Modelling of covariance structures in generalised estimating equations for longitudinal data
When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of...
        Saved in:
      
    
          | Published in | Biometrika Vol. 93; no. 4; pp. 927 - 941 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        01.12.2006
     Biometrika Trust, University College London Oxford University Press for Biometrika Trust Oxford Publishing Limited (England)  | 
| Series | Biometrika | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-3444 1464-3510  | 
| DOI | 10.1093/biomet/93.4.927 | 
Cover
| Abstract | When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters. | 
    
|---|---|
| AbstractList | When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields efficient estimators for both the mean and covariance parameters. When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters. When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to produce efficient parameter estimators. However, misspecification of the working covariance structure may lead to a large loss of efficiency of the estimators of the mean parameters. In this paper we propose an approach for joint modelling of the mean and covariance structures of longitudinal data within the framework of generalised estimating equations. The resulting estimators for the mean and covariance parameters are shown to be consistent and asymptotically Normally distributed. Real data analysis and simulation studies show that the proposed approach yields e?cient estimators for both the mean and covariance parameters. Copyright 2006, Oxford University Press.  | 
    
| Author | Ye, Huajun Pan, Jianxin  | 
    
| Author_xml | – sequence: 1 givenname: Huajun surname: Ye fullname: Ye, Huajun organization: School of Mathematics, The University of Manchester, PO Box 88, Manchester, M60 1QD, U.K – sequence: 2 givenname: Jianxin surname: Pan fullname: Pan, Jianxin organization: School of Mathematics, The University of Manchester, PO Box 88, Manchester, M60 1QD, U.K  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18426153$$DView record in Pascal Francis http://econpapers.repec.org/article/oupbiomet/v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927-941.htm$$DView record in RePEc  | 
    
| BookMark | eNp9UU2LFDEQDbKCs6tnT0IjeOyZfPVHjjq4jsuKCAoiQqhOV8aMPZ3ZJL24_96MPYzgwUOlKrz3qiovl-Ri9CMS8pzRJaNKrDrn95hWSizlUvHmEVkwWctSVIxekAWltC6FlPIJuYxxd7zWVb0g3z_4HofBjdvC28L4ewgORoNFTGEyaQoYCzcWWxwxwOAi9gXG5PaQjhK8m3Lhx1hYH4rBj1uXpt6NMBQ9JHhKHlsYIj475Svy5frt5_WmvP347v369W1pJK9S2UHVowQA7KxqrRACettwy0SFiK1BC7SlqqHKMgYGmehAcNFi17fIGxBX5OXc9xD83ZT30zs_hbxF1JyyWslWqky6mUkBD2j0IeRHhAftp8PsnL7XApTIx0MOng3KyeWQOQ5HjDdaSaZ_pH1u9uo0EaKBwYbsmYvnpqyVvGaVyLzVzDPBxxjQ_qVQffw2fRqeK6nzhKyo_lEYl_6YnAK44T-6F7NuF5MP5zGcSsmEqDNezriLCX-dcQg_dd2IptKbr9_0url-8-lmIzUTvwH_frul | 
    
| CODEN | BIOKAX | 
    
| CitedBy_id | crossref_primary_10_1177_0962280214526199 crossref_primary_10_1016_j_spl_2020_108705 crossref_primary_10_1016_j_jmva_2021_104940 crossref_primary_10_1007_s11424_019_7354_6 crossref_primary_10_1198_jasa_2009_tm08485 crossref_primary_10_1007_s00180_015_0599_1 crossref_primary_10_1093_jrsssb_qkae094 crossref_primary_10_1093_biomet_asr068 crossref_primary_10_1007_s11222_013_9398_0 crossref_primary_10_1093_biomet_ass031 crossref_primary_10_1002_bimj_201800311 crossref_primary_10_1080_02331888_2023_2185243 crossref_primary_10_1016_j_csda_2013_10_004 crossref_primary_10_1016_j_csda_2020_107110 crossref_primary_10_1080_10485252_2016_1191632 crossref_primary_10_1007_s10463_012_0383_8 crossref_primary_10_1007_s11749_018_0616_0 crossref_primary_10_1080_02664763_2016_1238052 crossref_primary_10_1111_j_1467_985X_2011_01003_x crossref_primary_10_1016_j_jspi_2014_11_008 crossref_primary_10_1080_02331888_2017_1341520 crossref_primary_10_1016_j_csda_2011_06_025 crossref_primary_10_1007_s11222_008_9076_9 crossref_primary_10_1016_j_laa_2016_08_013 crossref_primary_10_1111_biom_13506 crossref_primary_10_1093_biomet_asp073 crossref_primary_10_1111_sjos_12253 crossref_primary_10_1016_j_csda_2017_02_015 crossref_primary_10_1080_02331888_2024_2332711 crossref_primary_10_1016_j_jmva_2022_105026 crossref_primary_10_1016_j_jmva_2019_01_001 crossref_primary_10_1080_02664763_2014_920778 crossref_primary_10_1016_j_sigpro_2024_109426 crossref_primary_10_1093_biomet_asn051 crossref_primary_10_1007_s11222_011_9284_6 crossref_primary_10_1080_03610926_2010_491590 crossref_primary_10_1111_acer_13974 crossref_primary_10_1214_18_BJPS416 crossref_primary_10_1007_s11424_024_2187_3 crossref_primary_10_1016_j_jkss_2016_03_003 crossref_primary_10_1088_1742_6596_1324_1_012094 crossref_primary_10_1177_1471082X13520424 crossref_primary_10_1002_cjs_10129 crossref_primary_10_1002_sim_3131 crossref_primary_10_1016_j_jspi_2011_09_011 crossref_primary_10_1007_s11425_013_4608_y crossref_primary_10_1007_s42081_023_00204_3 crossref_primary_10_1002_bimj_202000129 crossref_primary_10_1080_03610918_2021_1986069 crossref_primary_10_1016_j_jmva_2012_07_014 crossref_primary_10_4236_ojs_2013_31004 crossref_primary_10_1007_s40304_018_0138_9 crossref_primary_10_1080_03610918_2021_1990324 crossref_primary_10_1080_15598608_2017_1298062 crossref_primary_10_1007_s00180_020_00972_6 crossref_primary_10_1007_s13571_014_0079_6 crossref_primary_10_1007_s00180_017_0714_6 crossref_primary_10_1016_j_amc_2014_07_086 crossref_primary_10_1080_02664763_2014_999033 crossref_primary_10_1214_23_AOAS1785 crossref_primary_10_1080_00949655_2025_2460564 crossref_primary_10_1191_1471082X06st105oa crossref_primary_10_1002_cjs_11221 crossref_primary_10_1111_rssb_12065 crossref_primary_10_1016_j_jspi_2021_12_004 crossref_primary_10_1080_03610918_2022_2155308 crossref_primary_10_1002_cjs_11189 crossref_primary_10_1080_00949655_2015_1057731 crossref_primary_10_1155_2018_4626307 crossref_primary_10_1016_j_jmva_2022_104956 crossref_primary_10_12677_SA_2020_95094 crossref_primary_10_1007_s11425_010_4078_4 crossref_primary_10_1016_j_jkss_2016_10_003 crossref_primary_10_1007_s10463_018_0673_x crossref_primary_10_4236_ojs_2015_56059 crossref_primary_10_1111_biom_12712 crossref_primary_10_1016_j_csda_2016_04_006 crossref_primary_10_1002_sim_3518 crossref_primary_10_1016_j_cam_2019_03_023 crossref_primary_10_1016_j_spl_2016_10_023 crossref_primary_10_4236_ojs_2020_101002 crossref_primary_10_1002_qre_3176 crossref_primary_10_1080_03610926_2016_1154156 crossref_primary_10_1007_s00362_016_0798_z crossref_primary_10_1016_j_csda_2021_107386 crossref_primary_10_1002_sim_4480  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright 2006 Biometrika Trust 2007 INIST-CNRS Copyright Oxford University Press(England) Dec 2006  | 
    
| Copyright_xml | – notice: Copyright 2006 Biometrika Trust – notice: 2007 INIST-CNRS – notice: Copyright Oxford University Press(England) Dec 2006  | 
    
| DBID | BSCLL AAYXX CITATION IQODW DKI X2L 7QO 8FD FR3 P64  | 
    
| DOI | 10.1093/biomet/93.4.927 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis RePEc IDEAS RePEc Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1464-3510 | 
    
| EndPage | 941 | 
    
| ExternalDocumentID | 1184193191 oupbiomet_v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927_941_htm 18426153 10_1093_biomet_93_4_927 20441336 ark_67375_HXZ_C7FBQJH4_1  | 
    
| Genre | Feature | 
    
| GroupedDBID | -DZ -E4 -~X ..I .2P .55 .DC .GJ .I3 0R~ 1TH 23N 3R3 4.4 482 48X 53G 5GY 5RE 5VS 5WA 6J9 6OB 70D 79B 8U8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWIL ABAWQ ABBHK ABDFA ABDTM ABEJV ABEUO ABFAN ABGNP ABIME ABIXL ABJNI ABLJU ABNGD ABNKS ABPFR ABPIB ABPPZ ABPQH ABPQP ABPTD ABQLI ABSMQ ABVGC ABWST ABXSQ ABXVV ABYWD ABZBJ ABZEO ACBEA ACFRR ACGFO ACGFS ACGOD ACHJO ACIPB ACIWK ACMTB ACNCT ACPQN ACPRK ACTMH ACUBG ACUFI ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADLSF ADMHC ADNBA ADOCK ADODI ADQBN ADRDM ADRTK ADULT ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFIYH AFOFC AFRAH AFSHK AFVYC AFXHP AFYAG AGINJ AGKEF AGKRT AGLNM AGMDO AGQPQ AGQXC AGSYK AHGBF AHXPO AIAGR AIHAF AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALRMG ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG AS~ ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BSCLL BTQHN C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DQDLB DSRWC DU5 D~K EBS ECEWR EE~ EJD ELUNK F5P F9B FEDTE FLIZI FLUFQ FOEOM FQBLK FVMVE GAUVT GJXCC H13 H5~ HAR HGD HQ6 HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI RNS ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TJP TN5 UAP WH7 X7H X7M XSW YAYTL YKOAZ YXANX ZCG ZGI ZKX ~02 ~91 AGORE AAYXX CITATION IQODW 02 08R 0R 1AW 2P 55 6.Y 91 AABJS AABMN AAIYJ AANRK AAPBV ABFLS ABPTK ABQTQ ABSAR ABYAD ACTWD ADBIT ADEIU ADORX ADQLU ADRIX AFXEN AFXKK AHGVY AIHXQ AIKOY ARQIP AS AUCZF AZQFJ BYORX DKI DPORF DPPUQ DZ E4 EE EFSUC ESX GJ H5 HZ I3 IPNFZ JSODD KC5 M49 O0 PQEST RIG X X2L XFK XHC 7QO 8FD FR3 P64  | 
    
| ID | FETCH-LOGICAL-c425t-ba5de4aaaebf98f333adf72f135eee8cefa0809709f11ace13ba3238ebd8e27a3 | 
    
| ISSN | 0006-3444 | 
    
| IngestDate | Mon Jun 30 08:30:13 EDT 2025 Wed Aug 18 03:13:18 EDT 2021 Mon Jul 21 09:15:52 EDT 2025 Wed Oct 01 01:56:04 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Thu Jun 19 20:18:21 EDT 2025 Sat Sep 20 11:01:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Biometrics Bad specification Efficiency loss Generalised estimating equation Gaussian distribution Longitudinal data Statistical simulation Asymptotic convergence Cholesky decomposition Modelling of mean and covariance structures Estimator efficiency Cholesky method Efficiency Generalized equation Estimating equation Misspecification of covariance structure Data covariances  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c425t-ba5de4aaaebf98f333adf72f135eee8cefa0809709f11ace13ba3238ebd8e27a3 | 
    
| Notes | local:934927 ark:/67375/HXZ-C7FBQJH4-1 Received March 2005. Revised February 2006. istex:602EAEBE7E1ECE0A1CE1B38FAFDD027C66C12229 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14  | 
    
| PQID | 201694849 | 
    
| PQPubID | 47813 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_201694849 repec_primary_oupbiomet_v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927_941_htm pascalfrancis_primary_18426153 crossref_primary_10_1093_biomet_93_4_927 crossref_citationtrail_10_1093_biomet_93_4_927 jstor_primary_20441336 istex_primary_ark_67375_HXZ_C7FBQJH4_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2006-12-01 | 
    
| PublicationDateYYYYMMDD | 2006-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationSeriesTitle | Biometrika | 
    
| PublicationTitle | Biometrika | 
    
| PublicationTitleAlternate | Biometrika | 
    
| PublicationYear | 2006 | 
    
| Publisher | Oxford University Press Biometrika Trust, University College London Oxford University Press for Biometrika Trust Oxford Publishing Limited (England)  | 
    
| Publisher_xml | – name: Oxford University Press – name: Biometrika Trust, University College London – name: Oxford University Press for Biometrika Trust – name: Oxford Publishing Limited (England)  | 
    
| SSID | ssj0006656 | 
    
| Score | 2.1544666 | 
    
| Snippet | When used for modelling longitudinal data generalised estimating equations specify a working structure for the within-subject covariance matrices, aiming to... | 
    
| SourceID | proquest repec pascalfrancis crossref jstor istex  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 927 | 
    
| SubjectTerms | Applications Asymptotic methods Biology, psychology, social sciences Cellular communications Cholesky decomposition Correlations Covariance Covariance matrices Decomposition Efficiency Estimating techniques Estimators Estimators for the mean Exact sciences and technology Generalised estimating equation Linear models Longitudinal data Mathematical models Mathematics Misspecification of covariance structure Modelling of mean and covariance structures Multivariate analysis Parameter estimation Parametric models Probability and statistics Proposals Sciences and techniques of general use Statistical discrepancies Statistics Studies  | 
    
| Title | Modelling of covariance structures in generalised estimating equations for longitudinal data | 
    
| URI | https://api.istex.fr/ark:/67375/HXZ-C7FBQJH4-1/fulltext.pdf https://www.jstor.org/stable/20441336 http://econpapers.repec.org/article/oupbiomet/v_3a93_3ay_3a2006_3ai_3a4_3ap_3a927-941.htm https://www.proquest.com/docview/201694849  | 
    
| Volume | 93 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1464-3510 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006656 issn: 0006-3444 databaseCode: AMVHM dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZQK6S9IBhMlEHlB4R4SdfETtw8joopFA2BtKGCkCwndUTZaEubTBu_nrvYcVKg0uAhaZTardPvfL5z774j5LlKuQ50NPSUiLTHZ5p50BKcFZFmTAk0iSu2z3dRcs4n03DahARV2SVFOsh-_jWv5H9QhXuAK2bJ_gOy7kPhBlwDvnAGhOF8K4yxkJnh1K6Cw6_A71WGMxZJYct1FWyFRZJx42m-AdsSOTXQRoUu-kdpw-Aw0vByiYWLyllVJMsmrDX_9mKOfrGeXzgd_qnaB01K9a100vXe7KVOYAzXls-72U7YDs3Ykaa4pUIjj3FD2jjQRmvyiGNKwLCtVk3hQys-vKUjY0MGYJfb2PBe_aHJDctVxUFQYBQHG_CB69lmzf5tNXMxhmp9gUFrIpTJ9LMci5NXHyYJl-ApdwNYAYYd0j0-_ZicunU7iqpav-4BayKomB2ZYRzVg9iyYbo4Ha_rcFaMrVUbmF65qYuy5bh013qls5b9cnaf3LOOBz02UvSA3NGLfXLXlCK92Sd76HUY0u6H5IsTLLrMaSNYtBEsOl_QlmDRRrCoEywKINO2YFEUrEfk_OT12TjxbBkOLwOFXnipCmeaK6V0msejnDGmZrkIcp-FWutRpnMFbkcshnHu-yrTPksVA0tQp7ORDoRiB6SzWC70Y0IxfCAW0BkMJtALWRqHaQy2kwCj2M913COD-oeVmeWox1Ipl9LESjBpkJBwxSUg0SMvXYeVoWfZ3fRFhZRrt0tAeuSggtI1DGDUPmNRj_S3sG2-cYQbESHrkcMabGnVxAZ6-1HMRxweblzh77oty5Ud45VkCsbJ1A0cOCvhZQ4Hh2OF7wVCwkSRX4vvT277GIdkr5nfT0kHBEQ_AwO6SPtW8vvgQr598wvMD80J | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+covariance+structures+in+generalised+estimating+equations+for+longitudinal+data&rft.jtitle=Biometrika&rft.au=Ye%2C+Huajun&rft.au=Pan%2C+Jianxin&rft.date=2006-12-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=93&rft.issue=4&rft.spage=927&rft.epage=941&rft_id=info:doi/10.1093%2Fbiomet%2F93.4.927&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_C7FBQJH4_1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon |