Robust parameter estimation of intensity distributions for brain magnetic resonance images

Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 17; no. 2; pp. 172 - 186
Main Authors Schroeter, P., Vesin, J.-M., Langenberger, T., Meuli, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.1998
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/42.700730

Cover

Abstract Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
AbstractList This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed
Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
Author Vesin, J.-M.
Langenberger, T.
Schroeter, P.
Meuli, R.
Author_xml – sequence: 1
  givenname: P.
  surname: Schroeter
  fullname: Schroeter, P.
  organization: Signal Process. Lab., Fed. Inst. of Technol., Lausanne, Switzerland
– sequence: 2
  givenname: J.-M.
  surname: Vesin
  fullname: Vesin, J.-M.
– sequence: 3
  givenname: T.
  surname: Langenberger
  fullname: Langenberger, T.
– sequence: 4
  givenname: R.
  surname: Meuli
  fullname: Meuli, R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2348092$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9688150$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFTEUxbOo1La6cCsIWYig8Np8TpKlFL-gIIhu3AyZzE2JzCTPJIO8_948Z3gLEQuBuzi_G8495xKdxRQBoWeUXFNKzI1g14oQxckZuiBM6R0hHXuMLkv5QQgVkphzdG46rakkF-j7lzQspeK9zXaGChlDqWG2NaSIk8chVogl1AMeQ6k5DMtRKdinjIdsQ8SzvY9Qg8MZSoo2OsBt_x7KE_TI26nA021eoW_v3329_bi7-_zh0-3bu50TTNbd2PGu80qA8XawRozMysFppsSoGBFeGwZADCgmJXDqaDcIrrQbnFPGSs-v0Jv13yXu7eGXnaZ-n5uFfOgp6Y-Z9IL1ayYNfrXC-5x-Lu3Wfg7FwTTZCGkpvSaES6PYgyDTkrcnHgYpl5x3uoEvNnAZZhhPJrcumv5y021xdvK5ZRnKCWNcaGKOxm5WzOVUSgbfu1D_9FVbH9M_b37918b_8nm-sgEATtwm_gZYFbsK
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_artmed_2003_11_006
crossref_primary_10_1109_TMI_2007_895453
crossref_primary_10_1109_TMI_2002_806587
crossref_primary_10_1007_s00357_016_9211_9
crossref_primary_10_1109_TITB_2006_874197
crossref_primary_10_1016_j_neucom_2005_12_005
crossref_primary_10_1016_j_neuroimage_2009_07_041
crossref_primary_10_1002_jmri_20229
crossref_primary_10_1016_j_patcog_2011_12_023
crossref_primary_10_1016_S0165_0270_02_00273_X
crossref_primary_10_1109_TMI_2005_857652
crossref_primary_10_1109_TPAMI_2003_1182094
crossref_primary_10_1118_1_2712575
crossref_primary_10_1109_TAES_2010_5595616
crossref_primary_10_1016_S0895_6111_02_00019_8
crossref_primary_10_1007_s11548_007_0144_y
crossref_primary_10_1016_j_jfranklin_2007_03_002
crossref_primary_10_1109_TEVC_2004_826068
crossref_primary_10_1016_j_patrec_2007_05_004
crossref_primary_10_1007_s11749_018_0612_4
crossref_primary_10_1109_TMI_2010_2098417
crossref_primary_10_1109_TMI_2015_2419072
crossref_primary_10_1109_TMM_2007_911302
crossref_primary_10_1007_s00330_021_08439_y
crossref_primary_10_1016_S0730_725X_03_00102_4
crossref_primary_10_1002_ajpa_22959
crossref_primary_10_1007_s10462_012_9317_3
crossref_primary_10_1080_03610926_2018_1523431
crossref_primary_10_1016_S1053_8119_03_00260_X
crossref_primary_10_4236_cs_2016_74028
crossref_primary_10_1016_j_media_2005_09_004
crossref_primary_10_1198_jasa_2011_ap09529
crossref_primary_10_1109_TMI_2005_860999
crossref_primary_10_1016_S0933_3657_99_00047_0
crossref_primary_10_1016_S0730_725X_00_00118_1
crossref_primary_10_1109_TIP_2012_2200495
crossref_primary_10_54294_os009b
crossref_primary_10_1016_S1361_8415_03_00037_9
crossref_primary_10_1007_s11222_010_9204_1
crossref_primary_10_3233_JAD_150780
crossref_primary_10_1109_42_938237
crossref_primary_10_1109_TMI_2011_2165342
Cites_doi 10.1109/42.310878
10.1109/72.159057
10.1214/aoms/1177703732
10.1109/42.251128
10.2307/1266689
10.1148/radiology.178.1.1984289
10.1148/radiology.166.3.3277248
10.1109/42.232244
10.1109/42.141646
10.1002/0471725382
10.1109/42.97590
10.1007/978-94-015-7744-1
10.1109/42.387715
10.1016/0167-8655(89)90037-8
10.1109/21.259687
10.1148/radiology.154.1.3964938
10.1109/42.310875
10.1016/0262-8856(92)90021-T
10.1109/IJCNN.1992.227260
10.1016/0031-3203(76)90026-1
10.1109/21.259684
10.1109/42.232267
10.3233/IFS-1994-2301
10.1109/42.241885
10.1007/978-1-4757-0450-1
10.1007/BF01886327
10.1145/321127.321128
10.1109/TSMC.1978.4309905
10.1109/21.179842
10.1016/0167-8655(94)90058-2
10.1097/00004728-198907000-00006
10.1007/978-1-4615-7263-3_6
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/42.700730
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EndPage 186
ExternalDocumentID oai:infoscience.epfl.ch:86580
345093
9688150
2348092
10_1109_42_700730
700730
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c425t-d6366f74e9faba94d2a5bc8274d7204f892ee09e7255e31c16b4378cbcc79a5f3
IEDL.DBID UNPAY
ISSN 0278-0062
1558-254X
IngestDate Sun Oct 26 02:23:09 EDT 2025
Sat Sep 27 19:44:11 EDT 2025
Wed Oct 01 13:11:41 EDT 2025
Wed Oct 01 14:38:10 EDT 2025
Wed Feb 19 01:21:38 EST 2025
Mon Jul 21 09:18:35 EDT 2025
Wed Oct 01 03:55:07 EDT 2025
Thu Apr 24 22:53:55 EDT 2025
Tue Aug 26 21:00:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Human
Parameter estimation
Segmentation
Central nervous system
Medical imagery
Technique
Nuclear magnetic resonance imaging
Brain (vertebrata)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-d6366f74e9faba94d2a5bc8274d7204f892ee09e7255e31c16b4378cbcc79a5f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/86580
PMID 9688150
PQID 21353368
PQPubID 23462
PageCount 15
ParticipantIDs pubmed_primary_9688150
ieee_primary_700730
proquest_miscellaneous_80035972
proquest_miscellaneous_21353368
crossref_citationtrail_10_1109_42_700730
crossref_primary_10_1109_42_700730
pascalfrancis_primary_2348092
proquest_miscellaneous_28538534
unpaywall_primary_10_1109_42_700730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-04-01
PublicationDateYYYYMMDD 1998-04-01
PublicationDate_xml – month: 04
  year: 1998
  text: 1998-04-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References mclachlan (ref10) 1988
ref13
ref12
ref37
ref15
ref14
ref31
ref30
ref11
ref32
sera (ref44) 1982
davis (ref36) 1991
ref2
vesin (ref33) 1994
ref39
ref17
ref19
drayer (ref1) 1988; 166
e goldberg (ref24) 1989
dempster (ref18) 1977; b39
michalewicz (ref34) 1991
holland (ref9) 1975
rousseeuw (ref21) 1987
ref23
yager (ref38) 1994; 2
ref26
ref20
ref42
ref41
ref22
ref43
ref28
ref27
grefenstette (ref25) 1985
ref29
chiu (ref40) 1994; 2
ref8
ref7
ref4
ref3
ref6
ref5
langenberger (ref45) 0
goldberg (ref35) 1989
velthuizen (ref16) 1991; 18
References_xml – ident: ref6
  doi: 10.1109/42.310878
– ident: ref8
  doi: 10.1109/72.159057
– ident: ref20
  doi: 10.1214/aoms/1177703732
– volume: 18
  start-page: 623
  year: 1991
  ident: ref16
  article-title: multispectral 3-d mri segmentation using knowledge based systems
  publication-title: Med Phys
– ident: ref42
  doi: 10.1109/42.251128
– ident: ref17
  doi: 10.2307/1266689
– ident: ref14
  doi: 10.1148/radiology.178.1.1984289
– volume: 166
  start-page: 797
  year: 1988
  ident: ref1
  publication-title: Radiol
  doi: 10.1148/radiology.166.3.3277248
– ident: ref43
  doi: 10.1109/42.232244
– ident: ref2
  doi: 10.1109/42.141646
– year: 1987
  ident: ref21
  publication-title: Robust Regression and Outlier Detection
  doi: 10.1002/0471725382
– ident: ref5
  doi: 10.1109/42.97590
– start-page: 219
  year: 0
  ident: ref45
  article-title: automatic segmentation and volume measurements of brain with mri
  publication-title: Proc CAR 96 Computer Assisted Radiology
– start-page: 732
  year: 1994
  ident: ref33
  article-title: genetic algorithms in the continuous space for recursive adaptive filter design
  publication-title: Proc 7th European Signal Processing Conf EUSIPCO-94
– volume: 2
  year: 1994
  ident: ref40
  article-title: fuzzy model identification based on cluster estimation
  publication-title: J Intelligent Fuzzy Syst
– start-page: 151
  year: 1991
  ident: ref34
  article-title: handling constraints in genetic algorithms
  publication-title: Proc 4th Int Conf on Genetic Algorithms
– ident: ref30
  doi: 10.1007/978-94-015-7744-1
– volume: b39
  start-page: 1
  year: 1977
  ident: ref18
  article-title: maximum-likelihood from incomplete data via the em algorithm
  publication-title: J Roy Statist Soc
– ident: ref3
  doi: 10.1109/42.387715
– year: 1975
  ident: ref9
  publication-title: Adaptations in Natural and Artificial Systems
– year: 1991
  ident: ref36
  publication-title: Handbook of Genetic Algorithms
– ident: ref28
  doi: 10.1016/0167-8655(89)90037-8
– ident: ref31
  doi: 10.1109/21.259687
– ident: ref15
  doi: 10.1148/radiology.154.1.3964938
– ident: ref4
  doi: 10.1109/42.310875
– year: 1982
  ident: ref44
  publication-title: Image Analysis ad Mathematical Morphology
– year: 1988
  ident: ref10
  publication-title: Mixture Models Inference and Applications to Clustering
– ident: ref13
  doi: 10.1016/0262-8856(92)90021-T
– ident: ref32
  doi: 10.1109/IJCNN.1992.227260
– ident: ref39
  doi: 10.1016/0031-3203(76)90026-1
– ident: ref29
  doi: 10.1109/21.259684
– ident: ref41
  doi: 10.1109/42.232267
– volume: 2
  start-page: 209
  year: 1994
  ident: ref38
  article-title: generation of fuzzy rules by mountain clustering
  publication-title: J Intelligent Fuzzy Syst
  doi: 10.3233/IFS-1994-2301
– ident: ref11
  doi: 10.1109/42.241885
– ident: ref22
  doi: 10.1007/978-1-4757-0450-1
– year: 1989
  ident: ref24
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref19
  doi: 10.1007/BF01886327
– ident: ref23
  doi: 10.1145/321127.321128
– ident: ref37
  doi: 10.1109/TSMC.1978.4309905
– ident: ref26
  doi: 10.1109/21.179842
– ident: ref27
  doi: 10.1016/0167-8655(94)90058-2
– ident: ref12
  doi: 10.1097/00004728-198907000-00006
– ident: ref7
  doi: 10.1007/978-1-4615-7263-3_6
– start-page: 160
  year: 1985
  ident: ref25
  article-title: genetic algorithms for the traveling salesman problem
  publication-title: Proc Int Conf Genetic Algorithms and their Appl
– start-page: 70
  year: 1989
  ident: ref35
  article-title: sizing populations for serial and parallel genetic algorithms
  publication-title: Proc 3rd Int Conf Genetic Algorithms and Their Appl
SSID ssj0014509
Score 1.8491058
Snippet Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of...
This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms Adolescent
Adult
Aged
Algorithms
Bias
Biological and medical sciences
Brain
Brain - anatomy & histology
Computational efficiency
Computer Simulation
Female
Gaussian distribution
Genetic algorithms
Histograms
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - statistics & numerical data
Image segmentation
Investigative techniques, diagnostic techniques (general aspects)
Likelihood Functions
Magnetic heads
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - statistics & numerical data
Male
Mathematical models
Medical sciences
Middle Aged
Models, Statistical
Monte Carlo Method
Nervous system
Normal Distribution
Parameter estimation
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Robustness
Statistical distributions
Statistical methods
Stochastic Processes
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL) - NZ
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFA46ULcHf1wdXt00qA--9K5N0jR5HMMxhPkgDoYvJUlPxvCuHbZF5l9vTtNbrnIngz6U9oQ0yQk5p-ec7yPkgzCeM-NNwoBBIoxJE2N4lhieS89FAbzC4uTTL_LkTHw-z89HnO2hFgYAhuQzWODtEMuvGtfjr7KDAuNKwT-_XygZS7WmgIHIYzYHQ8DYVLIRRChL9YFgi9hwmzzQUqkMa-zXDqGBVQVzIk0bpsVHPotNBucOedTX1-bml1ku1w6h4yexursdsAsx9-THou_swv3-B9nxjuN7Sh6Pxig9jNrzjNyDekZ21iAKZ-Th6Rh8f06-f21s33YU0cKvMIuGIkJHLH2kjaeXMRu-u6EVovGORFotDWYxtchEQa_MRY1FkzT4-A0ifQAN7S-gfUHOjj99OzpJRmqGxIVN3iWV5FL6QoD2xhotKmZy61RwcStkvfFKM4BUQxE8FuCZy6QVvFDOOldok3u-S7bqpoaXhKYGgonggqXIHIKpaZc5a4MlU1XBN7NsTj6u1qp0I2450mcsy8F_SXUpWBlnbk7eTaLXEaxjk9AMZ34SWD3d_2v9p9eMC5Xq8BVvV_pQhg2IURVTQ9O3JUPmEC7VfySCSRQucbuEGpAUi9DLblS1qftRYefk_aR6tw_t1cahvSbbsZAS0432yFb3s4f9YEl19s2wh_4A6KAayQ
  priority: 102
  providerName: IEEE
Title Robust parameter estimation of intensity distributions for brain magnetic resonance images
URI https://ieeexplore.ieee.org/document/700730
https://www.ncbi.nlm.nih.gov/pubmed/9688150
https://www.proquest.com/docview/21353368
https://www.proquest.com/docview/28538534
https://www.proquest.com/docview/80035972
http://infoscience.epfl.ch/record/86580
UnpaywallVersion submittedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014509
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQVgJ64LFQsYUWCzhwyZLYTmIfq6rVCqkVQqy0cIlsxy6IbVKRRFX59czkRas-QMopmchJxo9v4pnvI-Sd0J4z7XXAHHOB0DoMtOZRoHmceC5Sx3MsTj46ThZL8XEVr_6SJOFX7ad-mI79em6_D9poEtZKiM03khhA94RsLI8_7X1t_6AgR2zYSofC4gh-j8Wq5xCKQvVBsHmK-1HhlZWnlVLBREhdwbfwnYjFTShzkzxoijN9ca7X60srz-Fjshjqd7qEk5_zpjZz-_s6neO_XuoJedSjT7rXdZen5J4rpmTzEifhlNw_6nfbn5Fvn0vTVDVFevBTTJuhSMnR1TrS0tMfXfp7fUFzpN_tlbMqCjiYGpSeoKf6pMAqSQpBfYnUHo7C_Seuek6Whwdf9hdBr8UQWBjVdZAnPEl8Kpzy2mglcqZjYyXEtDnK3HipmHOhcimEKI5HNkqM4Km0xtpU6djzLTIpysK9IDTUDjCBBWjILLKnKRtZYwC65DkEY4bNyPvBT5nticpRL2OdtQFLqDLBss6lM_JmND3r2DluMpqis0eD4ezOFd-PlxkXMlTwFK-HvpDBiMNtFF24sqkyhlIhPJF3WAAGgkPcbiFb6sQUWtnqutnYvEqkBJA-I2_Hbnf7q23_l9VL8rCrpMR8o1dkUv9q3A5AqdrstvWOu_1g-gMAVB0f
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQEbQ98LG0YoFSCzhwyTaxHSc-IkS1QLcH1EoVl8h2xhVim1QkESq_Hk-cjRa0RUg5RMlYju2xPJOZeY-QN0I7zrTTEQMGkdA6jrTmSaR5Kh0XGfASi5MXp3J-Lj5dpBcDznZfCwMAffIZzPC2j-WXte3wV9lRhnEl75_fTYUQaSjWGkMGIg35HAwhY2PJBhihJFZHgs1C0x1yT8k8T7DKfu0Y6nlVMCtSN35iXGC02GRy7pLtrrrWNz_1crl2DB0_DPXdTY9eiNkn32dda2b211_Yjv85wkfkwWCO0ndBfx6TO1BNyO4aSOGE3F8M4fcn5OuX2nRNSxEv_ArzaChidITiR1o7-i3kw7c3tEQ83oFKq6HeMKYGuSjolb6ssGySei-_RqwPoL79JTR75Pz4w9n7eTSQM0TWb_M2KiWX0mUClNNGK1EynRqbeye3RN4blysGECvIvM8CPLGJNIJnuTXWZkqnju-Traqu4CmhsQZvJFhvKzKLcGrKJtYYb8uUpffODJuSt6u1KuyAXI4EGsui92BiVQhWhJmbklej6HWA69gkNMGZHwVWTw_-WP_xNeMij5X_isOVPhR-C2JcRVdQd03BkDuEy_wfEt4o8pe4XSLvsRQz38t-ULWx-0Fhp-T1qHq3D-3ZxqEdku352eKkOPl4-vk52QlllZh89IJstT86OPB2VWte9vvpN88WHhY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXQVgJ6KLBQdQsFCzhwyTaxncQ-VohqhdQKIVZauES2YxfUbVI1iary65nJF61oASmnZCInGX-8iWfeI-St0J4z7XXAHHOB0DoMtOZRoHmceC5Sx3MsTj46ThZL8XEVr36TJOFX7ad-mI79em6_D9poEtZKiM03khhA94RsLI8_HXxt_6AgR2zYSofC4gh-j8Wq5xCKQrUv2DzF_ajwxsrTSqlgIqSu4Fv4TsTiNpS5SR40xbm-utTr9bWV5_ARWQz1O13Cyem8qc3c_vyTzvFfL_WYbPXokx503eUJueeKKdm8xkk4JfeP-t32p-Tb59I0VU2RHvwM02YoUnJ0tY609PRHl_5eX9Ec6Xd75ayKAg6mBqUn6Jk-KbBKkkJQXyK1h6Nw_4mrnpHl4Ycv7xdBr8UQWBjVdZAnPEl8Kpzy2mglcqZjYyXEtDnK3HipmHOhcimEKI5HNkqM4Km0xtpU6djzbTIpysLtEBpqB5jAAjRkFtnTlI2sMQBd8hyCMcNm5N3gp8z2ROWol7HO2oAlVJlgWefSGXk9mp537By3GU3R2aPBcHbvhu_Hy4wLGSp4ildDX8hgxOE2ii5c2VQZQ6kQnsi_WAAGgkPcbSFb6sQUWtnuutnYvEqkBJA-I2_Gbnf3q-3-l9Vz8rCrpMR8oxdkUl80bg-gVG1e9sPoF1ccHB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+parameter+estimation+of+intensity+distributions+for+brain+magnetic+resonance+images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Schroeter%2C+Philippe&rft.au=Vesin%2C+Jean-Marc&rft.au=Langenberger%2C+Thierry&rft.au=Meuli%2C+Reto&rft.date=1998-04-01&rft.issn=0278-0062&rft.volume=17&rft.issue=2&rft.spage=172&rft.epage=186&rft_id=info:doi/10.1109%2F42.700730&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=345093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon