Modelling of covariance structures in generalised estimating equations for longitudinal data

When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 93; no. 4; pp. 927 - 941
Main Authors Ye, Huajun, Pan, Jianxin
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.12.2006
Biometrika Trust, University College London
Oxford University Press for Biometrika Trust
Oxford Publishing Limited (England)
SeriesBiometrika
Subjects
Online AccessGet full text
ISSN0006-3444
1464-3510
DOI10.1093/biomet/93.4.927

Cover

Abstract When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters.
AbstractList When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields efficient estimators for both the mean and covariance parameters.
When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters.
When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters. Copyright 2006, Oxford University Press.
Author Ye, Huajun
Pan, Jianxin
Author_xml – sequence: 1
  givenname: Huajun
  surname: Ye
  fullname: Ye, Huajun
  organization: School of Mathematics, The University of Manchester, PO Box 88, Manchester, M60 1QD, U.K
– sequence: 2
  givenname: Jianxin
  surname: Pan
  fullname: Pan, Jianxin
  organization: School of Mathematics, The University of Manchester, PO Box 88, Manchester, M60 1QD, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18426153$$DView record in Pascal Francis
http://econpapers.repec.org/article/oupbiomet/v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927-941.htm$$DView record in RePEc
BookMark eNp9UU2LFDEQDbKCs6tnT0IjeOyZfPVHjjq4jsuKCAoiQqhOV8aMPZ3ZJL24_96MPYzgwUOlKrz3qiovl-Ri9CMS8pzRJaNKrDrn95hWSizlUvHmEVkwWctSVIxekAWltC6FlPIJuYxxd7zWVb0g3z_4HofBjdvC28L4ewgORoNFTGEyaQoYCzcWWxwxwOAi9gXG5PaQjhK8m3Lhx1hYH4rBj1uXpt6NMBQ9JHhKHlsYIj475Svy5frt5_WmvP347v369W1pJK9S2UHVowQA7KxqrRACettwy0SFiK1BC7SlqqHKMgYGmehAcNFi17fIGxBX5OXc9xD83ZT30zs_hbxF1JyyWslWqky6mUkBD2j0IeRHhAftp8PsnL7XApTIx0MOng3KyeWQOQ5HjDdaSaZ_pH1u9uo0EaKBwYbsmYvnpqyVvGaVyLzVzDPBxxjQ_qVQffw2fRqeK6nzhKyo_lEYl_6YnAK44T-6F7NuF5MP5zGcSsmEqDNezriLCX-dcQg_dd2IptKbr9_0url-8-lmIzUTvwH_frul
CODEN BIOKAX
CitedBy_id crossref_primary_10_1177_0962280214526199
crossref_primary_10_1016_j_spl_2020_108705
crossref_primary_10_1016_j_jmva_2021_104940
crossref_primary_10_1007_s11424_019_7354_6
crossref_primary_10_1198_jasa_2009_tm08485
crossref_primary_10_1007_s00180_015_0599_1
crossref_primary_10_1093_jrsssb_qkae094
crossref_primary_10_1093_biomet_asr068
crossref_primary_10_1007_s11222_013_9398_0
crossref_primary_10_1093_biomet_ass031
crossref_primary_10_1002_bimj_201800311
crossref_primary_10_1080_02331888_2023_2185243
crossref_primary_10_1016_j_csda_2013_10_004
crossref_primary_10_1016_j_csda_2020_107110
crossref_primary_10_1080_10485252_2016_1191632
crossref_primary_10_1007_s10463_012_0383_8
crossref_primary_10_1007_s11749_018_0616_0
crossref_primary_10_1080_02664763_2016_1238052
crossref_primary_10_1111_j_1467_985X_2011_01003_x
crossref_primary_10_1016_j_jspi_2014_11_008
crossref_primary_10_1080_02331888_2017_1341520
crossref_primary_10_1016_j_csda_2011_06_025
crossref_primary_10_1007_s11222_008_9076_9
crossref_primary_10_1016_j_laa_2016_08_013
crossref_primary_10_1111_biom_13506
crossref_primary_10_1093_biomet_asp073
crossref_primary_10_1111_sjos_12253
crossref_primary_10_1016_j_csda_2017_02_015
crossref_primary_10_1080_02331888_2024_2332711
crossref_primary_10_1016_j_jmva_2022_105026
crossref_primary_10_1016_j_jmva_2019_01_001
crossref_primary_10_1080_02664763_2014_920778
crossref_primary_10_1016_j_sigpro_2024_109426
crossref_primary_10_1093_biomet_asn051
crossref_primary_10_1007_s11222_011_9284_6
crossref_primary_10_1080_03610926_2010_491590
crossref_primary_10_1111_acer_13974
crossref_primary_10_1214_18_BJPS416
crossref_primary_10_1007_s11424_024_2187_3
crossref_primary_10_1016_j_jkss_2016_03_003
crossref_primary_10_1088_1742_6596_1324_1_012094
crossref_primary_10_1177_1471082X13520424
crossref_primary_10_1002_cjs_10129
crossref_primary_10_1002_sim_3131
crossref_primary_10_1016_j_jspi_2011_09_011
crossref_primary_10_1007_s11425_013_4608_y
crossref_primary_10_1007_s42081_023_00204_3
crossref_primary_10_1002_bimj_202000129
crossref_primary_10_1080_03610918_2021_1986069
crossref_primary_10_1016_j_jmva_2012_07_014
crossref_primary_10_4236_ojs_2013_31004
crossref_primary_10_1007_s40304_018_0138_9
crossref_primary_10_1080_03610918_2021_1990324
crossref_primary_10_1080_15598608_2017_1298062
crossref_primary_10_1007_s00180_020_00972_6
crossref_primary_10_1007_s13571_014_0079_6
crossref_primary_10_1007_s00180_017_0714_6
crossref_primary_10_1016_j_amc_2014_07_086
crossref_primary_10_1080_02664763_2014_999033
crossref_primary_10_1214_23_AOAS1785
crossref_primary_10_1080_00949655_2025_2460564
crossref_primary_10_1191_1471082X06st105oa
crossref_primary_10_1002_cjs_11221
crossref_primary_10_1111_rssb_12065
crossref_primary_10_1016_j_jspi_2021_12_004
crossref_primary_10_1080_03610918_2022_2155308
crossref_primary_10_1002_cjs_11189
crossref_primary_10_1080_00949655_2015_1057731
crossref_primary_10_1155_2018_4626307
crossref_primary_10_1016_j_jmva_2022_104956
crossref_primary_10_12677_SA_2020_95094
crossref_primary_10_1007_s11425_010_4078_4
crossref_primary_10_1016_j_jkss_2016_10_003
crossref_primary_10_1007_s10463_018_0673_x
crossref_primary_10_4236_ojs_2015_56059
crossref_primary_10_1111_biom_12712
crossref_primary_10_1016_j_csda_2016_04_006
crossref_primary_10_1002_sim_3518
crossref_primary_10_1016_j_cam_2019_03_023
crossref_primary_10_1016_j_spl_2016_10_023
crossref_primary_10_4236_ojs_2020_101002
crossref_primary_10_1002_qre_3176
crossref_primary_10_1080_03610926_2016_1154156
crossref_primary_10_1007_s00362_016_0798_z
crossref_primary_10_1016_j_csda_2021_107386
crossref_primary_10_1002_sim_4480
ContentType Journal Article
Copyright Copyright 2006 Biometrika Trust
2007 INIST-CNRS
Copyright Oxford University Press(England) Dec 2006
Copyright_xml – notice: Copyright 2006 Biometrika Trust
– notice: 2007 INIST-CNRS
– notice: Copyright Oxford University Press(England) Dec 2006
DBID BSCLL
AAYXX
CITATION
IQODW
DKI
X2L
7QO
8FD
FR3
P64
DOI 10.1093/biomet/93.4.927
DatabaseName Istex
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList

Engineering Research Database

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1464-3510
EndPage 941
ExternalDocumentID 1184193191
oupbiomet_v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927_941_htm
18426153
10_1093_biomet_93_4_927
20441336
ark_67375_HXZ_C7FBQJH4_1
Genre Feature
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
8U8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWIL
ABAWQ
ABBHK
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPFR
ABPIB
ABPPZ
ABPQH
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABYWD
ABZBJ
ABZEO
ACBEA
ACFRR
ACGFO
ACGFS
ACGOD
ACHJO
ACIPB
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACUBG
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADMHC
ADNBA
ADOCK
ADODI
ADQBN
ADRDM
ADRTK
ADULT
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGKRT
AGLNM
AGMDO
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AIAGR
AIHAF
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
AS~
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BSCLL
BTQHN
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
WH7
X7H
X7M
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
AGORE
AAYXX
CITATION
IQODW
02
08R
0R
1AW
2P
55
6.Y
91
AABJS
AABMN
AAIYJ
AANRK
AAPBV
ABFLS
ABPTK
ABQTQ
ABSAR
ABYAD
ACTWD
ADBIT
ADEIU
ADORX
ADQLU
ADRIX
AFXEN
AFXKK
AHGVY
AIHXQ
AIKOY
ARQIP
AS
AUCZF
AZQFJ
BYORX
DKI
DPORF
DPPUQ
DZ
E4
EE
EFSUC
ESX
GJ
H5
HZ
I3
IPNFZ
JSODD
KC5
M49
O0
PQEST
RIG
X
X2L
XFK
XHC
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c425t-ba5de4aaaebf98f333adf72f135eee8cefa0809709f11ace13ba3238ebd8e27a3
ISSN 0006-3444
IngestDate Mon Jun 30 08:30:13 EDT 2025
Wed Aug 18 03:13:18 EDT 2021
Mon Jul 21 09:15:52 EDT 2025
Wed Oct 01 01:56:04 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Thu Jun 19 20:18:21 EDT 2025
Sat Sep 20 11:01:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biometrics
Bad specification
Efficiency loss
Generalised estimating equation
Gaussian distribution
Longitudinal data
Statistical simulation
Asymptotic convergence
Cholesky decomposition
Modelling of mean and covariance structures
Estimator efficiency
Cholesky method
Efficiency
Generalized equation
Estimating equation
Misspecification of covariance structure
Data covariances
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-ba5de4aaaebf98f333adf72f135eee8cefa0809709f11ace13ba3238ebd8e27a3
Notes local:934927
ark:/67375/HXZ-C7FBQJH4-1
Received March 2005. Revised February 2006.
istex:602EAEBE7E1ECE0A1CE1B38FAFDD027C66C12229
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 201694849
PQPubID 47813
PageCount 15
ParticipantIDs proquest_journals_201694849
repec_primary_oupbiomet_v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927_941_htm
pascalfrancis_primary_18426153
crossref_primary_10_1093_biomet_93_4_927
crossref_citationtrail_10_1093_biomet_93_4_927
jstor_primary_20441336
istex_primary_ark_67375_HXZ_C7FBQJH4_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationSeriesTitle Biometrika
PublicationTitle Biometrika
PublicationTitleAlternate Biometrika
PublicationYear 2006
Publisher Oxford University Press
Biometrika Trust, University College London
Oxford University Press for Biometrika Trust
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Biometrika Trust, University College London
– name: Oxford University Press for Biometrika Trust
– name: Oxford Publishing Limited (England)
SSID ssj0006656
Score 2.1544666
Snippet When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to...
SourceID proquest
repec
pascalfrancis
crossref
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 927
SubjectTerms Applications
Asymptotic methods
Biology, psychology, social sciences
Cellular communications
Cholesky decomposition
Correlations
Covariance
Covariance matrices
Decomposition
Efficiency
Estimating techniques
Estimators
Estimators for the mean
Exact sciences and technology
Generalised estimating equation
Linear models
Longitudinal data
Mathematical models
Mathematics
Misspecification of covariance structure
Modelling of mean and covariance structures
Multivariate analysis
Parameter estimation
Parametric models
Probability and statistics
Proposals
Sciences and techniques of general use
Statistical discrepancies
Statistics
Studies
Title Modelling of covariance structures in generalised estimating equations for longitudinal data
URI https://api.istex.fr/ark:/67375/HXZ-C7FBQJH4-1/fulltext.pdf
https://www.jstor.org/stable/20441336
http://econpapers.repec.org/article/oupbiomet/v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927-941.htm
https://www.proquest.com/docview/201694849
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1464-3510
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006656
  issn: 0006-3444
  databaseCode: AMVHM
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZQK6S9IBhMlEHlB4R4SdfETtw8joopFA2BtKGCkCwndUTZaEubTBu_nrvYcVKg0uAhaZTardPvfL5z774j5LlKuQ50NPSUiLTHZ5p50BKcFZFmTAk0iSu2z3dRcs4n03DahARV2SVFOsh-_jWv5H9QhXuAK2bJ_gOy7kPhBlwDvnAGhOF8K4yxkJnh1K6Cw6_A71WGMxZJYct1FWyFRZJx42m-AdsSOTXQRoUu-kdpw-Aw0vByiYWLyllVJMsmrDX_9mKOfrGeXzgd_qnaB01K9a100vXe7KVOYAzXls-72U7YDs3Ykaa4pUIjj3FD2jjQRmvyiGNKwLCtVk3hQys-vKUjY0MGYJfb2PBe_aHJDctVxUFQYBQHG_CB69lmzf5tNXMxhmp9gUFrIpTJ9LMci5NXHyYJl-ApdwNYAYYd0j0-_ZicunU7iqpav-4BayKomB2ZYRzVg9iyYbo4Ha_rcFaMrVUbmF65qYuy5bh013qls5b9cnaf3LOOBz02UvSA3NGLfXLXlCK92Sd76HUY0u6H5IsTLLrMaSNYtBEsOl_QlmDRRrCoEywKINO2YFEUrEfk_OT12TjxbBkOLwOFXnipCmeaK6V0msejnDGmZrkIcp-FWutRpnMFbkcshnHu-yrTPksVA0tQp7ORDoRiB6SzWC70Y0IxfCAW0BkMJtALWRqHaQy2kwCj2M913COD-oeVmeWox1Ipl9LESjBpkJBwxSUg0SMvXYeVoWfZ3fRFhZRrt0tAeuSggtI1DGDUPmNRj_S3sG2-cYQbESHrkcMabGnVxAZ6-1HMRxweblzh77oty5Ud45VkCsbJ1A0cOCvhZQ4Hh2OF7wVCwkSRX4vvT277GIdkr5nfT0kHBEQ_AwO6SPtW8vvgQr598wvMD80J
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+covariance+structures+in+generalised+estimating+equations+for+longitudinal+data&rft.jtitle=Biometrika&rft.au=Ye%2C+Huajun&rft.au=Pan%2C+Jianxin&rft.date=2006-12-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=93&rft.issue=4&rft.spage=927&rft.epage=941&rft_id=info:doi/10.1093%2Fbiomet%2F93.4.927&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_C7FBQJH4_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon