Paths, trees and matchings under disjunctive constraints

We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to repre...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 159; no. 16; pp. 1726 - 1735
Main Authors Darmann, Andreas, Pferschy, Ulrich, Schauer, Joachim, Woeginger, Gerhard J.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier B.V 28.09.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/j.dam.2010.12.016

Cover

Abstract We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NP -hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP -hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.
AbstractList We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NP -hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP -hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.
We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly [inline image][inline image]-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is [inline image][inline image]-hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.
Author Schauer, Joachim
Darmann, Andreas
Woeginger, Gerhard J.
Pferschy, Ulrich
Author_xml – sequence: 1
  givenname: Andreas
  surname: Darmann
  fullname: Darmann, Andreas
  email: andreas.darmann@uni-graz.at
  organization: University of Graz, Institute of Public Economics, Universitaetsstr. 15, A-8010 Graz, Austria
– sequence: 2
  givenname: Ulrich
  surname: Pferschy
  fullname: Pferschy, Ulrich
  email: pferschy@uni-graz.at
  organization: University of Graz, Department of Statistics and Operations Research, Universitaetsstr. 15, A-8010 Graz, Austria
– sequence: 3
  givenname: Joachim
  surname: Schauer
  fullname: Schauer, Joachim
  email: joachim.schauer@uni-graz.at
  organization: University of Graz, Department of Statistics and Operations Research, Universitaetsstr. 15, A-8010 Graz, Austria
– sequence: 4
  givenname: Gerhard J.
  surname: Woeginger
  fullname: Woeginger, Gerhard J.
  email: gwoegi@win.tue.nl
  organization: TU Eindhoven, Department of Mathematics and Computer Science, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24532319$$DView record in Pascal Francis
BookMark eNp9kE9rGzEQxUVxoI7TD9DbXkouWVej_SMtOYWQpAVDckihNyHPzjYya22ikQP59pGxe8khMDDM4_0ezDsVszAFEuI7yCVIaH9ulr3bLpXc32qZlS9iDkarstUaZmKelbZUYP5-FafMGykl5GsuzINLT3xRpEjEhQt9sXUJn3z4x8Uu9BSL3vNmFzD5VypwCpyi8yHxmTgZ3Mj07bgX4s_tzeP1r3J1f_f7-mpVYq2aVA5qkEpSB6ZuDTY9odQN1V2L0GrUpl5Do6UGA2siqFQ7kMGKmnXVKY1QVQtxfsh9jtPLjjjZrWekcXSBph3bDro8rTLZ-ePodIxuHKIL6Nk-R7918c2quqlUBV326YMP48QcabDok0t-CvvXRgvS7iu1G5srtftKLSiblUzCB_J_-GfM5YGhXNKrp2gZPQWk3kfCZPvJf0K_A01KjzI
CODEN DAMADU
CitedBy_id crossref_primary_10_1016_j_tcs_2018_01_014
crossref_primary_10_1016_j_ejor_2025_01_044
crossref_primary_10_1111_itor_12690
crossref_primary_10_1016_j_dam_2021_01_019
crossref_primary_10_1016_j_tcs_2025_115081
crossref_primary_10_1002_net_21883
crossref_primary_10_1007_s00500_022_07602_x
crossref_primary_10_1007_s00224_020_10022_9
crossref_primary_10_1002_net_22139
crossref_primary_10_15807_jorsj_60_15
crossref_primary_10_1002_net_21802
crossref_primary_10_1016_j_ejor_2022_04_009
crossref_primary_10_1016_j_cor_2022_106093
crossref_primary_10_1016_j_endm_2018_01_002
crossref_primary_10_1007_s10878_016_0035_7
crossref_primary_10_1016_j_cor_2019_07_001
crossref_primary_10_1007_s10479_018_2895_y
crossref_primary_10_1002_net_22021
crossref_primary_10_1007_s10479_024_06123_0
crossref_primary_10_1007_s40314_023_02437_0
crossref_primary_10_1016_j_automatica_2022_110207
crossref_primary_10_1007_s00453_020_00681_y
crossref_primary_10_2139_ssrn_3082778
crossref_primary_10_1109_LRA_2019_2893879
crossref_primary_10_1007_s10878_011_9438_7
crossref_primary_10_1016_j_disopt_2017_09_003
crossref_primary_10_1016_j_ejor_2020_04_001
crossref_primary_10_1186_s13634_018_0548_6
crossref_primary_10_1016_j_asoc_2023_110205
crossref_primary_10_1016_j_cor_2012_10_022
crossref_primary_10_1016_j_cor_2024_106620
crossref_primary_10_1007_s11590_022_01949_8
crossref_primary_10_1109_TMI_2017_2762963
crossref_primary_10_1016_j_dam_2020_07_017
crossref_primary_10_1016_j_ipl_2024_106503
crossref_primary_10_1007_s00453_022_01079_8
crossref_primary_10_1016_j_entcs_2019_08_062
crossref_primary_10_3390_a17050219
crossref_primary_10_1007_s10878_021_00740_2
crossref_primary_10_1007_s00224_019_09964_6
crossref_primary_10_1016_j_ipl_2014_07_013
crossref_primary_10_1016_j_cagd_2017_02_012
crossref_primary_10_1016_j_dam_2018_09_016
crossref_primary_10_1016_j_disopt_2014_01_001
crossref_primary_10_1016_j_cor_2021_105621
crossref_primary_10_1016_j_endm_2018_01_026
crossref_primary_10_1007_s10458_024_09686_1
crossref_primary_10_3390_math12020230
crossref_primary_10_1007_s10479_018_3004_y
crossref_primary_10_1007_s10878_017_0184_3
crossref_primary_10_1007_s11590_014_0750_x
crossref_primary_10_1111_cgf_12710
crossref_primary_10_1002_net_22009
crossref_primary_10_1016_j_cie_2023_109585
Cites_doi 10.7155/jgaa.00186
10.1016/S0167-5060(08)70817-3
10.1006/inco.1996.2616
10.1023/A:1009871302966
ContentType Journal Article
Conference Proceeding
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2010.12.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-6771
EndPage 1735
ExternalDocumentID 24532319
10_1016_j_dam_2010_12_016
S0166218X1000435X
GrantInformation_xml – fundername: BSIK
  grantid: 03018
– fundername: the Netherlands Organisation for Scientific Research (NWO)
  grantid: 639.033.403
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c425t-f2f020e918468c5dec075e496c167c784b15707181bee1326fe8c3e5b3927c133
IEDL.DBID IXB
ISSN 0166-218X
IngestDate Thu Jul 10 18:10:48 EDT 2025
Wed Apr 02 08:10:59 EDT 2025
Tue Jul 01 01:42:59 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Sat Apr 29 22:45:10 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Matching
Conflict graph
Shortest path
Minimal spanning tree
Binary constraints
Edge(graph)
Graph path
Computer theory
Connected graph
Optimization
Complexity
Maximum
Spanning tree
Combinatorics
State constraint
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName 8th Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW 2009)
MergedId FETCHMERGED-LOGICAL-c425t-f2f020e918468c5dec075e496c167c784b15707181bee1326fe8c3e5b3927c133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166218X1000435X
PQID 919919628
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_919919628
pascalfrancis_primary_24532319
crossref_citationtrail_10_1016_j_dam_2010_12_016
crossref_primary_10_1016_j_dam_2010_12_016
elsevier_sciencedirect_doi_10_1016_j_dam_2010_12_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-28
PublicationDateYYYYMMDD 2011-09-28
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-28
  day: 28
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Discrete Applied Mathematics
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References P. Alimonti, G. Ausiello, L. Giovaniello, M. Protasi, On the complexity of approximating weighted satisfiability problems, Rapporto Tecnico RAP 38.97, Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma La Sapienza, 1997.
Welsh (br000065) 1976
Jansen (br000035) 1999; 3
Ausiello, Protasi, Marchetti-Spaccamela, Gambosi, Crescenzi, Kann (br000010) 1999
U. Pferschy, J. Schauer, The maximum flow problem with disjunctive constraints. Available at: Optimization Online 2010-01-2526, (2010) (submitted for publication).
Edmonds (br000030) 1979; 4
Schrijver (br000060) 2003; vol. B
Darmann, Pferschy, Schauer (br000025) 2009; vol. 5783
Jansen, Öhring (br000040) 1997; 132
Berman, Karpinski, Scott (br000015) 2003; 049
Bodlaender, Jansen (br000020) 1993
Pferschy, Schauer (br000050) 2009; 13
Kann (br000045) 1994; 1
Jansen (10.1016/j.dam.2010.12.016_br000040) 1997; 132
Jansen (10.1016/j.dam.2010.12.016_br000035) 1999; 3
Schrijver (10.1016/j.dam.2010.12.016_br000060) 2003; vol. B
Ausiello (10.1016/j.dam.2010.12.016_br000010) 1999
Berman (10.1016/j.dam.2010.12.016_br000015) 2003; 049
Pferschy (10.1016/j.dam.2010.12.016_br000050) 2009; 13
10.1016/j.dam.2010.12.016_br000005
Welsh (10.1016/j.dam.2010.12.016_br000065) 1976
Bodlaender (10.1016/j.dam.2010.12.016_br000020) 1993
10.1016/j.dam.2010.12.016_br000055
Darmann (10.1016/j.dam.2010.12.016_br000025) 2009; vol. 5783
Edmonds (10.1016/j.dam.2010.12.016_br000030) 1979; 4
Kann (10.1016/j.dam.2010.12.016_br000045) 1994; 1
References_xml – reference: P. Alimonti, G. Ausiello, L. Giovaniello, M. Protasi, On the complexity of approximating weighted satisfiability problems, Rapporto Tecnico RAP 38.97, Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma La Sapienza, 1997.
– volume: 049
  year: 2003
  ident: br000015
  article-title: Approximation hardness of short symmetric instances of max-3sat
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– start-page: 291
  year: 1993
  end-page: 300
  ident: br000020
  article-title: On the complexity of scheduling incompatible jobs with unit-times
  publication-title: MFCS’93: Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science
– volume: vol. B
  year: 2003
  ident: br000060
  publication-title: Combinatorial Optimization, Polyhedra and Efficiency
– reference: U. Pferschy, J. Schauer, The maximum flow problem with disjunctive constraints. Available at: Optimization Online 2010-01-2526, (2010) (submitted for publication).
– volume: 132
  start-page: 85
  year: 1997
  end-page: 108
  ident: br000040
  article-title: Approximation algorithms for time constrained scheduling
  publication-title: Information and Computation
– year: 1976
  ident: br000065
  article-title: Matroid Theory
– volume: 13
  start-page: 233
  year: 2009
  end-page: 249
  ident: br000050
  article-title: The knapsack problem with conflict graphs
  publication-title: Journal of Graph Algorithms and Applications
– volume: vol. 5783
  start-page: 414
  year: 2009
  end-page: 423
  ident: br000025
  article-title: Determining a minimum spanning tree with disjunctive constraints
  publication-title: Algorithmic Decision Theory
– year: 1999
  ident: br000010
  article-title: Complexity and Approximation: Combinatorial Optimization Problems and their Approximability Properties
– volume: 1
  start-page: 317
  year: 1994
  end-page: 331
  ident: br000045
  article-title: Polynomially bounded minimization problems that are hard to approximate
  publication-title: Nordic Journal of Computing
– volume: 3
  start-page: 363
  year: 1999
  end-page: 377
  ident: br000035
  article-title: An approximation scheme for bin packing with conflicts
  publication-title: Journal of Combinatorial Optimization
– volume: 4
  start-page: 39
  year: 1979
  end-page: 49
  ident: br000030
  article-title: Matroid intersection
  publication-title: Annals of Discrete Mathematics
– volume: 13
  start-page: 233
  issue: 2
  year: 2009
  ident: 10.1016/j.dam.2010.12.016_br000050
  article-title: The knapsack problem with conflict graphs
  publication-title: Journal of Graph Algorithms and Applications
  doi: 10.7155/jgaa.00186
– volume: vol. B
  year: 2003
  ident: 10.1016/j.dam.2010.12.016_br000060
– start-page: 291
  year: 1993
  ident: 10.1016/j.dam.2010.12.016_br000020
  article-title: On the complexity of scheduling incompatible jobs with unit-times
– volume: 049
  year: 2003
  ident: 10.1016/j.dam.2010.12.016_br000015
  article-title: Approximation hardness of short symmetric instances of max-3sat
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– year: 1976
  ident: 10.1016/j.dam.2010.12.016_br000065
– volume: vol. 5783
  start-page: 414
  year: 2009
  ident: 10.1016/j.dam.2010.12.016_br000025
  article-title: Determining a minimum spanning tree with disjunctive constraints
– year: 1999
  ident: 10.1016/j.dam.2010.12.016_br000010
– volume: 1
  start-page: 317
  issue: 3
  year: 1994
  ident: 10.1016/j.dam.2010.12.016_br000045
  article-title: Polynomially bounded minimization problems that are hard to approximate
  publication-title: Nordic Journal of Computing
– volume: 4
  start-page: 39
  year: 1979
  ident: 10.1016/j.dam.2010.12.016_br000030
  article-title: Matroid intersection
  publication-title: Annals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70817-3
– ident: 10.1016/j.dam.2010.12.016_br000005
– volume: 132
  start-page: 85
  issue: 2
  year: 1997
  ident: 10.1016/j.dam.2010.12.016_br000040
  article-title: Approximation algorithms for time constrained scheduling
  publication-title: Information and Computation
  doi: 10.1006/inco.1996.2616
– ident: 10.1016/j.dam.2010.12.016_br000055
– volume: 3
  start-page: 363
  year: 1999
  ident: 10.1016/j.dam.2010.12.016_br000035
  article-title: An approximation scheme for bin packing with conflicts
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1023/A:1009871302966
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.2920377
Snippet We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative...
We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1726
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Binary constraints
Combinatorics
Combinatorics. Ordered structures
Complexity
Computer science; control theory; systems
Conflict graph
Exact sciences and technology
Graph theory
Graphs
Information retrieval. Graph
Matching
Mathematical analysis
Mathematics
Minimal spanning tree
Sciences and techniques of general use
Shortest path
Shortest-path problems
Theoretical computing
Trees
Title Paths, trees and matchings under disjunctive constraints
URI https://dx.doi.org/10.1016/j.dam.2010.12.016
https://www.proquest.com/docview/919919628
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20211001
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: IXB
  dateStart: 19790901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20210915
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: ACRLP
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20210415
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIKHN
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AKRWK
  dateStart: 19790901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vSgiPnF9LDl4EuNu2yRtjqsoq6IIKvQW2nQKK1oXu1797U76WBXFg8emTdNOkvm-ZCYzAAcq1SESzedJHgRcZL7kqU6Ro_XzIEstQV4V7fNGjR7EZSzjOThtz8I4t8pG99c6vdLWTUm_kWZ_Mh7374isKAKo2KvMWTImPRyIsDrEF598CSHl4qMttpsunzYGwlrRRP5W3L2ntXlW3l9Z8lz7fbm9QpcM_XfUWp4kJckyr5Ng_NDnFUidr8JKwy7ZsP6BNZjDYh2WrmehWcsNiG7pqjxizhpdsqTIGN2pHCpL5g6UvbJsXD4S2jk9yKyjjy6LxLTchIfzs_vTEW_SJ3BLE3HKcz8nLoia1nAqsjJDS_QAhVbWU6ENI5F6MiSGQcQVkRalKsfIBihTokyhpbXrFnSKlwK3gdkByiRRxG2sFTiQkdU2DPJIZUgAKPMuDFrxGNvEFncf92RaJ7JHQxI1TqLG8w2VdOFwVmVSB9b462HRytx8Gx2GFP9f1Xrf-mfWkC9kQMRWd4G1HWZoWjlbSVLgy1tptHMJ08qPdv7X9C4s1rvPmvvRHnSmr2-4T_RlmvZg_vjd68HC8OJqdNOrRusH8ifr0w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHAAhxFOMZw6cENG2NkmbI0Kg8ZqQYNJuUZu60ibopnX8f5w-Bgi0A8emTdM6if0ldj4DnKtYB0gwn0ep73OReJLHOkaO1kv9JLZk8gq2z57q9sX9QA6W4Lo-C-PCKivdX-r0QltXJa1Kmq3JcNh6IbCiyEANOoU7Sw6WYUVI0skNWLm6e-j2vrFIOYq0tXrf5cvNQOZWVOTfirtX1W7PIgAsid7L0C-3Xejyof9tuDYmUU7iTMs8GL9UemGnbrdgswKY7Kr8h21YwmwH1p_m7Kz5LoTPdJVfMueQzlmUJYzuFDGVOXNnyqYsGeYjMnhOFTLrEKRLJDHL96B_e_N63eVVBgVuaS7OeOqlBAdR0zJOhVYmaAkhoNDKdlRgg1DEHRkQyCDsikjrUpViaH2UMaGmwNLydR8a2TjDA2C2jTKKFMEbawW2ZWi1Dfw0VAmSDZRpE9q1eIyt6MXdx72ZOo5sZEiixknUdDxDJU24mFeZlNwaix4WtczNjwFiSPcvqnb6o3_mDXlC-oRtdRNY3WGGZpZzl0QZjj9yo11UmFZeePi_ps9gtfv69Gge73oPR7BWbkZr7oXH0JhNP_CE0MwsPq1G6ydvYO12
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+applied+mathematics&rft.atitle=Paths%2C+trees+and+matchings+under+disjunctive+constraints&rft.au=DARMANN%2C+Andreas&rft.au=PFERSCHY%2C+Ulrich&rft.au=SCHAUER%2C+Joachim&rft.au=WOEGINGER%2C+Gerhard+J&rft.date=2011-09-28&rft.pub=Elsevier&rft.issn=0166-218X&rft.volume=159&rft.issue=16&rft.spage=1726&rft.epage=1735&rft_id=info:doi/10.1016%2Fj.dam.2010.12.016&rft.externalDBID=n%2Fa&rft.externalDocID=24532319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon