Measuring and moderating opinion polarization in social networks

The polarization of society over controversial social issues has been the subject of study in social sciences for decades (Isenberg in J Personal Soc Psychol 50(6):1141–1151,  1986 , Sunstein in J Polit Philos 10(2):175–195,  2002 ). The widespread usage of online social networks and social media, a...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 31; no. 5; pp. 1480 - 1505
Main Authors Matakos, Antonis, Terzi, Evimaria, Tsaparas, Panayiotis
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-017-0527-9

Cover

Abstract The polarization of society over controversial social issues has been the subject of study in social sciences for decades (Isenberg in J Personal Soc Psychol 50(6):1141–1151,  1986 , Sunstein in J Polit Philos 10(2):175–195,  2002 ). The widespread usage of online social networks and social media, and the tendency of people to connect and interact with like-minded individuals has only intensified the phenomenon of polarization (Bakshy et al. in Science 348(6239):1130–1132, 2015 ). In this paper, we consider the problem of measuring and reducing polarization of opinions in a social network. Using a standard opinion formation model (Friedkin and Johnsen in J Math Soc 15(3–4):193–206,  1990 ), we define the polarization index , which, given a network and the opinions of the individuals in the network, it quantifies the polarization observed in the network. Our measure captures the tendency of opinions to concentrate in network communities, creating echo-chambers. Given this numeric measure of polarization, we then consider the problem of reducing polarization in the network by convincing individuals (e.g., through education, exposure to diverse viewpoints, or incentives) to adopt a more neutral stand towards controversial issues. We formally define the ModerateInternal and ModerateExpressed problems, and we prove that both our problems are NP-hard. By exploiting the linear-algebraic characteristics of the opinion formation model we design polynomial-time algorithms for both problems. Our experiments with real-world datasets demonstrate the validity of our metric, and the efficiency and the effectiveness of our algorithms in practice.
AbstractList The polarization of society over controversial social issues has been the subject of study in social sciences for decades (Isenberg in J Personal Soc Psychol 50(6):1141-1151, 1986 , Sunstein in J Polit Philos 10(2):175-195, 2002 ). The widespread usage of online social networks and social media, and the tendency of people to connect and interact with like-minded individuals has only intensified the phenomenon of polarization (Bakshy et al. in Science 348(6239):1130-1132, 2015 ). In this paper, we consider the problem of measuring and reducing polarization of opinions in a social network. Using a standard opinion formation model (Friedkin and Johnsen in J Math Soc 15(3-4):193-206, 1990 ), we define the polarization index, which, given a network and the opinions of the individuals in the network, it quantifies the polarization observed in the network. Our measure captures the tendency of opinions to concentrate in network communities, creating echo-chambers. Given this numeric measure of polarization, we then consider the problem of reducing polarization in the network by convincing individuals (e.g., through education, exposure to diverse viewpoints, or incentives) to adopt a more neutral stand towards controversial issues. We formally define the ModerateInternal and ModerateExpressed problems, and we prove that both our problems are NP-hard. By exploiting the linear-algebraic characteristics of the opinion formation model we design polynomial-time algorithms for both problems. Our experiments with real-world datasets demonstrate the validity of our metric, and the efficiency and the effectiveness of our algorithms in practice.
The polarization of society over controversial social issues has been the subject of study in social sciences for decades (Isenberg in J Personal Soc Psychol 50(6):1141–1151,  1986 , Sunstein in J Polit Philos 10(2):175–195,  2002 ). The widespread usage of online social networks and social media, and the tendency of people to connect and interact with like-minded individuals has only intensified the phenomenon of polarization (Bakshy et al. in Science 348(6239):1130–1132, 2015 ). In this paper, we consider the problem of measuring and reducing polarization of opinions in a social network. Using a standard opinion formation model (Friedkin and Johnsen in J Math Soc 15(3–4):193–206,  1990 ), we define the polarization index , which, given a network and the opinions of the individuals in the network, it quantifies the polarization observed in the network. Our measure captures the tendency of opinions to concentrate in network communities, creating echo-chambers. Given this numeric measure of polarization, we then consider the problem of reducing polarization in the network by convincing individuals (e.g., through education, exposure to diverse viewpoints, or incentives) to adopt a more neutral stand towards controversial issues. We formally define the ModerateInternal and ModerateExpressed problems, and we prove that both our problems are NP-hard. By exploiting the linear-algebraic characteristics of the opinion formation model we design polynomial-time algorithms for both problems. Our experiments with real-world datasets demonstrate the validity of our metric, and the efficiency and the effectiveness of our algorithms in practice.
Author Terzi, Evimaria
Matakos, Antonis
Tsaparas, Panayiotis
Author_xml – sequence: 1
  givenname: Antonis
  orcidid: 0000-0002-1003-7101
  surname: Matakos
  fullname: Matakos, Antonis
  email: amatakos@cs.uoi.gr
  organization: Department of Computer Science and Engineering, University of Ioannina
– sequence: 2
  givenname: Evimaria
  surname: Terzi
  fullname: Terzi, Evimaria
  organization: Department of Computer Science, Boston University
– sequence: 3
  givenname: Panayiotis
  surname: Tsaparas
  fullname: Tsaparas, Panayiotis
  organization: Department of Computer Science and Engineering, University of Ioannina
BookMark eNp9kMtOxCAUhokZE2dGH8BdE9colBbKTjPxloxxo4k7QrkYxg5U6MTo00utC2OiK84h_8fhfAsw88EbAI4xOsUIsbOEEcUNRJhBVJcM8j0wxzUjkNX0aZZr0lSwbjA6AIuUNgjlFEFzcH5nZNpF558L6XWxDdpEOYxt6J13wRd96GR0H_kyN84XKSgnu8Kb4S3El3QI9q3skjn6Ppfg8eryYXUD1_fXt6uLNVRVWQ-wLWlrK0UV55W1WrfGEm5KymjJFEVYMcuolUppwrTCXCLaSqkxIZgpyxuyBCfTu30MrzuTBrEJu-jzSIF5TjWopCin8JRSMaQUjRV9dFsZ3wVGYhQlJlEiixKjKMEzw34xyg1f6w5Ruu5fspzI1I8GTfzxpz-hT0rHf-A
CitedBy_id crossref_primary_10_1098_rstb_2023_0182
crossref_primary_10_1145_3373464_3373476
crossref_primary_10_1287_ijoc_2019_0950
crossref_primary_10_1080_10714421_2018_1495434
crossref_primary_10_1109_TCSS_2023_3324144
crossref_primary_10_1016_j_chaos_2022_113095
crossref_primary_10_1140_epjds_s13688_020_00240_z
crossref_primary_10_1088_1674_1056_ac0baa
crossref_primary_10_1145_3707701
crossref_primary_10_3390_e25040568
crossref_primary_10_1016_j_ipm_2020_102366
crossref_primary_10_3390_journalmedia5030085
crossref_primary_10_1007_s10618_022_00875_8
crossref_primary_10_1016_j_techfore_2021_120924
crossref_primary_10_1093_comnet_cnz036
crossref_primary_10_1007_s13278_021_00792_6
crossref_primary_10_3390_sym14122499
crossref_primary_10_17275_per_23_68_10_4
crossref_primary_10_1093_phe_phz007
crossref_primary_10_1109_TKDE_2024_3424974
crossref_primary_10_3390_socsci13120692
crossref_primary_10_1098_rsos_201943
crossref_primary_10_1007_s00332_024_10060_4
crossref_primary_10_14778_3551793_3551824
crossref_primary_10_3934_math_2022311
crossref_primary_10_1038_s42005_021_00580_w
crossref_primary_10_3390_healthcare8020160
crossref_primary_10_1177_20563051231196899
crossref_primary_10_1109_TKDE_2020_3038711
crossref_primary_10_1002_sd_2232
crossref_primary_10_1126_sciadv_abq2044
crossref_primary_10_1103_PhysRevLett_130_037401
crossref_primary_10_1103_PhysRevLett_130_207401
crossref_primary_10_1007_s13278_020_00703_1
crossref_primary_10_1108_IJCS_02_2021_0003
crossref_primary_10_1016_j_ins_2019_03_041
crossref_primary_10_1016_j_osnem_2024_100280
crossref_primary_10_1057_s41599_024_03355_0
crossref_primary_10_1145_3625826
crossref_primary_10_1109_TNSE_2023_3262970
crossref_primary_10_1007_s10618_024_01064_5
crossref_primary_10_1007_s42001_020_00063_y
crossref_primary_10_1103_PhysRevResearch_7_013207
crossref_primary_10_1080_1369118X_2023_2240580
crossref_primary_10_1177_08944393221087662
crossref_primary_10_1103_PhysRevE_110_044303
crossref_primary_10_1002_cpe_5771
crossref_primary_10_1109_TNSE_2018_2878377
crossref_primary_10_1016_j_jort_2023_100689
crossref_primary_10_3389_fenvs_2023_1130533
crossref_primary_10_1016_j_tcs_2025_115090
crossref_primary_10_1109_TSMC_2023_3268758
crossref_primary_10_1587_transcom_2021MEP0001
crossref_primary_10_1145_3711912
crossref_primary_10_1155_2020_5282035
crossref_primary_10_1002_aur_3276
crossref_primary_10_1109_LSP_2022_3193039
crossref_primary_10_1140_epjds_s13688_023_00423_4
crossref_primary_10_1109_TCSS_2020_3035228
crossref_primary_10_1007_s13278_020_00698_9
crossref_primary_10_1109_TIFS_2024_3383244
crossref_primary_10_1145_3530901
crossref_primary_10_1016_j_jjimei_2024_100264
Cites_doi 10.1016/j.geb.2014.06.004
10.1038/srep40391
10.1609/icwsm.v8i1.14524
10.1007/978-3-319-18117-2_1
10.1145/2835776.2835792
10.1145/3018661.3018703
10.1037/0022-3514.50.6.1141
10.1109/MCI.2016.2572539
10.1371/journal.pone.0159641
10.1145/956750.956769
10.2200/S00416ED1V01Y201204HLT016
10.1145/1753326.1753543
10.1137/S0097539792240406
10.1080/0022250X.1990.9990069
10.1117/12.173207
10.3139/9783446431164
10.1111/1467-9760.00148
10.1126/science.aaa1160
10.1073/pnas.1217220110
10.1137/1.9781611972832.43
10.1002/asi.23274
10.1137/1031049
10.1145/1134271.1134277
10.1145/2339530.2339663
10.1016/j.knosys.2016.06.009
10.1111/j.1083-6101.2009.01440.x
ContentType Journal Article
Copyright The Author(s) 2017
Data Mining and Knowledge Discovery is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-017-0527-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1505
ExternalDocumentID 10_1007_s10618_017_0527_9
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: JMUGCS
  funderid: http://dx.doi.org/10.13039/100010665
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c425t-b26bf4c6c994ffddbef39e267627c601c7f76faccd37dc19a06baad13317cf983
IEDL.DBID AGYKE
ISSN 1384-5810
IngestDate Sat Aug 23 14:49:55 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Fri Feb 21 02:33:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Polarization
Social networks
Opinion formation
Moderation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-b26bf4c6c994ffddbef39e267627c601c7f76faccd37dc19a06baad13317cf983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1003-7101
PQID 1933180260
PQPubID 43030
PageCount 26
ParticipantIDs proquest_journals_1933180260
crossref_primary_10_1007_s10618_017_0527_9
crossref_citationtrail_10_1007_s10618_017_0527_9
springer_journals_10_1007_s10618_017_0527_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BessiAZolloFVicarioMDPuligaMScalaACaldarelliGUzziBQuattrociocchiWUsers polarization on Facebook and YoutubePLoS ONE2016118e015964110.1371/journal.pone.0159641
Munson SA, Lee SY, Resnick P (2013) Encouraging reading of diverse political viewpoints with a browser widget. In: International conference on weblogs and social media, ICWSM
FriedkinNEJohnsenESocial influence and opinionsJ Math Soc1990153–419320610.1080/0022250X.1990.99900690712.92025
Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 137–146
Munson SA, Resnick P (2010) Presenting diverse political opinions: how and how much. In: International conference on human factors in computing systems, CHI, pp 1457–1466
BakshyEMessingSAdamicLExposure to ideologically diverse news and opinion on FacebookScience2015348623911301132338063010.1126/science.aaa11601355.91066
Davis G, Mallat S, Zhang Z (1994) Adaptive time-frequency decompositions with matching pursuits. Opt Eng 33(7):2183–2191
HagerWWUpdating the inverse of a matrixSIAM Rev198931222123999745710.1137/10310490671.65018
NatarajanBKSparse approximate solutions to linear systemsSIAM J Comput1995242227234132020610.1137/S00975397922404060827.68054
BindelDKleinbergJMOrenSHow bad is forming your own opinion?Games Econ Behav201592248265337766010.1016/j.geb.2014.06.0041318.91156
Del VicarioMScalaACaldarelliGStanleyHEQuattrociocchiWModeling confirmation bias and polarizationSci Rep201774039110.1038/srep40391
Amelkin V, Singh AK, Bogdanov P (2015) A distance measure for the analysis of polar opinion dynamics in social networks. arXiv:1510.05058
SunsteinCRThe law of group polarizationJ Polit Philos200210217519510.1111/1467-9760.00148
DandekarPGoelALeeDTBiased assimilation, homophily, and the dynamics of polarizationProc Natl Acad Sci20131101557915796306580710.1073/pnas.12172201101292.91147
Adamic LA, Glance N (2005) The political blogosphere and the 2004 u.s. election: Divided they blog. In: International workshop on link discovery, LinkKDD
Conover M, Ratkiewicz J, Francisco MR, Gonçalves B, Menczer F, Flammini A (2011) Political polarization on Twitter. In: International conference on weblogs and social media ICWSM
CambriaEPoriaSBisioFBajpaiRChaturvediIThe CLSA model: a novel framework for concept-level sentiment analysis2015ChamSpringer International Publishing
GarrettRKEcho chambers online? Politically motivated selective exposure among internet news users1J Comput Mediat Commun2009142265285275067910.1111/j.1083-6101.2009.01440.x
LiuBSentiment analysis and opinion miningSynth Lect Hum Lang Technol2012511167105889610.2200/S00416ED1V01Y201204HLT016
PoriaSCambriaEGelbukhAAspect extraction for opinion mining with a deep convolutional neural networkKnowl Based Syst2016108C424910.1016/j.knosys.2016.06.009
Feige U (2003) Vertex cover is hardest to approximate on regular graphs. Technical report MCS03-15 of the Weizmann Institute
Garimella VRK, Morales GDF, Gionis A, Mathioudakis M (2017) Reducing controversy by connecting opposing views. In: ACM WISDOM international conference on web search and data mining
Lappas T, Crovella M, Terzi E (2012) Selecting a characteristic set of reviews. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 832–840
Gionis A, Terzi E, Tsaparas P (2013) Opinion maximization in social networks. In: SIAM international conference on data mining, pp 387–395
MallatSA wavelet tour of signal processing, third edition: the sparse way20083CambridgeAcademic Press1170.94003
Pariser E (2011) The filter bubble: what the internet is hiding from you. The Penguin Group
Garimella K, Morales GDF, Gionis A, Mathioudakis M (2016) Quantifying controversy in social media. In: ACM international conference on web search and data mining, WSDM, pp 33–42
IsenbergDJGroup polarization: a critical review and meta-analysisJ Personal Soc Psychol19865061141115110.1037/0022-3514.50.6.1141
Guerra PHC, Jr, WM, Cardie C, Kleinberg R (2013) A measure of polarization on social media networks based on community boundaries. In: International conference on weblogs and social media, ICWSM
Cambria E, Poria S, Bajpai R, Schuller BW (2016) SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In: 26th International conference on computational linguistics (COLING 2016), Proceedings of the conference: Technical Papers, Osaka, Japan, December 11–16, 2016, pp. 2666–2677
Vicario MD, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) Modeling confirmation bias and polarization. arXiv:1607.00022
Akoglu L (2014) Quantifying political polarity based on bipartite opinion networks. In: International conference on weblogs and social media, ICWSM
ChenTXuRHeYXiaYWangXLearning user and product distributed representations using a sequence model for sentiment analysisIEEE Comp Int Mag2016113344410.1109/MCI.2016.2572539
Lawrence P, Sergey B, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web. Technical report, Stanford University
VydiswaranVZhaiCRothDPirolliPOvercoming bias to learn about controversial topicsJ Assoc Inf Sci Technol20156681655167210.1002/asi.23274
M Vicario Del (527_CR13) 2017; 7
V Vydiswaran (527_CR35) 2015; 66
527_CR8
RK Garrett (527_CR18) 2009; 14
DJ Isenberg (527_CR22) 1986; 50
CR Sunstein (527_CR33) 2002; 10
A Bessi (527_CR5) 2016; 11
527_CR28
527_CR29
527_CR20
527_CR24
E Bakshy (527_CR4) 2015; 348
527_CR25
527_CR23
D Bindel (527_CR6) 2015; 92
E Cambria (527_CR7) 2015
WW Hager (527_CR21) 1989; 31
NE Friedkin (527_CR15) 1990; 15
BK Natarajan (527_CR30) 1995; 24
S Mallat (527_CR27) 2008
527_CR3
527_CR17
527_CR2
527_CR1
P Dandekar (527_CR11) 2013; 110
B Liu (527_CR26) 2012; 5
S Poria (527_CR32) 2016; 108
527_CR16
T Chen (527_CR9) 2016; 11
527_CR19
527_CR31
527_CR10
527_CR14
527_CR12
527_CR34
References_xml – reference: VydiswaranVZhaiCRothDPirolliPOvercoming bias to learn about controversial topicsJ Assoc Inf Sci Technol20156681655167210.1002/asi.23274
– reference: GarrettRKEcho chambers online? Politically motivated selective exposure among internet news users1J Comput Mediat Commun2009142265285275067910.1111/j.1083-6101.2009.01440.x
– reference: Lappas T, Crovella M, Terzi E (2012) Selecting a characteristic set of reviews. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 832–840
– reference: ChenTXuRHeYXiaYWangXLearning user and product distributed representations using a sequence model for sentiment analysisIEEE Comp Int Mag2016113344410.1109/MCI.2016.2572539
– reference: Del VicarioMScalaACaldarelliGStanleyHEQuattrociocchiWModeling confirmation bias and polarizationSci Rep201774039110.1038/srep40391
– reference: Garimella K, Morales GDF, Gionis A, Mathioudakis M (2016) Quantifying controversy in social media. In: ACM international conference on web search and data mining, WSDM, pp 33–42
– reference: PoriaSCambriaEGelbukhAAspect extraction for opinion mining with a deep convolutional neural networkKnowl Based Syst2016108C424910.1016/j.knosys.2016.06.009
– reference: Gionis A, Terzi E, Tsaparas P (2013) Opinion maximization in social networks. In: SIAM international conference on data mining, pp 387–395
– reference: LiuBSentiment analysis and opinion miningSynth Lect Hum Lang Technol2012511167105889610.2200/S00416ED1V01Y201204HLT016
– reference: Amelkin V, Singh AK, Bogdanov P (2015) A distance measure for the analysis of polar opinion dynamics in social networks. arXiv:1510.05058
– reference: Munson SA, Lee SY, Resnick P (2013) Encouraging reading of diverse political viewpoints with a browser widget. In: International conference on weblogs and social media, ICWSM
– reference: Conover M, Ratkiewicz J, Francisco MR, Gonçalves B, Menczer F, Flammini A (2011) Political polarization on Twitter. In: International conference on weblogs and social media ICWSM
– reference: Guerra PHC, Jr, WM, Cardie C, Kleinberg R (2013) A measure of polarization on social media networks based on community boundaries. In: International conference on weblogs and social media, ICWSM
– reference: HagerWWUpdating the inverse of a matrixSIAM Rev198931222123999745710.1137/10310490671.65018
– reference: IsenbergDJGroup polarization: a critical review and meta-analysisJ Personal Soc Psychol19865061141115110.1037/0022-3514.50.6.1141
– reference: Vicario MD, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) Modeling confirmation bias and polarization. arXiv:1607.00022
– reference: Davis G, Mallat S, Zhang Z (1994) Adaptive time-frequency decompositions with matching pursuits. Opt Eng 33(7):2183–2191
– reference: Akoglu L (2014) Quantifying political polarity based on bipartite opinion networks. In: International conference on weblogs and social media, ICWSM
– reference: BakshyEMessingSAdamicLExposure to ideologically diverse news and opinion on FacebookScience2015348623911301132338063010.1126/science.aaa11601355.91066
– reference: BindelDKleinbergJMOrenSHow bad is forming your own opinion?Games Econ Behav201592248265337766010.1016/j.geb.2014.06.0041318.91156
– reference: MallatSA wavelet tour of signal processing, third edition: the sparse way20083CambridgeAcademic Press1170.94003
– reference: DandekarPGoelALeeDTBiased assimilation, homophily, and the dynamics of polarizationProc Natl Acad Sci20131101557915796306580710.1073/pnas.12172201101292.91147
– reference: Garimella VRK, Morales GDF, Gionis A, Mathioudakis M (2017) Reducing controversy by connecting opposing views. In: ACM WISDOM international conference on web search and data mining
– reference: Feige U (2003) Vertex cover is hardest to approximate on regular graphs. Technical report MCS03-15 of the Weizmann Institute
– reference: Cambria E, Poria S, Bajpai R, Schuller BW (2016) SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In: 26th International conference on computational linguistics (COLING 2016), Proceedings of the conference: Technical Papers, Osaka, Japan, December 11–16, 2016, pp. 2666–2677
– reference: Adamic LA, Glance N (2005) The political blogosphere and the 2004 u.s. election: Divided they blog. In: International workshop on link discovery, LinkKDD
– reference: NatarajanBKSparse approximate solutions to linear systemsSIAM J Comput1995242227234132020610.1137/S00975397922404060827.68054
– reference: BessiAZolloFVicarioMDPuligaMScalaACaldarelliGUzziBQuattrociocchiWUsers polarization on Facebook and YoutubePLoS ONE2016118e015964110.1371/journal.pone.0159641
– reference: Pariser E (2011) The filter bubble: what the internet is hiding from you. The Penguin Group
– reference: Munson SA, Resnick P (2010) Presenting diverse political opinions: how and how much. In: International conference on human factors in computing systems, CHI, pp 1457–1466
– reference: Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 137–146
– reference: Lawrence P, Sergey B, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web. Technical report, Stanford University
– reference: CambriaEPoriaSBisioFBajpaiRChaturvediIThe CLSA model: a novel framework for concept-level sentiment analysis2015ChamSpringer International Publishing
– reference: FriedkinNEJohnsenESocial influence and opinionsJ Math Soc1990153–419320610.1080/0022250X.1990.99900690712.92025
– reference: SunsteinCRThe law of group polarizationJ Polit Philos200210217519510.1111/1467-9760.00148
– volume: 92
  start-page: 248
  year: 2015
  ident: 527_CR6
  publication-title: Games Econ Behav
  doi: 10.1016/j.geb.2014.06.004
– volume: 7
  start-page: 40391
  year: 2017
  ident: 527_CR13
  publication-title: Sci Rep
  doi: 10.1038/srep40391
– ident: 527_CR2
  doi: 10.1609/icwsm.v8i1.14524
– ident: 527_CR34
– ident: 527_CR3
– volume-title: The CLSA model: a novel framework for concept-level sentiment analysis
  year: 2015
  ident: 527_CR7
  doi: 10.1007/978-3-319-18117-2_1
– ident: 527_CR16
  doi: 10.1145/2835776.2835792
– ident: 527_CR17
  doi: 10.1145/3018661.3018703
– volume: 50
  start-page: 1141
  issue: 6
  year: 1986
  ident: 527_CR22
  publication-title: J Personal Soc Psychol
  doi: 10.1037/0022-3514.50.6.1141
– volume: 11
  start-page: 34
  issue: 3
  year: 2016
  ident: 527_CR9
  publication-title: IEEE Comp Int Mag
  doi: 10.1109/MCI.2016.2572539
– volume: 11
  start-page: e0159641
  issue: 8
  year: 2016
  ident: 527_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0159641
– ident: 527_CR23
  doi: 10.1145/956750.956769
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 527_CR26
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00416ED1V01Y201204HLT016
– ident: 527_CR29
  doi: 10.1145/1753326.1753543
– ident: 527_CR28
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: 527_CR30
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539792240406
– volume: 15
  start-page: 193
  issue: 3–4
  year: 1990
  ident: 527_CR15
  publication-title: J Math Soc
  doi: 10.1080/0022250X.1990.9990069
– ident: 527_CR20
– ident: 527_CR12
  doi: 10.1117/12.173207
– ident: 527_CR31
  doi: 10.3139/9783446431164
– volume: 10
  start-page: 175
  issue: 2
  year: 2002
  ident: 527_CR33
  publication-title: J Polit Philos
  doi: 10.1111/1467-9760.00148
– volume: 348
  start-page: 1130
  issue: 6239
  year: 2015
  ident: 527_CR4
  publication-title: Science
  doi: 10.1126/science.aaa1160
– volume-title: A wavelet tour of signal processing, third edition: the sparse way
  year: 2008
  ident: 527_CR27
– ident: 527_CR8
– ident: 527_CR10
– volume: 110
  start-page: 5791
  issue: 15
  year: 2013
  ident: 527_CR11
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1217220110
– ident: 527_CR19
  doi: 10.1137/1.9781611972832.43
– ident: 527_CR14
– ident: 527_CR25
– volume: 66
  start-page: 1655
  issue: 8
  year: 2015
  ident: 527_CR35
  publication-title: J Assoc Inf Sci Technol
  doi: 10.1002/asi.23274
– volume: 31
  start-page: 221
  issue: 2
  year: 1989
  ident: 527_CR21
  publication-title: SIAM Rev
  doi: 10.1137/1031049
– ident: 527_CR1
  doi: 10.1145/1134271.1134277
– ident: 527_CR24
  doi: 10.1145/2339530.2339663
– volume: 108
  start-page: 42
  issue: C
  year: 2016
  ident: 527_CR32
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.06.009
– volume: 14
  start-page: 265
  issue: 2
  year: 2009
  ident: 527_CR18
  publication-title: J Comput Mediat Commun
  doi: 10.1111/j.1083-6101.2009.01440.x
SSID ssj0005230
Score 2.5532873
Snippet The polarization of society over controversial social issues has been the subject of study in social sciences for decades (Isenberg in J Personal Soc Psychol...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1480
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Digital media
Incentives
Information Storage and Retrieval
Journal Track of ECML PKDD 2017
Mathematical models
Physics
Polarization
Social networks
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA5aL17cxWqVHDwpwVnSLCcVsRahniz0NmReEhBkWm39_-bNZNoq6HGYTA7vzduXj5BLrPwI7xUzIBPGufTM9LVj3js0MLzMPM47j17EcMyfJ_1JTLjNY1tlqxNrRW2ngDnym-Bo5LitTCS3sw-GqFFYXY0QGptkK82CrcVJ8cHTWotH3kwJK876Kl1WNZvROZFiG5dk4Zhk-qddWjmbv-qjtdkZ7JGd6C_S-4bB-2TDVQdkt8VioFE0D8ndqE72hTuoqSxFgBvkbXjEiahAfDrDIDZOXdK3ijbZclo1feDzIzIePL4-DFlER2AQ5GzBykyUnoMArbn31pbO59plImg3CSHMAuml8AbA5tJCqk0iSmNsiElTCV6r_Jh0qmnlTggVifW5UFyDMtzyvs5AeaMghHouuFdllyQtbQqIq8MRweK9WC09RnIWgZwFkrPQXXK1_GTW7M3473CvJXgRRWherBjeJdctE9Ze_3XZ6f-XnZHtrOY6ton1SGfx-eXOg1-xKC_qn-cbRWjJNw
  priority: 102
  providerName: ProQuest
Title Measuring and moderating opinion polarization in social networks
URI https://link.springer.com/article/10.1007/s10618-017-0527-9
https://www.proquest.com/docview/1933180260
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Q_DF6VSczpEHn5SMrk3z8eaUfaBsiGwwn0qaNiBKHW578a836cc2hwp7Km3TkN7lkrvc7-4Arqznh2rNsVTMwYQwjaUvYqx1bDcYErraxjsPhrQ_Jg8Tf5LHcc8KtHvhkkxX6rVgN9qywCuGHd9lWOxC2Tf2iZHGcrv38thZQ3Z4WXAwJ9jnraUz87dOfm5HKx1zwy2a7jbdCoyKcWYgk7fmYh421ddGCsctf-QQDnLtE7Wz6XIEO3FShUpR2QHlgl6FvRQYqmbHcDtIDxFN_0gmEbKFc-ycMbc20sowFU2tcZxHc6LXBGWn8CjJ8OWzExh3O6P7Ps6rLmBl5HeOQ5eGmiiqhCBaR1EYa0_ELjWrJlPGfFNMM6qlUpHHItUS0qGhlJGxdVtMacG9UyglH0l8Bog6kfYoJ0JxSSLiC1dxLbkyJmRs1LawBk5B_EDlKcltZYz3YJVM2dIqMLQKLK0CUYPr5SfTLB_Hf43rBUeDXDRngdFYPZv2jjo1uCkYtPb6r87Ot2p9AftuymGLRqtDaf65iC-N-jIPG7DLu71GPmnN9a4zfHo2T8du-xvxJukH
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeKPShLoXiA1yorGYTrx0fEI8CWgq7QhVI3FLHD6kSCkt3K8Sf62_rTOKwgAQ3jlHsiTT-Mp73AKxT5EeGkHNjVcKFUIGbvvY8BE8XjCjTQPXOw5EcnIsfF_2LOfjX1sJQWmUrE2tB7a4s-ci_oaKRUbcymWyPrzlNjaLoajtCw8TRCm6rbjEWCzuO_e0NmnCTraN9PO-NND08OPs-4HHKALeI1ykvU1kGYaXVWoTgXOlDpn0qUUooi-aKVUHJgB9wmXK2p00iS2Mc2nY9ZYPOM6T7CuYFOVA6ML93MDr9eS_JJGvqlHPB-3nvLq7aFO_JHiWSKY7LFNcPb8aZuvsoQltffIeLsBA1VrbbQGwJ5nz1Dt620yBYFA7vYWdYuxuRBjOVYzRih9CFj1SThcfPxmRGx7pP9rtijb-eVU0m-uQDnL8I5z5Cp7qq_CdgMnEhk7nQNjfCib5ObR5MbtHY9KjglV1IWt4UNjYvpxkal8Ws7TKxs0B2FsTOQndh827LuOnc8dzilZbhRfyJJ8UMcl342h7CvddPEVt-ntgavB6cDU-Kk6PR8Wd4k9YIoKS1FehM__z1q6jlTMsvEUoMfr00ev8D5RoO3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFAvLZQitqXgA1xAFtnEa8cHRHmtoMAKoSJxC44fEhIK2-5WVf9ifxUzicMCEtw4RrEn0vjLPDwvgDWK_MgQcm6sSrgQKnDT056H4EnBiDINVO98NpBHl-LHVe9qCv63tTCUVtnKxFpQuztLd-RbaGhk1K1MJlshpkWcH_R3hr84TZCiSGs7TsPEMQtuu243Fos8Tvy_v-jOjbaPD_Ds19O0f_hz_4jHiQPcInbHvExlGYSVVmsRgnOlD5n2qUSJoSy6LlYFJQN-wGXK2a42iSyNcejndZUNOs-Q7juYUaj10RGc2TscnF88SjjJmprlXPBe3n2IsTaFfLJLSWWK4zLF9VMtOTF9n0VrayXYn4MP0Xpluw3c5mHKV5_gYzsZgkVBsQDfz-qrR6TBTOUYjdshpOEj1WchFNiQXOpYA8puKtbc3bOqyUoffYbLN-HcIkxXd5VfAiYTFzKZC21zI5zo6dTmweQWHU-Pxl7ZgaTlTWFjI3Oap3FbTFowEzsLZGdB7Cx0BzYetgybLh6vLV5uGV7EH3pUTODXgc32EB69fonYl9eJrcIsorg4PR6cfIX3aQ0Ayl9bhunx7z_-Gxo843IlIonB9VuD9x6BZRMh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+and+moderating+opinion+polarization+in+social+networks&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Matakos%2C+Antonis&rft.au=Terzi%2C+Evimaria&rft.au=Tsaparas%2C+Panayiotis&rft.date=2017-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=31&rft.issue=5&rft.spage=1480&rft.epage=1505&rft_id=info:doi/10.1007%2Fs10618-017-0527-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_017_0527_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon