A dynamic rerouting model for air traffic flow management
In this paper, we present a stochastic integer programming model for managing air traffic inbound to an airport when both the airport itself and its approach routes are subject to adverse weather. In the model, ground delay decisions are static, while those on rerouting are dynamic. The decision var...
Saved in:
Published in | Transportation research. Part B: methodological Vol. 43; no. 1; pp. 159 - 171 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
2009
Elsevier |
Series | Transportation Research Part B: Methodological |
Subjects | |
Online Access | Get full text |
ISSN | 0191-2615 1879-2367 |
DOI | 10.1016/j.trb.2008.05.011 |
Cover
Abstract | In this paper, we present a stochastic integer programming model for managing air traffic inbound to an airport when both the airport itself and its approach routes are subject to adverse weather. In the model, ground delay decisions are static, while those on rerouting are dynamic. The decision variables in the model are aggregate number of flights planned to arrive at various capacity constrained resources. The model does not directly assign arrival times to individual flights. Therefore, in context of Collaborative Decision Making, which is the governing philosophy of the air traffic management system of the United States, the solutions from the dynamic rerouting model can be directly fed to some resource allocation algorithm that assigns routes and release times to individual flights or to the airlines who operate them. When adverse weather blocks or severely limits capacity of terminal approach routes, rerouting flights onto other approaches yields substantial benefits by alleviating high ground delays. Our experimental results indicate that making rerouting decisions dynamically results in 10–15% delay cost reduction compared to static rerouting, and about 50% less delay cost compared to a “pure” ground holding strategy (i.e., no rerouting). In contrast to static rerouting, the dynamic rerouting capability results in making rerouting decisions that are better matched to realized weather conditions. Lower total expected delay cost is achieved by delaying the rerouting decisions for flights until they reach the divergence point between alternative routes, and hence exploiting updated information on weather while making those decisions. In cases where the airport is the main, but not the only, bottleneck, the dynamic rerouting model may assign higher ground delays so that the rerouting decisions can be deferred until more information on en route weather becomes available. |
---|---|
AbstractList | In this paper, we present a stochastic integer programming model for managing air traffic inbound to an airport when both the airport itself and its approach routes are subject to adverse weather. In the model, ground delay decisions are static, while those on rerouting are dynamic. The decision variables in the model are aggregate number of flights planned to arrive at various capacity constrained resources. The model does not directly assign arrival times to individual flights. Therefore, in context of Collaborative Decision Making, which is the governing philosophy of the air traffic management system of the United States, the solutions from the dynamic rerouting model can be directly fed to some resource allocation algorithm that assigns routes and release times to individual flights or to the airlines who operate them. When adverse weather blocks or severely limits capacity of terminal approach routes, rerouting flights onto other approaches yields substantial benefits by alleviating high ground delays. Our experimental results indicate that making rerouting decisions dynamically results in 10-15% delay cost reduction compared to static rerouting, and about 50% less delay cost compared to a "pure" ground holding strategy (i.e., no rerouting). In contrast to static rerouting, the dynamic rerouting capability results in making rerouting decisions that are better matched to realized weather conditions. Lower total expected delay cost is achieved by delaying the rerouting decisions for flights until they reach the divergence point between alternative routes, and hence exploiting updated information on weather while making those decisions. In cases where the airport is the main, but not the only, bottleneck, the dynamic rerouting model may assign higher ground delays so that the rerouting decisions can be deferred until more information on en route weather becomes available. |
Author | Mukherjee, Avijit Hansen, Mark |
Author_xml | – sequence: 1 givenname: Avijit surname: Mukherjee fullname: Mukherjee, Avijit email: avijit@ucsc.edu organization: University of California, Santa Cruz, United States – sequence: 2 givenname: Mark surname: Hansen fullname: Hansen, Mark email: mhansen@ce.berkeley.edu organization: Civil and Environmental Engineering, University of California, Berkeley, 114 McLaughlin Hall, U.C. Berkeley, CA 94720, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20869573$$DView record in Pascal Francis http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a1_3ap_3a159-171.htm$$DView record in RePEc |
BookMark | eNp9kLFuFDEQhi0UJC4HD0C3DeUuM_bZuyuqKIKEKFKaUFteexx82vWebBN0b49PBxQpUvyewvN_tr5LdhHXSIx9ROgQUH3edyVNHQcYOpAdIL5hGxz6seVC9RdsAzhiyxXKd-wy5z0AiB3gho1XjTtGswTbJErrrxLiU7OsjubGr6kxITUlGe_rvZ_X381ionmihWJ5z956M2f68Hdu2Y9vXx-vb9v7h5vv11f3rd1xWVrfT9D7gUgMDpXyhoSnaRIeueMORq_AEyjVOyu5kn7HRyeskWSN8N5xsWV3Z26iA1l9SGEx6aiJqH4s5kk_a2F2oh7HmmpgrCPUYM3hNOWosUf9sywV9ukMO5hszewrwYb8H8phUKPsRd3rz3s2rTkn8tqGYkpYY300zBpBn7Trva7a9Um7Bqmr9trEF81_8Nc6X84dqh6fAyWdbaBoyYVEtmi3hlfafwCd0Jza |
CODEN | TRBMDY |
CitedBy_id | crossref_primary_10_1007_s10951_013_0339_8 crossref_primary_10_1142_S0217595918500458 crossref_primary_10_1007_s10479_020_03816_0 crossref_primary_10_2139_ssrn_4343979 crossref_primary_10_1002_atr_1453 crossref_primary_10_2514_1_51203 crossref_primary_10_1287_trsc_2021_1087 crossref_primary_10_1016_j_trb_2022_04_004 crossref_primary_10_1016_j_tre_2017_07_009 crossref_primary_10_1016_j_dss_2017_02_005 crossref_primary_10_2514_1_D0022 crossref_primary_10_2514_1_G001379 crossref_primary_10_1016_j_ejtl_2021_100058 crossref_primary_10_59782_sidr_v3i1_134 crossref_primary_10_1109_TITS_2014_2301292 crossref_primary_10_3182_20110828_6_IT_1002_00713 crossref_primary_10_1016_j_cor_2016_09_014 crossref_primary_10_2139_ssrn_4131207 crossref_primary_10_1016_j_ast_2024_109422 crossref_primary_10_1109_TAES_2011_6034655 crossref_primary_10_14778_3157794_3157802 crossref_primary_10_1016_j_ast_2013_12_009 crossref_primary_10_1016_j_ejor_2020_10_039 crossref_primary_10_1016_j_trc_2012_04_015 crossref_primary_10_1177_1687814017753911 crossref_primary_10_1287_msom_2021_0975 crossref_primary_10_2514_1_G000412 crossref_primary_10_1016_j_ejor_2016_02_031 crossref_primary_10_1109_MITS_2021_3132766 crossref_primary_10_1109_TASE_2023_3292921 crossref_primary_10_4028_www_scientific_net_AMR_328_330_431 crossref_primary_10_1016_j_arcontrol_2016_04_019 crossref_primary_10_1016_j_trb_2020_02_012 crossref_primary_10_1177_03611981211051621 crossref_primary_10_1177_0037549715570357 crossref_primary_10_2139_ssrn_4123729 crossref_primary_10_1016_j_trb_2013_10_001 crossref_primary_10_1155_2018_8184513 crossref_primary_10_1016_j_ejor_2014_10_042 crossref_primary_10_1088_1742_6596_1187_4_042071 crossref_primary_10_1002_nav_22217 crossref_primary_10_1109_TITS_2010_2093574 crossref_primary_10_1057_jors_2015_53 crossref_primary_10_2139_ssrn_3245609 crossref_primary_10_1186_s40064_016_2623_5 crossref_primary_10_2514_1_C031484 crossref_primary_10_2514_atcq_17_3_223 crossref_primary_10_3141_2106_11 crossref_primary_10_1016_j_jairtraman_2020_102017 crossref_primary_10_1016_j_techfore_2022_121973 crossref_primary_10_1109_TNSE_2023_3239300 crossref_primary_10_1016_j_tre_2017_12_002 crossref_primary_10_1155_2018_7591932 crossref_primary_10_1016_j_jairtraman_2018_06_009 crossref_primary_10_1016_j_trb_2017_05_014 crossref_primary_10_2514_1_I010365 crossref_primary_10_1155_2010_436765 crossref_primary_10_1287_trsc_1120_0440 |
Cites_doi | 10.1287/trsc.27.3.228 10.1016/j.trb.2008.01.002 10.1287/trsc.1070.0210 10.1007/PL00011398 10.1287/trsc.34.3.239.12300 10.1287/opre.51.1.167.12795 10.1287/trsc.1050.0129 10.1287/trsc.1050.0121 10.1287/opre.46.3.406 10.1023/A:1019206915174 10.1016/S0165-1889(03)00113-1 10.1287/mnsc.47.2.295.9834 10.3141/1951-14 |
ContentType | Journal Article |
Copyright | 2008 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/j.trb.2008.05.011 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Applied Sciences |
EISSN | 1879-2367 |
EndPage | 171 |
ExternalDocumentID | eeetransb_v_3a43_3ay_3a2009_3ai_3a1_3ap_3a159_171_htm 20869573 10_1016_j_trb_2008_05_011 S0191261508000672 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 08R 0R 1 8P AAPBV ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M MS STF X X2L |
ID | FETCH-LOGICAL-c425t-f7b07f8ee38d166fae3febb3f12d2d09f60fe0667dc5265f429d3ca5eca3ffd23 |
IEDL.DBID | .~1 |
ISSN | 0191-2615 |
IngestDate | Wed Aug 18 03:51:26 EDT 2021 Mon Jul 21 09:17:24 EDT 2025 Wed Oct 01 04:27:12 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 Fri Feb 23 02:27:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Collaborative decision making Ground holding Integer programming Aircraft routing Scenario tree Convective weather Traffic flow management Airspace flow program Air traffic management Rerouting Stochastic optimization Capacity constraints Performance evaluation Modeling Optimization Traffic flow Forwarding Dynamic model Script Decision making Routing Weather Stochastic analysis Traffic management Air traffic Air transportation Aircraft Comparative study |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-f7b07f8ee38d166fae3febb3f12d2d09f60fe0667dc5265f429d3ca5eca3ffd23 |
PageCount | 13 |
ParticipantIDs | repec_primary_eeetransb_v_3a43_3ay_3a2009_3ai_3a1_3ap_3a159_171_htm pascalfrancis_primary_20869573 crossref_citationtrail_10_1016_j_trb_2008_05_011 crossref_primary_10_1016_j_trb_2008_05_011 elsevier_sciencedirect_doi_10_1016_j_trb_2008_05_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009 2009-1-00 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 2009 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationSeriesTitle | Transportation Research Part B: Methodological |
PublicationTitle | Transportation research. Part B: methodological |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bertsimas, Stock-Patterson (bib4) 2000; 34 Dupacova, Consigli, Wallace (bib6) 2000; 100 Richetta, Odoni (bib19) 1994; 28 Pflug (bib17) 2001; 89 Bertsimas, Stock-Patterson (bib3) 1998; 46 Mukherjee, Hansen (bib14) 2007; 41 Gulpinar, Rustem, Settergren (bib8) 2004; 28 Liu, Hansen, Mukherjee (bib11) 2006; 1951 Vossen, Ball (bib20) 2006; 40 Nilim, A., ElGhaoui, L., Duong, V., 2002. Robust dynamic routing of aircraft under uncertainty. In: Proceedings of IEEE 21st Digital Avionics Systems Conference. Ball, Hoffman, Odoni, Rifkin (bib1) 2003; 51 Ball, M.O., Hoffman, R., Knorr, D., Wetherly, J., Wambsganss, M., 2000. Assessing the benefits of collaborative decision making in air traffic management. In: Proceedings of the 3rd USA/Europe Air Traffic Management R&D Seminar, Napoli, Italy. Richetta, Odoni (bib18) 1993; 27 Mukherjee, A., 2004. Stochastic Optimization Models for Air Traffic Flow Management. Ph.D. Dissertation, University of California, Berkeley, CA, USA. Goodhart, J., 2000. Increasing Airline Operational Control in a Constrained Air Traffic System. Ph.D. Dissertation, University of California, Berkeley, CA, USA. Liu, Hansen, Mukherjee (bib12) 2008; 42 Hoyland, Wallace (bib9) 2001; 47 Kotnyek, Richetta (bib10) 2006; 40 Birge, Louveaux (bib5) 1997 National Academy of Sciences, 2003. Weather Forecasting Accuracy for FAA Traffic Flow Management: A Workshop Report, p. 2. 10.1016/j.trb.2008.05.011_bib7 Liu (10.1016/j.trb.2008.05.011_bib11) 2006; 1951 Pflug (10.1016/j.trb.2008.05.011_bib17) 2001; 89 10.1016/j.trb.2008.05.011_bib2 Gulpinar (10.1016/j.trb.2008.05.011_bib8) 2004; 28 Mukherjee (10.1016/j.trb.2008.05.011_bib14) 2007; 41 Kotnyek (10.1016/j.trb.2008.05.011_bib10) 2006; 40 Richetta (10.1016/j.trb.2008.05.011_bib19) 1994; 28 Bertsimas (10.1016/j.trb.2008.05.011_bib3) 1998; 46 Bertsimas (10.1016/j.trb.2008.05.011_bib4) 2000; 34 Ball (10.1016/j.trb.2008.05.011_bib1) 2003; 51 Dupacova (10.1016/j.trb.2008.05.011_bib6) 2000; 100 Liu (10.1016/j.trb.2008.05.011_bib12) 2008; 42 Birge (10.1016/j.trb.2008.05.011_bib5) 1997 Hoyland (10.1016/j.trb.2008.05.011_bib9) 2001; 47 10.1016/j.trb.2008.05.011_bib13 10.1016/j.trb.2008.05.011_bib16 10.1016/j.trb.2008.05.011_bib15 Richetta (10.1016/j.trb.2008.05.011_bib18) 1993; 27 Vossen (10.1016/j.trb.2008.05.011_bib20) 2006; 40 |
References_xml | – reference: Ball, M.O., Hoffman, R., Knorr, D., Wetherly, J., Wambsganss, M., 2000. Assessing the benefits of collaborative decision making in air traffic management. In: Proceedings of the 3rd USA/Europe Air Traffic Management R&D Seminar, Napoli, Italy. – volume: 41 start-page: 444 year: 2007 end-page: 456 ident: bib14 article-title: A Dynamic Stochastic Model for the Single Airport Ground Holding Problem publication-title: Transportation Science – volume: 34 start-page: 239 year: 2000 end-page: 255 ident: bib4 article-title: The traffic flow management rerouting problem in air traffic control: a dynamic network flow approach publication-title: Transportation Science – volume: 89 start-page: 251 year: 2001 end-page: 271 ident: bib17 article-title: Scenario tree generation for multi-period financial optimization by optimal discretization publication-title: Mathematical Programming – volume: 42 start-page: 685 year: 2008 end-page: 720 ident: bib12 article-title: Scenario-based air traffic flow management: from theory to practice publication-title: Transportation Research Part B – year: 1997 ident: bib5 article-title: Introduction to Stochastic Programming – volume: 40 start-page: 29 year: 2006 end-page: 40 ident: bib20 article-title: Slot trading opportunities in collaborative ground delay programs publication-title: Transportation Science – reference: National Academy of Sciences, 2003. Weather Forecasting Accuracy for FAA Traffic Flow Management: A Workshop Report, p. 2. – reference: Nilim, A., ElGhaoui, L., Duong, V., 2002. Robust dynamic routing of aircraft under uncertainty. In: Proceedings of IEEE 21st Digital Avionics Systems Conference. – volume: 28 start-page: 1291 year: 2004 end-page: 1315 ident: bib8 article-title: Simulation and optimization approaches to scenario tree generation publication-title: Journal of Economic Dynamic and Control – volume: 27 start-page: 228 year: 1993 end-page: 238 ident: bib18 article-title: Solving optimally the static ground holding policy problem in air traffic control publication-title: Transportation Science – volume: 46 start-page: 406 year: 1998 end-page: 422 ident: bib3 article-title: The air traffic flow management with en route capacities publication-title: Operations Research – reference: Goodhart, J., 2000. Increasing Airline Operational Control in a Constrained Air Traffic System. Ph.D. Dissertation, University of California, Berkeley, CA, USA. – volume: 51 start-page: 167 year: 2003 end-page: 171 ident: bib1 article-title: A stochastic integer program with dual network structure and its application to the ground-holding problem publication-title: Operations Research – volume: 47 start-page: 295 year: 2001 end-page: 307 ident: bib9 article-title: Generating scenario trees for multi-stage stochastic programs publication-title: Management Science – volume: 100 start-page: 25 year: 2000 end-page: 53 ident: bib6 article-title: Scenarios for multi-stage stochastic programs publication-title: Annals of Operations Research – volume: 40 start-page: 133 year: 2006 end-page: 146 ident: bib10 article-title: Equitable models for the stochastic ground-holding problem under collaborative decision making publication-title: Transportation Science – volume: 28 start-page: 167 year: 1994 end-page: 185 ident: bib19 article-title: Dynamic solution to the ground holding problem in air traffic control publication-title: Transportation Research Part A – volume: 1951 start-page: 113 year: 2006 end-page: 121 ident: bib11 article-title: Scenario-based air traffic flow management: developing and using capacity scenario trees publication-title: Transportation Research Record – reference: Mukherjee, A., 2004. Stochastic Optimization Models for Air Traffic Flow Management. Ph.D. Dissertation, University of California, Berkeley, CA, USA. – volume: 27 start-page: 228 issue: 3 year: 1993 ident: 10.1016/j.trb.2008.05.011_bib18 article-title: Solving optimally the static ground holding policy problem in air traffic control publication-title: Transportation Science doi: 10.1287/trsc.27.3.228 – ident: 10.1016/j.trb.2008.05.011_bib13 – volume: 42 start-page: 685 issue: 7-8 year: 2008 ident: 10.1016/j.trb.2008.05.011_bib12 article-title: Scenario-based air traffic flow management: from theory to practice publication-title: Transportation Research Part B doi: 10.1016/j.trb.2008.01.002 – ident: 10.1016/j.trb.2008.05.011_bib2 – ident: 10.1016/j.trb.2008.05.011_bib15 – volume: 41 start-page: 444 issue: 4 year: 2007 ident: 10.1016/j.trb.2008.05.011_bib14 article-title: A Dynamic Stochastic Model for the Single Airport Ground Holding Problem publication-title: Transportation Science doi: 10.1287/trsc.1070.0210 – ident: 10.1016/j.trb.2008.05.011_bib7 – volume: 89 start-page: 251 issue: 2 year: 2001 ident: 10.1016/j.trb.2008.05.011_bib17 article-title: Scenario tree generation for multi-period financial optimization by optimal discretization publication-title: Mathematical Programming doi: 10.1007/PL00011398 – volume: 34 start-page: 239 issue: 3 year: 2000 ident: 10.1016/j.trb.2008.05.011_bib4 article-title: The traffic flow management rerouting problem in air traffic control: a dynamic network flow approach publication-title: Transportation Science doi: 10.1287/trsc.34.3.239.12300 – volume: 51 start-page: 167 issue: 1 year: 2003 ident: 10.1016/j.trb.2008.05.011_bib1 article-title: A stochastic integer program with dual network structure and its application to the ground-holding problem publication-title: Operations Research doi: 10.1287/opre.51.1.167.12795 – year: 1997 ident: 10.1016/j.trb.2008.05.011_bib5 – volume: 40 start-page: 133 issue: 2 year: 2006 ident: 10.1016/j.trb.2008.05.011_bib10 article-title: Equitable models for the stochastic ground-holding problem under collaborative decision making publication-title: Transportation Science doi: 10.1287/trsc.1050.0129 – volume: 40 start-page: 29 year: 2006 ident: 10.1016/j.trb.2008.05.011_bib20 article-title: Slot trading opportunities in collaborative ground delay programs publication-title: Transportation Science doi: 10.1287/trsc.1050.0121 – volume: 46 start-page: 406 issue: 3 year: 1998 ident: 10.1016/j.trb.2008.05.011_bib3 article-title: The air traffic flow management with en route capacities publication-title: Operations Research doi: 10.1287/opre.46.3.406 – ident: 10.1016/j.trb.2008.05.011_bib16 – volume: 100 start-page: 25 year: 2000 ident: 10.1016/j.trb.2008.05.011_bib6 article-title: Scenarios for multi-stage stochastic programs publication-title: Annals of Operations Research doi: 10.1023/A:1019206915174 – volume: 28 start-page: 1291 issue: 7 year: 2004 ident: 10.1016/j.trb.2008.05.011_bib8 article-title: Simulation and optimization approaches to scenario tree generation publication-title: Journal of Economic Dynamic and Control doi: 10.1016/S0165-1889(03)00113-1 – volume: 47 start-page: 295 issue: 2 year: 2001 ident: 10.1016/j.trb.2008.05.011_bib9 article-title: Generating scenario trees for multi-stage stochastic programs publication-title: Management Science doi: 10.1287/mnsc.47.2.295.9834 – volume: 1951 start-page: 113 year: 2006 ident: 10.1016/j.trb.2008.05.011_bib11 article-title: Scenario-based air traffic flow management: developing and using capacity scenario trees publication-title: Transportation Research Record doi: 10.3141/1951-14 – volume: 28 start-page: 167 issue: 3 year: 1994 ident: 10.1016/j.trb.2008.05.011_bib19 article-title: Dynamic solution to the ground holding problem in air traffic control publication-title: Transportation Research Part A |
SSID | ssj0003401 |
Score | 2.2274742 |
Snippet | In this paper, we present a stochastic integer programming model for managing air traffic inbound to an airport when both the airport itself and its approach... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Air traffic management Air traffic management Stochastic optimization Scenario tree Collaborative decision making Ground holding Rerouting Convective weather Integer programming Capacity constraints Aircraft routing Traffic flow management Airspace flow program Air transportation and traffic Aircraft routing Airspace flow program Applied sciences Capacity constraints Collaborative decision making Convective weather Exact sciences and technology Ground holding Ground, air and sea transportation, marine construction Integer programming Rerouting Scenario tree Stochastic optimization Traffic flow management Transportation planning, management and economics |
Title | A dynamic rerouting model for air traffic flow management |
URI | https://dx.doi.org/10.1016/j.trb.2008.05.011 http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a1_3ap_3a159-171.htm |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heqAVqgq0Ytuy8oFTpbBxnM_jagtaQHBpkbhZTjyjbgW7UQhUvfS3d5w4WziUAwcnSmIr1rMzHsfPbwAOwwxNbmUaYCYpiCspg5yyMsgqsjkWtkg7ne2Ly3R-FZ9dJ9cbMBv2wjhapbf9vU3vrLW_M_FoTurFYvKNnRMZdXrmnc11dtipf3GfPvrzj-ah4tDHJJSByz2sbHYcr7YpPZ3SiXfK_41N27W5Y8SoD3XBbmyDNVaPxqGTd_DWO5Bi2tdxBzZwuQtbw_7iu11480hicA-KqbB90HnRYLO6dyxn0YW_EeyuCrNoRNsYpyMh6Gb1S9yu6TDv4erk-PtsHvhwCUHFH14bMMRhRjmicuCnZFARlqUiGdnIhgWlIaHjtNrKaeITj0RWVSbByigiG6kPsLlcLXEfRGQoJ1u6Xac8fcuUCQuUOSHlMUlpixGEA1C68lriLqTFjR5IYz81Y-tjXCaasR3Bl3WRuhfSeC5zPKCvn_QGzYb-uWLjJy21flHEE7ciydQIZl3TrR8gYut8glI_aGVixYffnNySEZ8WnCSn2p2TQstM6h_t7ceX1e4TvO6Xotz_m8-w2Tb3eMAeTVuOuy47hlfT0_P5JV99PT_9C2wY9aU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2h5UCrqgLaqtsW8KGnStHGcT6Pq1XRUmAvBYmb5cQz6lawG4XQqv--48SJ4FAOPTiWkli2np3ncTx-A_A5zNDkVqYBZpKCuJIyyCkrg6wim2Nhi7TT2b5cpcvr-NtNcrMDi-EsjHOr9Nzfc3rH1v7OzKM5q9fr2Xc2TmTU6Zl3nMs8vBsnzMkT2J2fnS9XIyGrOPRhCWXgCgybm52bV9uU3qPS6XfKf01Pr2pzz6BRH-2CLdkGa6weTUWn-_Da25Bi3jfzAHZwcwh7wxHj-0N4-Uhl8A0Uc2H7uPOiwWb74BydRRcBR7DFKsy6EW1jnJSEoNvtb3E3esS8hevTr1eLZeAjJgQVf3ttwCiHGeWIyuGfkkFFWJaKZGQjGxaUhoTOrdVWThafeDKyqjIJVkYR2Ui9g8lmu8H3ICJDOdnSHTzlFVymTFigzAkpj0lKW0whHIDSlZcTd1EtbvXgN_ZTM7Y-zGWiGdspfBmL1L2WxnMvxwP6-smA0Mz1zxU7ftJTY0URr92KJFNTWHRdNz5AxNaZBaX-pZWJFV_-cHK7RpytOUlOtcuTQstM6h_t3Yf_a90J7C2vLi_0xdnq_CO86Hem3O-cTzBpmwc8YgOnLY_9AP4LAbb3Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+rerouting+model+for+air+traffic+flow+management&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=MUKHERJEE%2C+Avijit&rft.au=HANSEN%2C+Mark&rft.date=2009&rft.pub=Elsevier&rft.issn=0191-2615&rft.volume=43&rft.issue=1&rft.spage=159&rft.epage=171&rft_id=info:doi/10.1016%2Fj.trb.2008.05.011&rft.externalDBID=n%2Fa&rft.externalDocID=20869573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |