-2) brain-specific gene cassettes publication-title: Gene Ther. doi: 10.1038/sj.gt.3301529 – volume: 44 start-page: 399 year: 2004 ident: ref_31 article-title: Neurogenesis in the adult brain: New strategies for central nervous system diseases publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.44.101802.121631 – ident: ref_40 doi: 10.3402/pba.v6.32981 – volume: 5 start-page: 171 year: 2011 ident: ref_81 article-title: Diffusion tensor imaging in huntington’s disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits publication-title: Brain Imaging Behav. doi: 10.1007/s11682-011-9121-8 – volume: 23 start-page: 819 year: 2020 ident: ref_54 article-title: Motor learning promotes remyelination via new and surviving oligodendrocytes publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-0637-3 – volume: 207 start-page: 707 year: 2005 ident: ref_18 article-title: Ng2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system publication-title: J. Anat. doi: 10.1111/j.1469-7580.2005.00454.x – volume: 2016 start-page: 1431349 year: 2016 ident: ref_52 article-title: Gdnf enhances therapeutic efficiency of neural stem cells-based therapy in chronic experimental allergic encephalomyelitis in rat publication-title: Stem Cells Int. doi: 10.1155/2016/1431349 – volume: 17 start-page: 183 year: 2016 ident: ref_25 article-title: A decade of transcription factor-mediated reprogramming to pluripotency publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.8 – volume: 468 start-page: 270 year: 2010 ident: ref_64 article-title: Genetic dissection of an amygdala microcircuit that gates conditioned fear publication-title: Nature doi: 10.1038/nature09553 – volume: 10 start-page: 197 year: 2018 ident: ref_66 article-title: Efficient gene transfer to the central nervous system by single-stranded anc80l65 publication-title: Mol. Therapy. Methods Clin. Dev. doi: 10.1016/j.omtm.2018.07.006 – volume: 34 start-page: 14128 year: 2014 ident: ref_21 article-title: Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3491-13.2014 – volume: 318 start-page: 178 year: 2016 ident: ref_23 article-title: Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.01.028 – volume: 25 start-page: 2621 year: 2016 ident: ref_13 article-title: Structural and molecular myelination deficits occur prior to neuronal loss in the yac128 and bachd models of huntington disease publication-title: Hum. Mol. Genet. – volume: 1518 start-page: 91 year: 2013 ident: ref_11 article-title: Striatal oligodendrogliogenesis and neuroblast recruitment are increased in the r6/2 mouse model of huntington’s disease publication-title: Brain Res. doi: 10.1016/j.brainres.2013.04.030 – volume: 3 start-page: 705 year: 2002 ident: ref_19 article-title: Why does remyelination fail in multiple sclerosis? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn917 – volume: 471 start-page: 358 year: 2011 ident: ref_62 article-title: Amygdala circuitry mediating reversible and bidirectional control of anxiety publication-title: Nature doi: 10.1038/nature09820 – ident: ref_39 doi: 10.3390/ijms17091550 – volume: 23 start-page: 2557 year: 2003 ident: ref_46 article-title: Neuronal cell death is preceded by cell cycle events at all stages of alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-07-02557.2003 – volume: 10 start-page: 31 year: 2011 ident: ref_2 article-title: Biological and clinical changes in premanifest and early stage huntington’s disease in the track-hd study: The 12-month longitudinal analysis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70276-3 – volume: 49 start-page: 2995 year: 2010 ident: ref_80 article-title: Altered white matter microstructure in the corpus callosum in huntington’s disease: Implications for cortical “disconnection” publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.015 – ident: ref_30 doi: 10.1371/journal.pone.0019926 – volume: 54 start-page: 297 year: 1995 ident: ref_44 article-title: Ki-67 immunoreactivity in alzheimer’s disease and other neurodegenerative disorders publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-199505000-00002 – volume: 2 start-page: 447 year: 2005 ident: ref_36 article-title: The use of the r6 transgenic mouse models of huntington’s disease in attempts to develop novel therapeutic strategies publication-title: NeuroRx J. Am. Soc. Exp. Neurother. – volume: 7 start-page: a021287 year: 2015 ident: ref_48 article-title: Adult neurogenesis in neurodegenerative diseases publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a021287 – ident: ref_17 doi: 10.1371/journal.pone.0116069 – volume: 44 start-page: 793 year: 2011 ident: ref_34 article-title: Assessment of the effects of virus-mediated limited oct4 overexpression on the structure of the hippocampus and behavior in mice publication-title: BMB Rep. doi: 10.5483/BMBRep.2011.44.12.793 – volume: 24 start-page: 1538 year: 2016 ident: ref_24 article-title: In situ pluripotency factor expression promotes functional recovery from cerebral ischemia publication-title: Mol. Ther. J. Am. Soc. Gene Ther. doi: 10.1038/mt.2016.124 – volume: 50 start-page: 729 year: 1991 ident: ref_9 article-title: Decreased neuronal and increased oligodendroglial densities in huntington’s disease caudate nucleus publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-199111000-00005 – volume: 18 start-page: 102 year: 2005 ident: ref_53 article-title: White matter volume and cognitive dysfunction in early huntington’s disease publication-title: Cogn. Behav. Neurol. Off. J. Soc. Behav. Cogn. Neurol. doi: 10.1097/01.wnn.0000152205.79033.73 – volume: 6 start-page: 578 year: 2010 ident: ref_77 article-title: Cns-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of cns demyelination publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.002 – volume: 23 start-page: 4967 year: 2003 ident: ref_50 article-title: Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: A novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-04967.2003 – volume: 484 start-page: 473 year: 2012 ident: ref_63 article-title: Multiple dynamic representations in the motor cortex during sensorimotor learning publication-title: Nature doi: 10.1038/nature11039 – volume: 8 start-page: 145 year: 2014 ident: ref_74 article-title: Oligodendrogenesis in the normal and pathological central nervous system publication-title: Front. Neurosci. – volume: 67 start-page: 215 year: 2017 ident: ref_61 article-title: Viral vector biosafety in laboratory animal research publication-title: Comp. Med. – volume: 9 start-page: 2729 year: 2014 ident: ref_26 article-title: Identification of a small molecule that turns on the pluripotency gene circuitry in human fibroblasts publication-title: ACS Chem. Biol. doi: 10.1021/cb500724t – volume: 42 start-page: 277 year: 2008 ident: ref_41 article-title: Animal welfare and the refinement of neuroscience research methods—A case study of huntington’s disease models publication-title: Lab. Anim. doi: 10.1258/la.2008.007147 – volume: 29 start-page: 2113 year: 2009 ident: ref_35 article-title: Suppression of oct4 by germ cell nuclear factor restricts pluripotency and promotes neural stem cell development in the early neural lineage publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4527-08.2009 – volume: 4 start-page: 333 year: 2015 ident: ref_8 article-title: Longitudinal diffusion tensor imaging shows progressive changes in white matter in huntington’s disease publication-title: J. Huntingt. Dis. doi: 10.3233/JHD-150173 – volume: 198 start-page: 283 year: 2002 ident: ref_47 article-title: Identification of newborn cells by brdu labeling and immunocytochemistry in vivo publication-title: Methods Mol. Biol – volume: 2015 start-page: 794632 year: 2015 ident: ref_27 article-title: Reprogramming with small molecules instead of exogenous transcription factors publication-title: Stem Cells Int. doi: 10.1155/2015/794632 – volume: 109 start-page: 75 year: 2002 ident: ref_75 article-title: Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection publication-title: Cell doi: 10.1016/S0092-8674(02)00678-5 – volume: 85 start-page: 1212 year: 2015 ident: ref_78 article-title: Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes publication-title: Neuron doi: 10.1016/j.neuron.2015.02.026 – volume: 8 start-page: e3108 year: 2017 ident: ref_49 article-title: Current progress in the derivation and therapeutic application of neural stem cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.504 – volume: 49 start-page: 29 year: 2001 ident: ref_10 article-title: Quantitative neuropathological changes in presymptomatic huntington’s disease publication-title: Ann. Neurol. doi: 10.1002/1531-8249(200101)49:1<29::AID-ANA7>3.0.CO;2-B – volume: 35 start-page: 1302 year: 2020 ident: ref_16 article-title: A critical review of white matter changes in huntington’s disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.28109 – volume: 34 start-page: 2971 year: 2015 ident: ref_33 article-title: Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model publication-title: EMBO J. doi: 10.15252/embj.201592652 – volume: 24 start-page: 1105 year: 2018 ident: ref_73 article-title: Ki67 is a graded rather than a binary marker of proliferation versus quiescence publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.110 – volume: 20 start-page: 236 year: 2018 ident: ref_14 article-title: Complex spatial and temporally defined myelin and axonal degeneration in huntington disease publication-title: Neurolimage Clin. doi: 10.1016/j.nicl.2018.01.029 – volume: 24 start-page: 10763 year: 2004 ident: ref_45 article-title: Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3883-04.2004 – volume: 70 start-page: 674 year: 2011 ident: ref_69 article-title: Lake-front property: A unique germinal niche by the lateral ventricles of the adult brain publication-title: Neuron doi: 10.1016/j.neuron.2011.05.004 – volume: 8 start-page: e58 year: 2018 ident: ref_59 article-title: Viral vectors for gene transfer publication-title: Curr. Protoc. Mouse Biol. doi: 10.1002/cpmo.58 – volume: 136 start-page: 411 year: 2009 ident: ref_29 article-title: Oct4-induced pluripotency in adult neural stem cells publication-title: Cell doi: 10.1016/j.cell.2009.01.023 – volume: 1780 start-page: 97 year: 2018 ident: ref_38 article-title: Mouse models of huntington’s disease publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7825-0_6 – volume: 13 start-page: 1174 year: 2001 ident: ref_79 article-title: Water diffusion changes in wallerian degeneration and their dependence on white matter architecture publication-title: NeuroImage doi: 10.1006/nimg.2001.0765 – volume: 32 start-page: 461 year: 2019 ident: ref_7 article-title: Detection of axonal degeneration in a mouse model of huntington’s disease: Comparison between diffusion tensor imaging and anomalous diffusion metrics publication-title: Magma doi: 10.1007/s10334-019-00742-6 – volume: 85 start-page: 1359 year: 2003 ident: ref_58 article-title: Creatine therapy provides neuroprotection after onset of clinical symptoms in huntington’s disease transgenic mice publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01706.x – volume: 43 start-page: 413 year: 2003 ident: ref_60 article-title: Gene therapy with viral vectors publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.43.100901.140257 – volume: 24 start-page: 205 year: 2013 ident: ref_67 article-title: Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice publication-title: Hum. Gene Ther. Methods doi: 10.1089/hgtb.2013.076 – volume: 23 start-page: 9418 year: 2003 ident: ref_57 article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in huntington’s disease mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-28-09418.2003 – volume: 8 start-page: 318 year: 2017 ident: ref_76 article-title: Pdgfrα(+) cells in embryonic stem cell cultures represent the in vitro equivalent of the pre-implantation primitive endoderm precursors publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.12.010 |
SSID | ssj0000402005 |
Score | 2.2321506 |
Snippet | White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects... White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington's disease (HD). This study investigated the effects... |
SourceID | unpaywall pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 712 |
SubjectTerms | Age Atrophy Cell activation Cell fate Corpus callosum Dependoparvovirus Disease Electron microscopy Glial cell line-derived neurotrophic factor Glial stem cells Huntington's disease Huntingtons disease Hypotheses Laboratory animals Magnetic resonance imaging magnetism Microenvironments Myelination Neostriatum Neural stem cells Neuronal-glial interactions Neuroprotection neuroprotective effect Oct-4 protein oligodendroglia Progenitor cells Substantia alba Subventricular zone transcription factors Ventricle (lateral) γ-Aminobutyric acid |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB2VVAguCAqIQEFGquiFVXe9693sAVX9SBSQGipoUW8rr9eGSKk3kASaG_-AM3-PX9IZ70cJEjl7Dl6PPfNmPX4PYCcUQa6NEp4xaeJFmJA8GSjpJTwSyi9SKR198ckoHp5H7y7ExQaMmrcw1FbZxEQXqItS0T_yPS5CHpIeSbw__eqRahTdrjYSGrKWVijeOIqxW7DJSVW5A5uH_dHph_avi0_lki8qss0Q6_29zxRSAu4TLuKryekGcf7bL3lnYady-UNOJn8lo8F9uFejSHZQuf0BbGi7BbcrXcnlQ_j11rJP4-8l61_Vfa6WlYYh2K66sS4xX7GBU9ph74_OInZwqSf0Vh9xJztZ0hN15zB2rIlgYj5j0haMVD4wqrCPpPSBmJ05Yo-a6IGsx5YNK-UJBJR_fv6esePq-ucRnA_6Z0dDr1Ze8BSe4blnpIhUnEqTck2qoqYXJ4anuHixSnLjCx1GicSlDPLQxIoYeoTG0iwxOsgVIoTH0LGl1U-AhSlpVErFc99ECsNFGqtUFIUyGoulQnbhdbPkmappyUkdY5JheUIeylY81IVXrfm04uP4n-F247-sPpaz7GYTdeFlO4wHim5JpNXlwtnEUQ9Te2-dDQJfQm5ok6zsjXZSRNu9OmLHXxx9dy-gohAnuNvuovWf8nT9pzyDu5wabRyl7DZ05t8W-jkipXn-ot7-16dLGVM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqotJeEBQqFgoapIpeGkicOB8HhKq2qwVp4dBu1VvkOHZZKest3V3o3vgHnPv3-kuYcbLbLi09cPZEcWbsmTeK_R5jW6EICm2U8IzJEi_CguTJQEkv4ZFQfplJ6eiLu1_iTi_6fCJOrimFGgeO7mztSE-qd169u_g-_Ygb_gN1nNiyvz-lrBBwn6ANZuMHWJQ4LfBug_RdUqY-yRc1y-btp9bYwxBLW5o4DtgbBeoadf59ZnJ1Ys_k9KesqhsFqf2YPWqQJOzWoX_ClrRdZyu1tuT0Kfv9ycJx_8cQDi6as64WhgYQcNcnsgZYs6Dt1Hbg695RBLsDXdF9fcSe0J3SNXUXNNjXRDIxHoG0JZDSB2YWOCS1D3QZOHKPhuyBrPsWOrX6BILKq1-XI9ivfwE9Y732wdFex2vUFzyF-3jsGSkiFWfSZFyTsqhJ48TwDP0Yq6QwvtBhlEj0alCEJlbE0iM0tmeJ0UGhECVssGU7tPo5gzAjnUqpeOGbSGHKyGKVibJURmPDVMoW25m5PFcNNTkpZFQ5tigUrHwhWC32dm5-VnNy_Mtwcxa_fLayci5CHpKwTdxib-bDuKnoT4m0ejhxNnGUYnlP77NB8EvoDW2ShbUxnxRRdy-O2P43R-GdBtQY4gS356vo_k958d_veMnWOJ3DcYyzm2x5fD7RrxBIjYvXbov8ATy9Iyk priority: 102 providerName: Scholars Portal |
Title | In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington’s Disease |
URI | https://www.proquest.com/docview/2532351556 https://www.proquest.com/docview/2536481308 https://www.proquest.com/docview/2551984678 https://pubmed.ncbi.nlm.nih.gov/PMC8150572 https://www.mdpi.com/2073-4425/12/5/712/pdf?version=1620659844 |
UnpaywallVersion | publishedVersion |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (US National Library of Medicine) customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2073-4425 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXYVggufK8oLJWREFzItnFsJzmhstuqILWsYIuWU-Q4NlR03Yq2C-XEP-DM3-OXMJO4ha7ECnHJxRPJlsfjN_b4PUIeRSLMjdUisDaNAw4bUqBCrYKYcaHbRapUSV88GMr-iL88ESf-wG3uyyohFR-XQZqB_wUcvKoVspZoxfCdFfbZmT9JCiXDW8GE8x1Sl3jBVCP10fCo8w4V5db_VsSaEeT2rfcYPkLWRgzEtjei3-jyfG3klaWbqdVnNZn8sfH0rpNs3eWq3uTj_nKR7-uv59gc_39MN8g1j0lpp3Kim-SScbfI5UqlcnWbfH_h6Nvx2ZR2v_iqWUenlgJ0r2q7TmH3o71St4e-OjjmtHNqJvjyH1AsHazwwXs5_fTQIF3FYk6VKyhqhkCMom9QNwQyAFrShHjaCLQeO9qvdCwAnv789mNOD6vLpDtk1OseH_QDr-MQaBjnIrBKcC1TZVNmUKPUJjK2LIXMVeo4t21hIh4rwK1hHlmpke9HGEj0YmvCXAPe2CU1N3XmLqFRioqXSrO8bbmG4JNKnYqi0NZA6lWoBnm6ntRMe5Jz1NqYZJDsoA9kWz7QII835rOK3eNvhntrD8n8Ip9nTEQsQokc2SAPN82wPPHORTkzXZY2kicAFJKLbABGIw4Em3jL-zadQhLw7RY3_lCSgSchppjQwScbP714KPf-2fI-ucqwgqfkqt0jtcWnpXkAEGyRN0n9eXd49LpJdgY8afpV9wuO7DOV |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVqhcEL8iUOgi8XPBqr3rteNDVZUmUUKbgCBFvZn1ehcipetAEtrceAPOvAwP0ydhxn8lSOTWazyy7MzszDfe2e8j5BkXXqKNEo4xUej4UJAc6SnphMwXyk0jKXP64v4g6B77b07EyRr5XZ2FwbHKKifmiTrNFH4j32GCM456JMHe5KuDqlG4u1pJaMhSWiHdzSnGyoMdh3pxBi3cdLfXAn8_Z6zTHh50nVJlwFEQrzPHSOGrIJImYhoVNE0zCA2LoK8KVJgYV2juhxJQlZdwEyhkoxEa2pDQaC9RUA3hvtfIBvzKYVVtvG4P3r2vv_K42J65oiD35Dxydz5jCvOYiziMLRfDS4T773zm5txO5OJMjsd_Fb_OLXKzRK10vwiz22RN2zvkeqFjubhLfvYs_Tj6ntH2eTlXa2lmKID7YvrrFOoj7eTKPvTtwdCn-6d6jNwAgHNpf4FH4vMAoS2NhBazKZU2pagqAlmMfkBlEegRaE4kUhJLoPXI0m6hdAEA9uLHryltFdtN98jxlfjgPlm3mdUPCOURamJKxRLX-ArSUxSoSKSpMhqas1Q2yKvqL49VSYOOahzjGNoh9FC85KEGeVGbTwr-j_8ZblX-i8s0MI0vg7ZBntaXYQHjroy0OpvnNoHfBCjRXGUDQBuRItiES7FRPxTShC9fsaMvOV1408MmFB7wZR1Fq1_l4epX2Sab3WH_KD7qDQ4fkRsMh3xyOtstsj77NtePAaXNkiflUqDk01Wvvj9t4FTI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEAviF81UGCR-LlgxV577fhQodIkSigNFbSoN3e93oVI6TolCSU33oAzr8Rj8CTM2GuXIJFbzx5Ztmd25hvv7PcR8tTnXqq05I7WceQEUJAc4UnhRCzg0s1iIQr64v1h2D8K3hzz4zXyqzoLg2OVVU4sEnWWS_xH3mLcZz7qkYQtbcciDjq9V5MzBxWkcKe1ktMQVmYh2y7oxuwhjz21OId2bro96IDvnzHW6x7u9h2rOOBIiN2ZowUPZBgLHTOFapq6HUaaxdBjhTJKtcuVH0QCEJaX-jqUyEzDFbQkkVZeKqEywn2vkPUIz4s2yPrr7vDgff3Hx8VWzeUl0afvx27rE6Yzj7mIydhyYbxAu__Oal6fm4lYnIvx-K9C2LtJblgES3fKkLtF1pS5Ta6WmpaLO-THwNCPo6857X6zM7aG5poC0C8nwU6hVtJeofJD3-0eBnTnVI2RJwAwL91f4PH4IlhoRyG5xWxKhckoKoxARqMfUGUE-gVakIpYkgm0HhnaL1UvAMz-_v5zSjvl1tNdcnQpPrhHGiY3apNQP0Z9TCFZ6upAQqqKQxnzLJNaQaOWiSZ5WX3yRFpKdFTmGCfQGqGHkiUPNcnz2nxScoH8z3Cr8l9iU8I0uQjgJnlSX4bFjDs0wqh8XtiEQRtgRXuVDYBuRI1gEy3FRv1QSBm-fMWMPhfU4W0PG1J4wBd1FK1-lfurX-UxuQarMHk7GO49IBsM530KZtst0ph9mauHANhm6SO7Eig5uezF9wcWi1kC |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVKKgQXaPlQQz9kpAoubJP12t7dE4raRgGpBYkGldPK67VpROpEZFMaTvwDzvw9fgkzu04glaiqXvbiWcmWx-M39vg9QnYjEebGahFYm8YBhw0pUKFWQcy40O0iVaqiLz46lr0-f3sqTv2B28SXVUIqPqiCNAP_Czh4VStkLdGK4Tsu7OsLf5IUSoa3ggnnd8iqxAumBlntH7_vfEJFufm_NbFmBLl96zOGj5C1EQOx5Y3oL7q8Wht5b-rGavZNDYf_bDzdhySbd7muN_myNy3zPf39Cpvj7ce0Rh54TEo7tROtkxXjHpG7tUrl7DH5-cbRj4OLET289FWzjo4sBehe13adw-5Hu5VuD323f8Jp59wM8eU_oFh6NMMH79X00wODdBXlhCpXUNQMgRhFP6BuCGQAtKIJ8bQRaD1wtFfrWAA8_f3j14Qe1JdJT0i_e3iy3wu8jkOgYZxlYJXgWqbKpsygRqlNZGxZCpmr1HFu28JEPFaAW8M8slIj348wkOjF1oS5BrzxlDTcyJkNQqMUFS-VZnnbcg3BJ5U6FUWhrYHUq1BN8mo-qZn2JOeotTHMINlBH8iWfKBJXizMxzW7x_8Mt-YekvlFPsmYiFiEEjmySZ4vmmF54p2LcmY0rWwkTwAoJNfZAIxGHAg28ZL3LTqFJODLLW5wVpGBJyGmmNDBlws_vX4oz25suUnuM6zgqbhqt0ij_Do12wDBynzHr7M_0cYxIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Expression+of+Reprogramming+Factor+OCT4+Ameliorates+Myelination+Deficits+and+Induces+Striatal+Neuroprotection+in+Huntington%E2%80%99s+Disease&rft.jtitle=Genes&rft.au=Yu%2C+Ji-Hea&rft.au=Nam%2C+Bae-Geun&rft.au=Kim%2C+Min-Gi&rft.au=Pyo%2C+Soonil&rft.date=2021-05-10&rft.pub=MDPI&rft.eissn=2073-4425&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fgenes12050712&rft_id=info%3Apmid%2F34068799&rft.externalDocID=PMC8150572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon |