Automorphism group of Green ring of Sweedler Hopf algebra

Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism g...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Mathematics Vol. 11; no. 4; pp. 921 - 932
Main Authors JIA, Tingting, ZHAO, Ruju, LI, Libin
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-3452
2731-8648
1673-3576
2731-8656
DOI10.1007/s11464-016-0565-4

Cover

Abstract Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab.
AbstractList Let H 2 be Sweedler’s 4-dimensional Hopf algebra and r ( H 2 ) be the corresponding Green ring of H 2 . In this paper, we investigate the automorphism groups of Green ring r ( H 2 ) and Green algebra F ( H 2 ) = r ( H 2 )⊗ ℤ F , where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r ( H 2 ) is isomorphic to K 4 , where K 4 is the Klein group, and the automorphism group of F ( H 2 ) is the semidirect product of ℤ 2 and G , where G = F {1/2} with multiplication given by a · b = 1− a − b + 2 ab .
Let H 2 be Sweedler's 4-dimensional Hopf algebra and r( H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of Green ring r( H 2) and Green algebra F( H 2) = r( H 2) ⊗ F Z , where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r( H 2) is isomorphic to K 4, where K 4 is the Klein group, and the automorphism group of F( H 2) is the semidirect product of Z 2 and G, where G= F \ {1/2} with multiplication given by a · b= 1− a − b+ 2 ab.
Let H 2 be Sweedler's 4-dimensional Hopf algebra and r(H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of Green ring r(H 2) and Green algebra F(H 2) = r(H 2) F, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H 2) is isomorphic to K 4, where K 4 is the Klein group, and the automorphism group of F(H 2) is the semidirect product of 2 and G, where G = F {1/2} with multiplication given by a · b = 1- a - b + 2ab.
Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab.
Let H sub(2) be Sweedler's 4-dimensional Hopf algebra and r(H sub(2)) be the corresponding Green ring of H sub(2). In this paper, we investigate the automorphism groups of Green ring r(H sub(2)) and Green algebra F(H sub(2)) = r(H sub(2)) sub() F, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H sub(2)) is isomorphic to K sub(4), where K sub(4) is the Klein group, and the automorphism group of F(H sub(2)) is the semidirect product of sub(2) and G, where G = F {1/2} with multiplication given by a . b = 1- a - b + 2ab.
Author Tingting JIA Ruju ZHAO Libin LI
AuthorAffiliation School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
Author_xml – sequence: 1
  givenname: Tingting
  surname: JIA
  fullname: JIA, Tingting
  organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
– sequence: 2
  givenname: Ruju
  surname: ZHAO
  fullname: ZHAO, Ruju
  organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
– sequence: 3
  givenname: Libin
  surname: LI
  fullname: LI, Libin
  email: lbli@yzu.edu.cn
  organization: School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
BookMark eNp9kE1L5TAUhoM4MOrMD5hd0c1sqjltPpqlyIwKggvdh5h72hvpbepJi_jvTakziIu7ygm8T_Ke55gdDnFAxn4BPwfO9UUCEEqUHFTJpZKlOGBHoHRd1lKrw3-zkNV3dpzSM-cSlDRHzFzOU9xFGrch7YqO4jwWsS2uCXEoKAzdcnt4Rdz0SMVNHNvC9R0-kfvBvrWuT_jz4zxhj3__PF7dlHf317dXl3elF5WcSg9V5ZRR-KRaAdig8I2oaq2E17UzugYBmquNQ-PQGy24d-2mEY3xzimoT9jv9dmR4suMabK7kDz2vRswzslCU0uVlxQyR8--RJ_jTEMul1MAeWUDdU7pNeUppkTYWh8mN4U4TORCb4Hbxahdjdps1C5GrcgkfCFHCjtHb3uZamXSuNhE-tRpD9Ss0DZ0WyTcjIQp2ZZyx4C0Hz396LiNQ_eSv_xfUiljoFnkvwM_6aW1
CitedBy_id crossref_primary_10_3934_math_2022131
crossref_primary_10_1007_s11464_022_0293_x
Cites_doi 10.1016/j.jalgebra.2008.08.026
10.1090/S0002-9939-2013-11823-X
10.1073/pnas.68.11.2631
10.1090/conm/585/11618
10.1016/j.jalgebra.2003.12.019
10.1016/0022-4049(79)90027-6
ContentType Journal Article
Copyright Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s11464-016-0565-4
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Automorphism group of Green ring of Sweedler Hopf algebra
EISSN 1673-3576
2731-8656
EndPage 932
ExternalDocumentID 4145833411
10_1007_s11464_016_0565_4
10.1007/s11464-016-0565-4
669918842
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1-T
1N0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
92L
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACGFS
ACGOD
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
DNIVK
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J9A
JBSCW
K60
K6V
K6~
K7-
KOV
L6V
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
NQJWS
NU0
O9-
O9J
P2P
P4S
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
~A9
~WA
ABQSL
ACUHS
AEFQL
AGRTI
BSONS
H13
PQBZA
ZMTXR
AAYXX
ACSTC
ADHKG
AGQPQ
AHPBZ
CITATION
PUEGO
TGP
406
7SC
7TB
7XB
8AL
8FD
8FK
AACDK
AAJBT
AAPKM
AASML
AATNV
AAYZH
ABAKF
ABDBE
ABFSG
ABRTQ
ACAOD
ACDTI
ACPIV
ACZOJ
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AGQEE
AHWEU
AIGIU
AIXLP
ATHPR
DDRTE
DPUIP
FR3
JQ2
JZLTJ
KR7
L.-
L.0
L7M
L~C
L~D
NPVJJ
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
SJYHP
ID FETCH-LOGICAL-c425t-c122a696eb6f41e8e4c8423764c73a973141706dae9aec9740cafd8489caa613
IEDL.DBID 8FG
ISSN 1673-3452
2731-8648
IngestDate Fri Sep 05 10:12:55 EDT 2025
Wed Sep 17 13:52:04 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Wed Oct 01 03:06:18 EDT 2025
Fri Feb 21 02:25:50 EST 2025
Tue Feb 27 04:43:01 EST 2024
Wed Feb 14 10:16:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Automorphism group
19A22
Green ring
Sweedler Hopf algebra
16W20
Green algebra
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-c122a696eb6f41e8e4c8423764c73a973141706dae9aec9740cafd8489caa613
Notes Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab.
Automorphism group, Green ring, Green algebra, Sweedler Hopf algebra
11-5739/O1
Document accepted on :2015-12-05
Automorphism group
Green ring
Sweedler Hopf algebra
Green algebra
Document received on :2015-09-25
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1811051913
PQPubID 54395
PageCount 12
ParticipantIDs proquest_miscellaneous_1835635745
proquest_journals_1811051913
crossref_citationtrail_10_1007_s11464_016_0565_4
crossref_primary_10_1007_s11464_016_0565_4
springer_journals_10_1007_s11464_016_0565_4
higheredpress_frontiers_10_1007_s11464_016_0565_4
chongqing_primary_669918842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Dordrecht
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of Mathematics
PublicationTitleAbbrev Front. Math. China
PublicationTitleAlternate Frontiers of Mathematics in China
PublicationYear 2016
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References CR4
CR6
Alperin (CR1) 1979; 15
Chen, Huang, Ye, Zhang (CR2) 2004; 275
Dicks (CR5) 1983; 27
van der Kulk (CR11) 1953; 3
Yu (CR13) 1998; 14
Taft (CR10) 1971; 68
Li, Zhang (CR8) 2013; 585
Radford (CR9) 1975; 53
Zhao (CR14) 1995; 4
Huang, Chen, Zhang (CR7) 2004; 11
Chen, Oystaeyen, Zhang (CR3) 2014; 142
Vesselin, Yu (CR12) 2009; 321
D E Radford (565_CR9) 1975; 53
R C Alperin (565_CR1) 1979; 15
W Dicks (565_CR5) 1983; 27
L B Li (565_CR8) 2013; 585
W Kulk van der (565_CR11) 1953; 3
H X Chen (565_CR3) 2014; 142
K M Zhao (565_CR14) 1995; 4
E J Taft (565_CR10) 1971; 68
H L Huang (565_CR7) 2004; 11
H X Chen (565_CR2) 2004; 275
J T Yu (565_CR13) 1998; 14
565_CR6
565_CR4
D Vesselin (565_CR12) 2009; 321
References_xml – volume: 4
  start-page: 448
  year: 1995
  end-page: 494
  ident: CR14
  article-title: Automorphisms of the binary polynomial algebras on integer rings
  publication-title: Chinese Ann Math Ser A
– ident: CR4
– volume: 11
  start-page: 313
  issue: 3
  year: 2004
  end-page: 320
  ident: CR7
  article-title: Generalized Taft Hopf algebras
  publication-title: Algebra Colloq
– volume: 53
  start-page: 9
  year: 1975
  end-page: 15
  ident: CR9
  article-title: On the coradical of a finite-dimensional Hopf algebra
  publication-title: Proc Amer Math Soc
– volume: 321
  start-page: 292
  year: 2009
  end-page: 302
  ident: CR12
  article-title: Automophisms of polynomial algebras and Dirichlet series
  publication-title: J Algebra
  doi: 10.1016/j.jalgebra.2008.08.026
– ident: CR6
– volume: 14
  start-page: 215
  year: 1998
  end-page: 225
  ident: CR13
  article-title: Recognizing automophisms of polynomial algebras
  publication-title: Contemp Math
– volume: 3
  start-page: 33
  year: 1953
  end-page: 41
  ident: CR11
  article-title: On polynomial rings in two variables
  publication-title: Nieuw Arch Wiskd
– volume: 142
  start-page: 765
  year: 2014
  end-page: 775
  ident: CR3
  article-title: The Green rings of Taft algebras
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-2013-11823-X
– volume: 68
  start-page: 2631
  year: 1971
  end-page: 2633
  ident: CR10
  article-title: The order of the antipode of a finite-dimensional Hopf algebra
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.68.11.2631
– volume: 585
  start-page: 275
  year: 2013
  end-page: 288
  ident: CR8
  article-title: The Green rings of the generalized Taft Hopf algebras
  publication-title: Contemp Math
  doi: 10.1090/conm/585/11618
– volume: 275
  start-page: 212
  year: 2004
  end-page: 232
  ident: CR2
  article-title: Monomial Hopf algebra
  publication-title: J Algebra
  doi: 10.1016/j.jalgebra.2003.12.019
– volume: 27
  start-page: 155
  year: 1983
  end-page: 162
  ident: CR5
  article-title: Automorphisms of the polynomial ring in two variables
  publication-title: Publ Sec Mat Univ Autonoma Barcelona
– volume: 15
  start-page: 109
  year: 1979
  end-page: 115
  ident: CR1
  article-title: Homology of the group of automorphisms of k[x, y]
  publication-title: J Pure Appl Algebra
  doi: 10.1016/0022-4049(79)90027-6
– volume: 11
  start-page: 313
  issue: 3
  year: 2004
  ident: 565_CR7
  publication-title: Algebra Colloq
– volume: 321
  start-page: 292
  year: 2009
  ident: 565_CR12
  publication-title: J Algebra
  doi: 10.1016/j.jalgebra.2008.08.026
– ident: 565_CR6
– volume: 585
  start-page: 275
  year: 2013
  ident: 565_CR8
  publication-title: Contemp Math
  doi: 10.1090/conm/585/11618
– volume: 275
  start-page: 212
  year: 2004
  ident: 565_CR2
  publication-title: J Algebra
  doi: 10.1016/j.jalgebra.2003.12.019
– volume: 142
  start-page: 765
  year: 2014
  ident: 565_CR3
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-2013-11823-X
– volume: 27
  start-page: 155
  year: 1983
  ident: 565_CR5
  publication-title: Publ Sec Mat Univ Autonoma Barcelona
– volume: 68
  start-page: 2631
  year: 1971
  ident: 565_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.68.11.2631
– volume: 15
  start-page: 109
  year: 1979
  ident: 565_CR1
  publication-title: J Pure Appl Algebra
  doi: 10.1016/0022-4049(79)90027-6
– ident: 565_CR4
– volume: 14
  start-page: 215
  year: 1998
  ident: 565_CR13
  publication-title: Contemp Math
– volume: 4
  start-page: 448
  year: 1995
  ident: 565_CR14
  publication-title: Chinese Ann Math Ser A
– volume: 53
  start-page: 9
  year: 1975
  ident: 565_CR9
  publication-title: Proc Amer Math Soc
– volume: 3
  start-page: 33
  year: 1953
  ident: 565_CR11
  publication-title: Nieuw Arch Wiskd
SSID ssj0051659
ssj0002902061
Score 2.052272
Snippet Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of...
Let H 2 be Sweedler's 4-dimensional Hopf algebra and r( H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of...
Let H 2 be Sweedler’s 4-dimensional Hopf algebra and r ( H 2 ) be the corresponding Green ring of H 2 . In this paper, we investigate the automorphism groups...
Let H 2 be Sweedler's 4-dimensional Hopf algebra and r(H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of...
Let H sub(2) be Sweedler's 4-dimensional Hopf algebra and r(H sub(2)) be the corresponding Green ring of H sub(2). In this paper, we investigate the...
SourceID proquest
crossref
springer
higheredpress
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 921
SubjectTerms Algebra
Automorphism group
Automorphisms
Green algebra
Green ring
Hopf代数
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Multiplication
Research Article
Rings (mathematics)
Studies
Sweedler Hopf algebra
Theorems
乘法
克莱因
半直积
四维

自同构群
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB50fVHkzl-HvfWkgk9KZdOk2fZxOdRF0RdX0KeSpqnKaau7XQT_emeyzeqKJ_hYmmRoJpPMdL58A7Br0EnQsSgCpRUGKJnUQZLhZiizME8SFarc_nA7O5f9S3FyFV0197hHDu3uUpJ2p3677IZGTYgJjIBRQCDmYSGi-KQFC73j69NDtwFHTNoaaUx2ecBFFLpk5meDEKXCbVXePKHAmaNp-dbiLExu8agz_ueHlKk9iY5-wsB9wwSA8u9gXGcH-uUDveM3P3IFfjSeqd-bLKVVmDPlGiydTWldR-uQ9MZ19VChau5GD769EOJXhW-xOz7JoaeLZzwQ783Q71ePhU9lRDAg34DB0eHgbz9oai8EGq24DjQLQyUTaTJZCGZiI1CjhKARussV1bsSRLyTK5MoozEo6WhV5LGIE60Uugi_oFVWpdkEnzPNE26YKHgmeFjEnSjOGVNRt5szLXMP2lMNpI8Tio1USvRbY5ToQcfpJNUNazkVz7hP3_iWacpSQqrRlKXCg71pFzfeF43ZjKLTgngjqAr5V3223GJIG4vH1jE6UugOM-7BzvQ12iolYFRpqjG14RHx_4nIg32n_3dD_E_g72-1bsNiaBcQoRS3oFUPx-YPek51tt1Yyis_3grD
  priority: 102
  providerName: Springer Nature
Title Automorphism group of Green ring of Sweedler Hopf algebra
URI http://lib.cqvip.com/qk/71243X/201604/669918842.html
https://journal.hep.com.cn/fmc/EN/10.1007/s11464-016-0565-4
https://link.springer.com/article/10.1007/s11464-016-0565-4
https://www.proquest.com/docview/1811051913
https://www.proquest.com/docview/1835635745
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1673-3576
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0051659
  issn: 1673-3452
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1673-3576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002902061
  issn: 1673-3452
  databaseCode: AFBBN
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1673-3576
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0051659
  issn: 1673-3452
  databaseCode: BENPR
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1673-3576
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0051659
  issn: 1673-3452
  databaseCode: 8FG
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1673-3576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051659
  issn: 1673-3452
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1673-3576
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051659
  issn: 1673-3452
  databaseCode: U2A
  dateStart: 20060123
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29qVjjHZtmdcPPNjTimkky4r0NJKRNGw0jLWF9snIkrwOWjttEvbv7061vWXQPAmjL3N30p10p98BfPRoJFglysRYgweUQtpEF7gZyoI7rQ03Lly4nU_l5Ep8vc6umwu3eRNW2e6JYaN2taU78lPURIzMDZZ-nj0klDWKvKtNCo2XsMk4ShK9FB-fdXcsXKMxFCBTUUmzREmhWsdmeD2HuwSFYOCRGv84EQSvcFtXPx9Qaayoqde3IebCuxCbumKL_uc-DVppvA1vGnMyHjzxfwde-OotvDrvsFjnu6AHy0V9XyM9f83v4_CKI67LOATcxDQqfV38Ri125x_jST0rY8r9gafoPbgcjy6_TJImYUJicektEss4N1JLX8hSMK-8QDZQ2Iuw_dRQkipBaDnOeG28xZNEz5rSKaG0NQb1-j5sVHXl30GcMpvq1DNRpoVIeal6mXKMmazfd8xKF8FBR6p89oSLkUuJxqbCGSPotcTLbQM1Thkv7vK_IMlE-5zCy4j2uYjgU9elHW9NY7bCkbwksAdKHb6uz2HLtbxZpti6E6oIPnTVuMDIa2IqXy-pTZoRaJ_IIjhpuf3PEM9N-H79hAewxYPoUSzhIWwsHpf-CO2bRXEchPgYNgfj4XBK5dnNtxGWw9H0-w-sveKDP6pF93g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8R2kKQ4AKKWD_idQ4IVYVlS7u9sEi9WY7ttJXaZNvdVcWP4j8y490EFom99RjFj2hmMvPZHn8D8CYgSHBaVpl1FhcopXJZUaIzVCX3RWG59XHDbXSkhj_kt-P8eAN-tXdhKK2y9YnRUfvG0R75B4xEjOAGE58mlxlVjaLT1baExsIsDsLPa1yyTT_uf0b9vuV88GW8N8yWVQUyh_Y5yxzj3KpChVJVkgUdJH4r5YZI1xeWKjlJopTxNhQ2OITbPWcrr6UunLUY_HDYW3BbCiGIql8PvnZbOrxA7BUZWhETsEwrqdtz1HhZD50SZXzgCh4FlEliczht6pNLjFErUfH-aUzxCD6mwq5A339Oa2MQHDyEB0v0mu4uzO0RbIT6MdwbddSv0ydQ7M5nzUWD6jubXqTx0kjaVGnM70lpVHr6fo1B8zxcpcNmUqVUagQX7U9hfBOSfAabdVOH55AK5kQhApOVKKXgle7l2jNm837fM6d8AludqMxkQcNhlEJsq3HGBHqt8IxbMptTgY1z84eTmWRvKJuNZG9kAu-6Lu14axqzFY2YirglqFL5uj7brdbM0itg686GE3jdvcb_mQ5pbB2aObUROXEEyjyB9622_xrifxO-WD_hK7gzHI8OzeH-0cEW3OXRDCmNcRs2Z1fzsIPQala-jAadgrnhH-g3c6Mt5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-qBbFIaf2gqVpT6JMSvM1u9pLHo-1xtVUKVfBt2eyHV9Dk6uXov-_MXnL2RIU-huzOwMxOZiYz-xuATw6DBJMLn2ijMUEppUmKEj-GskxtUehU2_DD7fRMji7EyWV22c45nXbd7l1Jcn6ngVCaquZ4Yv3x_cU3NHDqnsBsGJklYgVeCnTVlH1dpIPuU5wxGaalMdnnCRdZ2pU1HyNB4Arjurr6g6yXnNTGOHRcOBs6U5ci0QfF0-CThm_gdRtMxoO59t_CC1dtwqvTBRLrdAuKwaypb2qU5u_pTRzucMS1j0O7TUxU6enXX_Rh1-42HtUTH9PkD8yht-F8-PX88yhpxyUkBg2vSQxLUy0L6UrpBXO5E6gEanoRps81jagShJVjtSu0M5hH9Iz2Nhd5YbRGr74Dq1VduXcQc2Z4wR0TnpeCpz7vZbllTGf9vmVG2gh2F6JSkzkqhpISQ80cOUbQ64SnTAs0TvMurtU9RDLJXlFzGcleiQgOF1s6es8sZksaUZ6gHmhw-HN79jqtqdZIcXWOsQ9GsIxH8HHxGs2Laia6cvWM1vCMIPtEFsFRp-1_SDzF8P1_rT6AtZ9fhurHt7Pvu7CehkNJPYZ7sNrcztw-xj1N-SGc7TvplvUf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automorphism+group+of+Green+ring+of+Sweedler+Hopf+algebra&rft.jtitle=Frontiers+of+mathematics+in+China&rft.au=JIA%2C+Tingting&rft.au=ZHAO%2C+Ruju&rft.au=LI%2C+Libin&rft.date=2016-08-01&rft.pub=Higher+Education+Press&rft.issn=1673-3452&rft.eissn=1673-3576&rft.volume=11&rft.issue=4&rft.spage=921&rft.epage=932&rft_id=info:doi/10.1007%2Fs11464-016-0565-4&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11464-016-0565-4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71243X%2F71243X.jpg