Robust parameter estimation of intensity distributions for brain magnetic resonance images
Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 17; no. 2; pp. 172 - 186 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.04.1998
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X |
| DOI | 10.1109/42.700730 |
Cover
| Abstract | Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed. |
|---|---|
| AbstractList | This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed. This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed. Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed. |
| Author | Vesin, J.-M. Langenberger, T. Schroeter, P. Meuli, R. |
| Author_xml | – sequence: 1 givenname: P. surname: Schroeter fullname: Schroeter, P. organization: Signal Process. Lab., Fed. Inst. of Technol., Lausanne, Switzerland – sequence: 2 givenname: J.-M. surname: Vesin fullname: Vesin, J.-M. – sequence: 3 givenname: T. surname: Langenberger fullname: Langenberger, T. – sequence: 4 givenname: R. surname: Meuli fullname: Meuli, R. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2348092$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9688150$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1rFTEUxbOo1La6cCsIWYig8Np8TpKlFL-gIIhu3AyZzE2JzCTPJIO8_948Z3gLEQuBuzi_G8495xKdxRQBoWeUXFNKzI1g14oQxckZuiBM6R0hHXuMLkv5QQgVkphzdG46rakkF-j7lzQspeK9zXaGChlDqWG2NaSIk8chVogl1AMeQ6k5DMtRKdinjIdsQ8SzvY9Qg8MZSoo2OsBt_x7KE_TI26nA021eoW_v3329_bi7-_zh0-3bu50TTNbd2PGu80qA8XawRozMysFppsSoGBFeGwZADCgmJXDqaDcIrrQbnFPGSs-v0Jv13yXu7eGXnaZ-n5uFfOgp6Y-Z9IL1ayYNfrXC-5x-Lu3Wfg7FwTTZCGkpvSaES6PYgyDTkrcnHgYpl5x3uoEvNnAZZhhPJrcumv5y021xdvK5ZRnKCWNcaGKOxm5WzOVUSgbfu1D_9FVbH9M_b37918b_8nm-sgEATtwm_gZYFbsK |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2003_11_006 crossref_primary_10_1109_TMI_2007_895453 crossref_primary_10_1109_TMI_2002_806587 crossref_primary_10_1007_s00357_016_9211_9 crossref_primary_10_1109_TITB_2006_874197 crossref_primary_10_1016_j_neucom_2005_12_005 crossref_primary_10_1016_j_neuroimage_2009_07_041 crossref_primary_10_1002_jmri_20229 crossref_primary_10_1016_j_patcog_2011_12_023 crossref_primary_10_1016_S0165_0270_02_00273_X crossref_primary_10_1109_TMI_2005_857652 crossref_primary_10_1109_TPAMI_2003_1182094 crossref_primary_10_1118_1_2712575 crossref_primary_10_1109_TAES_2010_5595616 crossref_primary_10_1016_S0895_6111_02_00019_8 crossref_primary_10_1007_s11548_007_0144_y crossref_primary_10_1016_j_jfranklin_2007_03_002 crossref_primary_10_1109_TEVC_2004_826068 crossref_primary_10_1016_j_patrec_2007_05_004 crossref_primary_10_1007_s11749_018_0612_4 crossref_primary_10_1109_TMI_2010_2098417 crossref_primary_10_1109_TMI_2015_2419072 crossref_primary_10_1109_TMM_2007_911302 crossref_primary_10_1007_s00330_021_08439_y crossref_primary_10_1016_S0730_725X_03_00102_4 crossref_primary_10_1002_ajpa_22959 crossref_primary_10_1007_s10462_012_9317_3 crossref_primary_10_1080_03610926_2018_1523431 crossref_primary_10_1016_S1053_8119_03_00260_X crossref_primary_10_4236_cs_2016_74028 crossref_primary_10_1016_j_media_2005_09_004 crossref_primary_10_1198_jasa_2011_ap09529 crossref_primary_10_1109_TMI_2005_860999 crossref_primary_10_1016_S0933_3657_99_00047_0 crossref_primary_10_1016_S0730_725X_00_00118_1 crossref_primary_10_1109_TIP_2012_2200495 crossref_primary_10_54294_os009b crossref_primary_10_1016_S1361_8415_03_00037_9 crossref_primary_10_1007_s11222_010_9204_1 crossref_primary_10_3233_JAD_150780 crossref_primary_10_1109_42_938237 crossref_primary_10_1109_TMI_2011_2165342 |
| Cites_doi | 10.1109/42.310878 10.1109/72.159057 10.1214/aoms/1177703732 10.1109/42.251128 10.2307/1266689 10.1148/radiology.178.1.1984289 10.1148/radiology.166.3.3277248 10.1109/42.232244 10.1109/42.141646 10.1002/0471725382 10.1109/42.97590 10.1007/978-94-015-7744-1 10.1109/42.387715 10.1016/0167-8655(89)90037-8 10.1109/21.259687 10.1148/radiology.154.1.3964938 10.1109/42.310875 10.1016/0262-8856(92)90021-T 10.1109/IJCNN.1992.227260 10.1016/0031-3203(76)90026-1 10.1109/21.259684 10.1109/42.232267 10.3233/IFS-1994-2301 10.1109/42.241885 10.1007/978-1-4757-0450-1 10.1007/BF01886327 10.1145/321127.321128 10.1109/TSMC.1978.4309905 10.1109/21.179842 10.1016/0167-8655(94)90058-2 10.1097/00004728-198907000-00006 10.1007/978-1-4615-7263-3_6 |
| ContentType | Journal Article |
| Copyright | 1998 INIST-CNRS |
| Copyright_xml | – notice: 1998 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| DOI | 10.1109/42.700730 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) - NZ CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EndPage | 186 |
| ExternalDocumentID | oai:infoscience.epfl.ch:86580 345093 9688150 2348092 10_1109_42_700730 700730 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c425t-d6366f74e9faba94d2a5bc8274d7204f892ee09e7255e31c16b4378cbcc79a5f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Oct 26 02:23:09 EDT 2025 Sat Sep 27 19:44:11 EDT 2025 Wed Oct 01 13:11:41 EDT 2025 Wed Oct 01 14:38:10 EDT 2025 Wed Feb 19 01:21:38 EST 2025 Mon Jul 21 09:18:35 EDT 2025 Wed Oct 01 03:55:07 EDT 2025 Thu Apr 24 22:53:55 EDT 2025 Tue Aug 26 21:00:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Human Parameter estimation Segmentation Central nervous system Medical imagery Technique Nuclear magnetic resonance imaging Brain (vertebrata) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-d6366f74e9faba94d2a5bc8274d7204f892ee09e7255e31c16b4378cbcc79a5f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/86580 |
| PMID | 9688150 |
| PQID | 21353368 |
| PQPubID | 23462 |
| PageCount | 15 |
| ParticipantIDs | pubmed_primary_9688150 ieee_primary_700730 proquest_miscellaneous_80035972 proquest_miscellaneous_21353368 crossref_citationtrail_10_1109_42_700730 crossref_primary_10_1109_42_700730 pascalfrancis_primary_2348092 proquest_miscellaneous_28538534 unpaywall_primary_10_1109_42_700730 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1998-04-01 |
| PublicationDateYYYYMMDD | 1998-04-01 |
| PublicationDate_xml | – month: 04 year: 1998 text: 1998-04-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 1998 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | mclachlan (ref10) 1988 ref13 ref12 ref37 ref15 ref14 ref31 ref30 ref11 ref32 sera (ref44) 1982 davis (ref36) 1991 ref2 vesin (ref33) 1994 ref39 ref17 ref19 drayer (ref1) 1988; 166 e goldberg (ref24) 1989 dempster (ref18) 1977; b39 michalewicz (ref34) 1991 holland (ref9) 1975 rousseeuw (ref21) 1987 ref23 yager (ref38) 1994; 2 ref26 ref20 ref42 ref41 ref22 ref43 ref28 ref27 grefenstette (ref25) 1985 ref29 chiu (ref40) 1994; 2 ref8 ref7 ref4 ref3 ref6 ref5 langenberger (ref45) 0 goldberg (ref35) 1989 velthuizen (ref16) 1991; 18 |
| References_xml | – ident: ref6 doi: 10.1109/42.310878 – ident: ref8 doi: 10.1109/72.159057 – ident: ref20 doi: 10.1214/aoms/1177703732 – volume: 18 start-page: 623 year: 1991 ident: ref16 article-title: multispectral 3-d mri segmentation using knowledge based systems publication-title: Med Phys – ident: ref42 doi: 10.1109/42.251128 – ident: ref17 doi: 10.2307/1266689 – ident: ref14 doi: 10.1148/radiology.178.1.1984289 – volume: 166 start-page: 797 year: 1988 ident: ref1 publication-title: Radiol doi: 10.1148/radiology.166.3.3277248 – ident: ref43 doi: 10.1109/42.232244 – ident: ref2 doi: 10.1109/42.141646 – year: 1987 ident: ref21 publication-title: Robust Regression and Outlier Detection doi: 10.1002/0471725382 – ident: ref5 doi: 10.1109/42.97590 – start-page: 219 year: 0 ident: ref45 article-title: automatic segmentation and volume measurements of brain with mri publication-title: Proc CAR 96 Computer Assisted Radiology – start-page: 732 year: 1994 ident: ref33 article-title: genetic algorithms in the continuous space for recursive adaptive filter design publication-title: Proc 7th European Signal Processing Conf EUSIPCO-94 – volume: 2 year: 1994 ident: ref40 article-title: fuzzy model identification based on cluster estimation publication-title: J Intelligent Fuzzy Syst – start-page: 151 year: 1991 ident: ref34 article-title: handling constraints in genetic algorithms publication-title: Proc 4th Int Conf on Genetic Algorithms – ident: ref30 doi: 10.1007/978-94-015-7744-1 – volume: b39 start-page: 1 year: 1977 ident: ref18 article-title: maximum-likelihood from incomplete data via the em algorithm publication-title: J Roy Statist Soc – ident: ref3 doi: 10.1109/42.387715 – year: 1975 ident: ref9 publication-title: Adaptations in Natural and Artificial Systems – year: 1991 ident: ref36 publication-title: Handbook of Genetic Algorithms – ident: ref28 doi: 10.1016/0167-8655(89)90037-8 – ident: ref31 doi: 10.1109/21.259687 – ident: ref15 doi: 10.1148/radiology.154.1.3964938 – ident: ref4 doi: 10.1109/42.310875 – year: 1982 ident: ref44 publication-title: Image Analysis ad Mathematical Morphology – year: 1988 ident: ref10 publication-title: Mixture Models Inference and Applications to Clustering – ident: ref13 doi: 10.1016/0262-8856(92)90021-T – ident: ref32 doi: 10.1109/IJCNN.1992.227260 – ident: ref39 doi: 10.1016/0031-3203(76)90026-1 – ident: ref29 doi: 10.1109/21.259684 – ident: ref41 doi: 10.1109/42.232267 – volume: 2 start-page: 209 year: 1994 ident: ref38 article-title: generation of fuzzy rules by mountain clustering publication-title: J Intelligent Fuzzy Syst doi: 10.3233/IFS-1994-2301 – ident: ref11 doi: 10.1109/42.241885 – ident: ref22 doi: 10.1007/978-1-4757-0450-1 – year: 1989 ident: ref24 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref19 doi: 10.1007/BF01886327 – ident: ref23 doi: 10.1145/321127.321128 – ident: ref37 doi: 10.1109/TSMC.1978.4309905 – ident: ref26 doi: 10.1109/21.179842 – ident: ref27 doi: 10.1016/0167-8655(94)90058-2 – ident: ref12 doi: 10.1097/00004728-198907000-00006 – ident: ref7 doi: 10.1007/978-1-4615-7263-3_6 – start-page: 160 year: 1985 ident: ref25 article-title: genetic algorithms for the traveling salesman problem publication-title: Proc Int Conf Genetic Algorithms and their Appl – start-page: 70 year: 1989 ident: ref35 article-title: sizing populations for serial and parallel genetic algorithms publication-title: Proc 3rd Int Conf Genetic Algorithms and Their Appl |
| SSID | ssj0014509 |
| Score | 1.8491058 |
| Snippet | Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of... This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 172 |
| SubjectTerms | Adolescent Adult Aged Algorithms Bias Biological and medical sciences Brain Brain - anatomy & histology Computational efficiency Computer Simulation Female Gaussian distribution Genetic algorithms Histograms Humans Image Enhancement - methods Image Processing, Computer-Assisted - statistics & numerical data Image segmentation Investigative techniques, diagnostic techniques (general aspects) Likelihood Functions Magnetic heads Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - statistics & numerical data Male Mathematical models Medical sciences Middle Aged Models, Statistical Monte Carlo Method Nervous system Normal Distribution Parameter estimation Radiodiagnosis. Nmr imagery. Nmr spectrometry Robustness Statistical distributions Statistical methods Stochastic Processes |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) - NZ dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFA46ULcHf1wdXt00qA--9K5N0jR5HMMxhPkgDoYvJUlPxvCuHbZF5l9vTtNbrnIngz6U9oQ0yQk5p-ec7yPkgzCeM-NNwoBBIoxJE2N4lhieS89FAbzC4uTTL_LkTHw-z89HnO2hFgYAhuQzWODtEMuvGtfjr7KDAuNKwT-_XygZS7WmgIHIYzYHQ8DYVLIRRChL9YFgi9hwmzzQUqkMa-zXDqGBVQVzIk0bpsVHPotNBucOedTX1-bml1ku1w6h4yexursdsAsx9-THou_swv3-B9nxjuN7Sh6Pxig9jNrzjNyDekZ21iAKZ-Th6Rh8f06-f21s33YU0cKvMIuGIkJHLH2kjaeXMRu-u6EVovGORFotDWYxtchEQa_MRY1FkzT4-A0ifQAN7S-gfUHOjj99OzpJRmqGxIVN3iWV5FL6QoD2xhotKmZy61RwcStkvfFKM4BUQxE8FuCZy6QVvFDOOldok3u-S7bqpoaXhKYGgonggqXIHIKpaZc5a4MlU1XBN7NsTj6u1qp0I2450mcsy8F_SXUpWBlnbk7eTaLXEaxjk9AMZ34SWD3d_2v9p9eMC5Xq8BVvV_pQhg2IURVTQ9O3JUPmEC7VfySCSRQucbuEGpAUi9DLblS1qftRYefk_aR6tw_t1cahvSbbsZAS0432yFb3s4f9YEl19s2wh_4A6KAayQ priority: 102 providerName: IEEE |
| Title | Robust parameter estimation of intensity distributions for brain magnetic resonance images |
| URI | https://ieeexplore.ieee.org/document/700730 https://www.ncbi.nlm.nih.gov/pubmed/9688150 https://www.proquest.com/docview/21353368 https://www.proquest.com/docview/28538534 https://www.proquest.com/docview/80035972 http://infoscience.epfl.ch/record/86580 |
| UnpaywallVersion | submittedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) - NZ issn: 0278-0062 databaseCode: RIE dateStart: 19820101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014509 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQVgJ64LFQsYUWCzhwyZLYTmIfq6rVCqkVQqy0cIlsxy6IbVKRRFX59czkRas-QMopmchJxo9v4pnvI-Sd0J4z7XXAHHOB0DoMtOZRoHmceC5Sx3MsTj46ThZL8XEVr_6SJOFX7ad-mI79em6_D9poEtZKiM03khhA94RsLI8_7X1t_6AgR2zYSofC4gh-j8Wq5xCKQvVBsHmK-1HhlZWnlVLBREhdwbfwnYjFTShzkzxoijN9ca7X60srz-Fjshjqd7qEk5_zpjZz-_s6neO_XuoJedSjT7rXdZen5J4rpmTzEifhlNw_6nfbn5Fvn0vTVDVFevBTTJuhSMnR1TrS0tMfXfp7fUFzpN_tlbMqCjiYGpSeoKf6pMAqSQpBfYnUHo7C_Seuek6Whwdf9hdBr8UQWBjVdZAnPEl8Kpzy2mglcqZjYyXEtDnK3HipmHOhcimEKI5HNkqM4Km0xtpU6djzLTIpysK9IDTUDjCBBWjILLKnKRtZYwC65DkEY4bNyPvBT5nticpRL2OdtQFLqDLBss6lM_JmND3r2DluMpqis0eD4ezOFd-PlxkXMlTwFK-HvpDBiMNtFF24sqkyhlIhPJF3WAAGgkPcbiFb6sQUWtnqutnYvEqkBJA-I2_Hbnf7q23_l9VL8rCrpMR8o1dkUv9q3A5AqdrstvWOu_1g-gMAVB0f |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQEbQ98LG0YoFSCzhwyTaxHSc-IkS1QLcH1EoVl8h2xhVim1QkESq_Hk-cjRa0RUg5RMlYju2xPJOZeY-QN0I7zrTTEQMGkdA6jrTmSaR5Kh0XGfASi5MXp3J-Lj5dpBcDznZfCwMAffIZzPC2j-WXte3wV9lRhnEl75_fTYUQaSjWGkMGIg35HAwhY2PJBhihJFZHgs1C0x1yT8k8T7DKfu0Y6nlVMCtSN35iXGC02GRy7pLtrrrWNz_1crl2DB0_DPXdTY9eiNkn32dda2b211_Yjv85wkfkwWCO0ndBfx6TO1BNyO4aSOGE3F8M4fcn5OuX2nRNSxEv_ArzaChidITiR1o7-i3kw7c3tEQ83oFKq6HeMKYGuSjolb6ssGySei-_RqwPoL79JTR75Pz4w9n7eTSQM0TWb_M2KiWX0mUClNNGK1EynRqbeye3RN4blysGECvIvM8CPLGJNIJnuTXWZkqnju-Traqu4CmhsQZvJFhvKzKLcGrKJtYYb8uUpffODJuSt6u1KuyAXI4EGsui92BiVQhWhJmbklej6HWA69gkNMGZHwVWTw_-WP_xNeMij5X_isOVPhR-C2JcRVdQd03BkDuEy_wfEt4o8pe4XSLvsRQz38t-ULWx-0Fhp-T1qHq3D-3ZxqEdku352eKkOPl4-vk52QlllZh89IJstT86OPB2VWte9vvpN88WHhY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXQVgJ6KLBQdQsFCzhwyTaxncQ-VohqhdQKIVZauES2YxfUbVI1iary65nJF61oASmnZCInGX-8iWfeI-St0J4z7XXAHHOB0DoMtOZRoHmceC5Sx3MsTj46ThZL8XEVr36TJOFX7ad-mI79em6_D9poEtZKiM03khhA94RsLI8_HXxt_6AgR2zYSofC4gh-j8Wq5xCKQrUv2DzF_ajwxsrTSqlgIqSu4Fv4TsTiNpS5SR40xbm-utTr9bWV5_ARWQz1O13Cyem8qc3c_vyTzvFfL_WYbPXokx503eUJueeKKdm8xkk4JfeP-t32p-Tb59I0VU2RHvwM02YoUnJ0tY609PRHl_5eX9Ec6Xd75ayKAg6mBqUn6Jk-KbBKkkJQXyK1h6Nw_4mrnpHl4Ycv7xdBr8UQWBjVdZAnPEl8Kpzy2mglcqZjYyXEtDnK3HipmHOhcimEKI5HNkqM4Km0xtpU6djzbTIpysLtEBpqB5jAAjRkFtnTlI2sMQBd8hyCMcNm5N3gp8z2ROWol7HO2oAlVJlgWefSGXk9mp537By3GU3R2aPBcHbvhu_Hy4wLGSp4ildDX8hgxOE2ii5c2VQZQ6kQnsi_WAAGgkPcbSFb6sQUWtnuutnYvEqkBJA-I2_Gbnf3q-3-l9Vz8rCrpMR8oxdkUl80bg-gVG1e9sPoF1ccHB4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+parameter+estimation+of+intensity+distributions+for+brain+magnetic+resonance+images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Schroeter%2C+Philippe&rft.au=Vesin%2C+Jean-Marc&rft.au=Langenberger%2C+Thierry&rft.au=Meuli%2C+Reto&rft.date=1998-04-01&rft.issn=0278-0062&rft.volume=17&rft.issue=2&rft.spage=172&rft.epage=186&rft_id=info:doi/10.1109%2F42.700730&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=345093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |