Automorphism group of Green ring of Sweedler Hopf algebra
Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism g...
Saved in:
Published in | Frontiers of Mathematics Vol. 11; no. 4; pp. 921 - 932 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.08.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1673-3452 2731-8648 1673-3576 2731-8656 |
DOI | 10.1007/s11464-016-0565-4 |
Cover
Abstract | Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab. |
---|---|
AbstractList | Let
H
2
be Sweedler’s 4-dimensional Hopf algebra and
r
(
H
2
) be the corresponding Green ring of
H
2
. In this paper, we investigate the automorphism groups of Green ring
r
(
H
2
) and Green algebra
F
(
H
2
) =
r
(
H
2
)⊗
ℤ
F
, where
F
is a field, whose characteristics is not equal to 2. We prove that the automorphism group of
r
(
H
2
) is isomorphic to
K
4
, where
K
4
is the Klein group, and the automorphism group of
F
(
H
2
) is the semidirect product of ℤ
2
and
G
, where
G
=
F
{1/2} with multiplication given by
a
·
b
= 1−
a
−
b
+ 2
ab
. Let H 2 be Sweedler's 4-dimensional Hopf algebra and r( H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of Green ring r( H 2) and Green algebra F( H 2) = r( H 2) ⊗ F Z , where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r( H 2) is isomorphic to K 4, where K 4 is the Klein group, and the automorphism group of F( H 2) is the semidirect product of Z 2 and G, where G= F \ {1/2} with multiplication given by a · b= 1− a − b+ 2 ab. Let H 2 be Sweedler's 4-dimensional Hopf algebra and r(H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of Green ring r(H 2) and Green algebra F(H 2) = r(H 2) F, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H 2) is isomorphic to K 4, where K 4 is the Klein group, and the automorphism group of F(H 2) is the semidirect product of 2 and G, where G = F {1/2} with multiplication given by a · b = 1- a - b + 2ab. Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab. Let H sub(2) be Sweedler's 4-dimensional Hopf algebra and r(H sub(2)) be the corresponding Green ring of H sub(2). In this paper, we investigate the automorphism groups of Green ring r(H sub(2)) and Green algebra F(H sub(2)) = r(H sub(2)) sub() F, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H sub(2)) is isomorphic to K sub(4), where K sub(4) is the Klein group, and the automorphism group of F(H sub(2)) is the semidirect product of sub(2) and G, where G = F {1/2} with multiplication given by a . b = 1- a - b + 2ab. |
Author | Tingting JIA Ruju ZHAO Libin LI |
AuthorAffiliation | School of Mathematical Science, Yangzhou University, Yangzhou 225002, China |
Author_xml | – sequence: 1 givenname: Tingting surname: JIA fullname: JIA, Tingting organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China – sequence: 2 givenname: Ruju surname: ZHAO fullname: ZHAO, Ruju organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China – sequence: 3 givenname: Libin surname: LI fullname: LI, Libin email: lbli@yzu.edu.cn organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China |
BookMark | eNp9kE1L5TAUhoM4MOrMD5hd0c1sqjltPpqlyIwKggvdh5h72hvpbepJi_jvTakziIu7ygm8T_Ke55gdDnFAxn4BPwfO9UUCEEqUHFTJpZKlOGBHoHRd1lKrw3-zkNV3dpzSM-cSlDRHzFzOU9xFGrch7YqO4jwWsS2uCXEoKAzdcnt4Rdz0SMVNHNvC9R0-kfvBvrWuT_jz4zxhj3__PF7dlHf317dXl3elF5WcSg9V5ZRR-KRaAdig8I2oaq2E17UzugYBmquNQ-PQGy24d-2mEY3xzimoT9jv9dmR4suMabK7kDz2vRswzslCU0uVlxQyR8--RJ_jTEMul1MAeWUDdU7pNeUppkTYWh8mN4U4TORCb4Hbxahdjdps1C5GrcgkfCFHCjtHb3uZamXSuNhE-tRpD9Ss0DZ0WyTcjIQp2ZZyx4C0Hz396LiNQ_eSv_xfUiljoFnkvwM_6aW1 |
CitedBy_id | crossref_primary_10_3934_math_2022131 crossref_primary_10_1007_s11464_022_0293_x |
Cites_doi | 10.1016/j.jalgebra.2008.08.026 10.1090/S0002-9939-2013-11823-X 10.1073/pnas.68.11.2631 10.1090/conm/585/11618 10.1016/j.jalgebra.2003.12.019 10.1016/0022-4049(79)90027-6 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
DOI | 10.1007/s11464-016-0565-4 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection (ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Automorphism group of Green ring of Sweedler Hopf algebra |
EISSN | 1673-3576 2731-8656 |
EndPage | 932 |
ExternalDocumentID | 4145833411 10_1007_s11464_016_0565_4 10.1007/s11464-016-0565-4 669918842 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1-T 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5VS 6NX 7WY 88I 8FE 8FG 8FL 8TC 92L 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACGFS ACGOD ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CQIGP CS3 CSCUP DNIVK DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C J9A JBSCW K60 K6V K6~ K7- KOV L6V LLZTM M0C M0N M2P M4Y M7S MA- N2Q NQJWS NU0 O9- O9J P2P P4S P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR ~A9 ~WA ABQSL ACUHS AEFQL AGRTI BSONS H13 PQBZA ZMTXR AAYXX ACSTC ADHKG AGQPQ AHPBZ CITATION PUEGO TGP 406 7SC 7TB 7XB 8AL 8FD 8FK AACDK AAJBT AAPKM AASML AATNV AAYZH ABAKF ABDBE ABFSG ABRTQ ACAOD ACDTI ACPIV ACZOJ AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AGQEE AHWEU AIGIU AIXLP ATHPR DDRTE DPUIP FR3 JQ2 JZLTJ KR7 L.- L.0 L7M L~C L~D NPVJJ PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U SJYHP |
ID | FETCH-LOGICAL-c425t-c122a696eb6f41e8e4c8423764c73a973141706dae9aec9740cafd8489caa613 |
IEDL.DBID | 8FG |
ISSN | 1673-3452 2731-8648 |
IngestDate | Fri Sep 05 10:12:55 EDT 2025 Wed Sep 17 13:52:04 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Wed Oct 01 03:06:18 EDT 2025 Fri Feb 21 02:25:50 EST 2025 Tue Feb 27 04:43:01 EST 2024 Wed Feb 14 10:16:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Automorphism group 19A22 Green ring Sweedler Hopf algebra 16W20 Green algebra |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-c122a696eb6f41e8e4c8423764c73a973141706dae9aec9740cafd8489caa613 |
Notes | Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab. Automorphism group, Green ring, Green algebra, Sweedler Hopf algebra 11-5739/O1 Document accepted on :2015-12-05 Automorphism group Green ring Sweedler Hopf algebra Green algebra Document received on :2015-09-25 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1811051913 |
PQPubID | 54395 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1835635745 proquest_journals_1811051913 crossref_citationtrail_10_1007_s11464_016_0565_4 crossref_primary_10_1007_s11464_016_0565_4 springer_journals_10_1007_s11464_016_0565_4 higheredpress_frontiers_10_1007_s11464_016_0565_4 chongqing_primary_669918842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Dordrecht |
PublicationSubtitle | Selected Publications from Chinese Universities |
PublicationTitle | Frontiers of Mathematics |
PublicationTitleAbbrev | Front. Math. China |
PublicationTitleAlternate | Frontiers of Mathematics in China |
PublicationYear | 2016 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | CR4 CR6 Alperin (CR1) 1979; 15 Chen, Huang, Ye, Zhang (CR2) 2004; 275 Dicks (CR5) 1983; 27 van der Kulk (CR11) 1953; 3 Yu (CR13) 1998; 14 Taft (CR10) 1971; 68 Li, Zhang (CR8) 2013; 585 Radford (CR9) 1975; 53 Zhao (CR14) 1995; 4 Huang, Chen, Zhang (CR7) 2004; 11 Chen, Oystaeyen, Zhang (CR3) 2014; 142 Vesselin, Yu (CR12) 2009; 321 D E Radford (565_CR9) 1975; 53 R C Alperin (565_CR1) 1979; 15 W Dicks (565_CR5) 1983; 27 L B Li (565_CR8) 2013; 585 W Kulk van der (565_CR11) 1953; 3 H X Chen (565_CR3) 2014; 142 K M Zhao (565_CR14) 1995; 4 E J Taft (565_CR10) 1971; 68 H L Huang (565_CR7) 2004; 11 H X Chen (565_CR2) 2004; 275 J T Yu (565_CR13) 1998; 14 565_CR6 565_CR4 D Vesselin (565_CR12) 2009; 321 |
References_xml | – volume: 4 start-page: 448 year: 1995 end-page: 494 ident: CR14 article-title: Automorphisms of the binary polynomial algebras on integer rings publication-title: Chinese Ann Math Ser A – ident: CR4 – volume: 11 start-page: 313 issue: 3 year: 2004 end-page: 320 ident: CR7 article-title: Generalized Taft Hopf algebras publication-title: Algebra Colloq – volume: 53 start-page: 9 year: 1975 end-page: 15 ident: CR9 article-title: On the coradical of a finite-dimensional Hopf algebra publication-title: Proc Amer Math Soc – volume: 321 start-page: 292 year: 2009 end-page: 302 ident: CR12 article-title: Automophisms of polynomial algebras and Dirichlet series publication-title: J Algebra doi: 10.1016/j.jalgebra.2008.08.026 – ident: CR6 – volume: 14 start-page: 215 year: 1998 end-page: 225 ident: CR13 article-title: Recognizing automophisms of polynomial algebras publication-title: Contemp Math – volume: 3 start-page: 33 year: 1953 end-page: 41 ident: CR11 article-title: On polynomial rings in two variables publication-title: Nieuw Arch Wiskd – volume: 142 start-page: 765 year: 2014 end-page: 775 ident: CR3 article-title: The Green rings of Taft algebras publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-2013-11823-X – volume: 68 start-page: 2631 year: 1971 end-page: 2633 ident: CR10 article-title: The order of the antipode of a finite-dimensional Hopf algebra publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.68.11.2631 – volume: 585 start-page: 275 year: 2013 end-page: 288 ident: CR8 article-title: The Green rings of the generalized Taft Hopf algebras publication-title: Contemp Math doi: 10.1090/conm/585/11618 – volume: 275 start-page: 212 year: 2004 end-page: 232 ident: CR2 article-title: Monomial Hopf algebra publication-title: J Algebra doi: 10.1016/j.jalgebra.2003.12.019 – volume: 27 start-page: 155 year: 1983 end-page: 162 ident: CR5 article-title: Automorphisms of the polynomial ring in two variables publication-title: Publ Sec Mat Univ Autonoma Barcelona – volume: 15 start-page: 109 year: 1979 end-page: 115 ident: CR1 article-title: Homology of the group of automorphisms of k[x, y] publication-title: J Pure Appl Algebra doi: 10.1016/0022-4049(79)90027-6 – volume: 11 start-page: 313 issue: 3 year: 2004 ident: 565_CR7 publication-title: Algebra Colloq – volume: 321 start-page: 292 year: 2009 ident: 565_CR12 publication-title: J Algebra doi: 10.1016/j.jalgebra.2008.08.026 – ident: 565_CR6 – volume: 585 start-page: 275 year: 2013 ident: 565_CR8 publication-title: Contemp Math doi: 10.1090/conm/585/11618 – volume: 275 start-page: 212 year: 2004 ident: 565_CR2 publication-title: J Algebra doi: 10.1016/j.jalgebra.2003.12.019 – volume: 142 start-page: 765 year: 2014 ident: 565_CR3 publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-2013-11823-X – volume: 27 start-page: 155 year: 1983 ident: 565_CR5 publication-title: Publ Sec Mat Univ Autonoma Barcelona – volume: 68 start-page: 2631 year: 1971 ident: 565_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.68.11.2631 – volume: 15 start-page: 109 year: 1979 ident: 565_CR1 publication-title: J Pure Appl Algebra doi: 10.1016/0022-4049(79)90027-6 – ident: 565_CR4 – volume: 14 start-page: 215 year: 1998 ident: 565_CR13 publication-title: Contemp Math – volume: 4 start-page: 448 year: 1995 ident: 565_CR14 publication-title: Chinese Ann Math Ser A – volume: 53 start-page: 9 year: 1975 ident: 565_CR9 publication-title: Proc Amer Math Soc – volume: 3 start-page: 33 year: 1953 ident: 565_CR11 publication-title: Nieuw Arch Wiskd |
SSID | ssj0051659 ssj0002902061 |
Score | 2.052272 |
Snippet | Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of... Let H 2 be Sweedler's 4-dimensional Hopf algebra and r( H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of... Let H 2 be Sweedler’s 4-dimensional Hopf algebra and r ( H 2 ) be the corresponding Green ring of H 2 . In this paper, we investigate the automorphism groups... Let H 2 be Sweedler's 4-dimensional Hopf algebra and r(H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of... Let H sub(2) be Sweedler's 4-dimensional Hopf algebra and r(H sub(2)) be the corresponding Green ring of H sub(2). In this paper, we investigate the... |
SourceID | proquest crossref springer higheredpress chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 921 |
SubjectTerms | Algebra Automorphism group Automorphisms Green algebra Green ring Hopf代数 Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Multiplication Research Article Rings (mathematics) Studies Sweedler Hopf algebra Theorems 乘法 克莱因 半直积 四维 氢 自同构群 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB50fVHkzl-HvfWkgk9KZdOk2fZxOdRF0RdX0KeSpqnKaau7XQT_emeyzeqKJ_hYmmRoJpPMdL58A7Br0EnQsSgCpRUGKJnUQZLhZiizME8SFarc_nA7O5f9S3FyFV0197hHDu3uUpJ2p3677IZGTYgJjIBRQCDmYSGi-KQFC73j69NDtwFHTNoaaUx2ecBFFLpk5meDEKXCbVXePKHAmaNp-dbiLExu8agz_ueHlKk9iY5-wsB9wwSA8u9gXGcH-uUDveM3P3IFfjSeqd-bLKVVmDPlGiydTWldR-uQ9MZ19VChau5GD769EOJXhW-xOz7JoaeLZzwQ783Q71ePhU9lRDAg34DB0eHgbz9oai8EGq24DjQLQyUTaTJZCGZiI1CjhKARussV1bsSRLyTK5MoozEo6WhV5LGIE60Uugi_oFVWpdkEnzPNE26YKHgmeFjEnSjOGVNRt5szLXMP2lMNpI8Tio1USvRbY5ToQcfpJNUNazkVz7hP3_iWacpSQqrRlKXCg71pFzfeF43ZjKLTgngjqAr5V3223GJIG4vH1jE6UugOM-7BzvQ12iolYFRpqjG14RHx_4nIg32n_3dD_E_g72-1bsNiaBcQoRS3oFUPx-YPek51tt1Yyis_3grD priority: 102 providerName: Springer Nature |
Title | Automorphism group of Green ring of Sweedler Hopf algebra |
URI | http://lib.cqvip.com/qk/71243X/201604/669918842.html https://journal.hep.com.cn/fmc/EN/10.1007/s11464-016-0565-4 https://link.springer.com/article/10.1007/s11464-016-0565-4 https://www.proquest.com/docview/1811051913 https://www.proquest.com/docview/1835635745 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1673-3576 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0051659 issn: 1673-3452 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1673-3576 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002902061 issn: 1673-3452 databaseCode: AFBBN dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1673-3576 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0051659 issn: 1673-3452 databaseCode: BENPR dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1673-3576 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0051659 issn: 1673-3452 databaseCode: 8FG dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1673-3576 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0051659 issn: 1673-3452 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1673-3576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051659 issn: 1673-3452 databaseCode: U2A dateStart: 20060123 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29qVjjHZtmdcPPNjTimkky4r0NJKRNGw0jLWF9snIkrwOWjttEvbv7061vWXQPAmjL3N30p10p98BfPRoJFglysRYgweUQtpEF7gZyoI7rQ03Lly4nU_l5Ep8vc6umwu3eRNW2e6JYaN2taU78lPURIzMDZZ-nj0klDWKvKtNCo2XsMk4ShK9FB-fdXcsXKMxFCBTUUmzREmhWsdmeD2HuwSFYOCRGv84EQSvcFtXPx9Qaayoqde3IebCuxCbumKL_uc-DVppvA1vGnMyHjzxfwde-OotvDrvsFjnu6AHy0V9XyM9f83v4_CKI67LOATcxDQqfV38Ri125x_jST0rY8r9gafoPbgcjy6_TJImYUJicektEss4N1JLX8hSMK-8QDZQ2Iuw_dRQkipBaDnOeG28xZNEz5rSKaG0NQb1-j5sVHXl30GcMpvq1DNRpoVIeal6mXKMmazfd8xKF8FBR6p89oSLkUuJxqbCGSPotcTLbQM1Thkv7vK_IMlE-5zCy4j2uYjgU9elHW9NY7bCkbwksAdKHb6uz2HLtbxZpti6E6oIPnTVuMDIa2IqXy-pTZoRaJ_IIjhpuf3PEM9N-H79hAewxYPoUSzhIWwsHpf-CO2bRXEchPgYNgfj4XBK5dnNtxGWw9H0-w-sveKDP6pF93g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8R2kKQ4AKKWD_idQ4IVYVlS7u9sEi9WY7ttJXaZNvdVcWP4j8y490EFom99RjFj2hmMvPZHn8D8CYgSHBaVpl1FhcopXJZUaIzVCX3RWG59XHDbXSkhj_kt-P8eAN-tXdhKK2y9YnRUfvG0R75B4xEjOAGE58mlxlVjaLT1baExsIsDsLPa1yyTT_uf0b9vuV88GW8N8yWVQUyh_Y5yxzj3KpChVJVkgUdJH4r5YZI1xeWKjlJopTxNhQ2OITbPWcrr6UunLUY_HDYW3BbCiGIql8PvnZbOrxA7BUZWhETsEwrqdtz1HhZD50SZXzgCh4FlEliczht6pNLjFErUfH-aUzxCD6mwq5A339Oa2MQHDyEB0v0mu4uzO0RbIT6MdwbddSv0ydQ7M5nzUWD6jubXqTx0kjaVGnM70lpVHr6fo1B8zxcpcNmUqVUagQX7U9hfBOSfAabdVOH55AK5kQhApOVKKXgle7l2jNm837fM6d8AludqMxkQcNhlEJsq3HGBHqt8IxbMptTgY1z84eTmWRvKJuNZG9kAu-6Lu14axqzFY2YirglqFL5uj7brdbM0itg686GE3jdvcb_mQ5pbB2aObUROXEEyjyB9622_xrifxO-WD_hK7gzHI8OzeH-0cEW3OXRDCmNcRs2Z1fzsIPQala-jAadgrnhH-g3c6Mt5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-qBbFIaf2gqVpT6JMSvM1u9pLHo-1xtVUKVfBt2eyHV9Dk6uXov-_MXnL2RIU-huzOwMxOZiYz-xuATw6DBJMLn2ijMUEppUmKEj-GskxtUehU2_DD7fRMji7EyWV22c45nXbd7l1Jcn6ngVCaquZ4Yv3x_cU3NHDqnsBsGJklYgVeCnTVlH1dpIPuU5wxGaalMdnnCRdZ2pU1HyNB4Arjurr6g6yXnNTGOHRcOBs6U5ci0QfF0-CThm_gdRtMxoO59t_CC1dtwqvTBRLrdAuKwaypb2qU5u_pTRzucMS1j0O7TUxU6enXX_Rh1-42HtUTH9PkD8yht-F8-PX88yhpxyUkBg2vSQxLUy0L6UrpBXO5E6gEanoRps81jagShJVjtSu0M5hH9Iz2Nhd5YbRGr74Dq1VduXcQc2Z4wR0TnpeCpz7vZbllTGf9vmVG2gh2F6JSkzkqhpISQ80cOUbQ64SnTAs0TvMurtU9RDLJXlFzGcleiQgOF1s6es8sZksaUZ6gHmhw-HN79jqtqdZIcXWOsQ9GsIxH8HHxGs2Laia6cvWM1vCMIPtEFsFRp-1_SDzF8P1_rT6AtZ9fhurHt7Pvu7CehkNJPYZ7sNrcztw-xj1N-SGc7TvplvUf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automorphism+group+of+Green+ring+of+Sweedler+Hopf+algebra&rft.jtitle=Frontiers+of+mathematics+in+China&rft.au=JIA%2C+Tingting&rft.au=ZHAO%2C+Ruju&rft.au=LI%2C+Libin&rft.date=2016-08-01&rft.pub=Higher+Education+Press&rft.issn=1673-3452&rft.eissn=1673-3576&rft.volume=11&rft.issue=4&rft.spage=921&rft.epage=932&rft_id=info:doi/10.1007%2Fs11464-016-0565-4&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11464-016-0565-4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71243X%2F71243X.jpg |