A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise A Feasibility Study for Ultrasound Breast Elastography

Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a p...

Full description

Saved in:
Bibliographic Details
Published inUltrasonic imaging Vol. 37; no. 4; pp. 277 - 293
Main Authors Guo, Li, Xu, Yan, Xu, Zhengfu, Jiang, Jingfeng
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.10.2015
Subjects
Online AccessGet full text
ISSN0161-7346
1096-0910
1096-0910
DOI10.1177/0161734614561128

Cover

Abstract Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)–based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool.
AbstractList Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)–based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool.
Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool.Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool.
Obtaining accurate ultrasonically-estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g. modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, the physical constraint used by the above-mentioned mathematical regularization was tissue incompressibility. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom and in vivo breast lesion data. Computer simulation results showed that the method significantly improved the accuracy of lateral tracking (e.g. 17X at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared to the conventional method, higher quality axial and lateral strain images (e.g. at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful to improve the image quality for ultrasound elastography with current clinical equipment as a post-processing tool.
Author Guo, Li
Xu, Yan
Jiang, Jingfeng
Xu, Zhengfu
AuthorAffiliation 1 Department of Mathematical Sciences, Michigan Technological University
3 Department of Mathematical Sciences, University of Science and Technology of China
2 Department of Biomedical Engineering, Michigan Technological University
AuthorAffiliation_xml – name: 1 Department of Mathematical Sciences, Michigan Technological University
– name: 3 Department of Mathematical Sciences, University of Science and Technology of China
– name: 2 Department of Biomedical Engineering, Michigan Technological University
Author_xml – sequence: 1
  givenname: Li
  surname: Guo
  fullname: Guo, Li
– sequence: 2
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
– sequence: 3
  givenname: Zhengfu
  surname: Xu
  fullname: Xu, Zhengfu
– sequence: 4
  givenname: Jingfeng
  surname: Jiang
  fullname: Jiang, Jingfeng
  email: jjiang1@mtu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25452434$$D View this record in MEDLINE/PubMed
BookMark eNqNUctKxDAUDaLo-Ni7ki7dVHPb9LURxrcoKjquQ5rc1minGZNW0a-3dWZEBcVsLuQ8OJyzShZrUyMhm0B3AJJkl0IMSchiYFEMEKQLZAA0i32aAV0kgx72e3yFrDr3QClAzJJlshJELApYyAbkfOhdHx75-8Kh8m6wbCth9ZtotKm9YVUaq5v7sTcyL8L2uGqlrkvvdoLysUJvZIV87D8ujXa4TpYKUTncmN01cnd8NDo49S-uTs4Ohhe-ZEHU-BlVUqCEAEOVYP8U60LmqPI8liBpoWgYKaWiFHKVFAlEjCkRCCWVZAWGa2Rv6jtp8zEqiXVjRcUnVo-FfeVGaP4dqfU9L80zZ2nAKKWdwfbMwJqnFl3Dx9pJrCpRo2kdhyQLgyyMs_9QIcq6VtO0o259jfWZZ152R4inBGmNcxYLLnXzUXWXUlccKO9X5T9X7YT0h3Du_YfEn0qcKJE_mNbW3SS_898ByhCw_w
CitedBy_id crossref_primary_10_1177_01617346231168982
crossref_primary_10_1016_j_media_2023_102923
crossref_primary_10_1109_TUFFC_2018_2885460
crossref_primary_10_1109_TMI_2024_3438564
crossref_primary_10_1109_TUFFC_2024_3449815
crossref_primary_10_1109_TMI_2023_3282542
crossref_primary_10_1155_2018_2053612
crossref_primary_10_1088_1361_6560_ab735f
crossref_primary_10_1109_TMI_2022_3230635
crossref_primary_10_1109_TUFFC_2023_3243539
crossref_primary_10_1016_j_compbiomed_2021_104653
crossref_primary_10_1177_0161734620902527
crossref_primary_10_1109_TMI_2019_2913194
crossref_primary_10_1109_TUFFC_2020_2985060
Cites_doi 10.1109/58.677757
10.1016/j.ultrasmedbio.2003.11.010
10.1007/978-1-4757-2257-4
10.1088/0031-9155/52/14/004
10.1109/TUFFC.2004.1320827
10.1118/1.3301603
10.1109/TMI.2003.815065
10.1109/TMI.2007.897408
10.1109/58.285465
10.1210/jc.2007-0641
10.1109/TUFFC.2005.1397352
10.1137/1.9780898717570
10.1088/0031-9155/49/13/013
10.7863/jum.2008.27.6.935
10.1109/58.485950
10.1109/TUFFC.2007.226
10.1148/radiol.2381041336
10.1121/1.418018
10.1364/AO.43.001053
10.1109/58.677749
10.1177/016173469101300201
10.1177/016173460202400303
10.7863/jum.2007.26.6.797
10.1088/0031-9155/53/17/022
10.1016/S0301-5629(98)00109-4
10.1109/TUFFC.2006.1632687
10.1109/58.710592
10.1109/58.365243
10.1016/S0301-5629(02)00733-0
10.1016/j.ultrasmedbio.2003.11.016
10.1109/TMI.2004.835604
10.1109/42.387711
10.1088/0031-9155/54/5/006
10.1148/radiol.2391041676
10.1109/42.500139
10.1088/0031-9155/47/12/310
10.1007/s10439-008-9564-2
10.1118/1.2825621
10.1148/radiol.2452061805
10.1016/j.ultrasmedbio.2009.05.016
10.1016/j.ultrasmedbio.2004.08.015
10.1088/0031-9155/57/15/4787
ContentType Journal Article
Copyright The Author(s) 2014
The Author(s) 2014.
Copyright_xml – notice: The Author(s) 2014
– notice: The Author(s) 2014.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
5PM
DOI 10.1177/0161734614561128
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
MEDLINE
Technology Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1096-0910
EndPage 293
ExternalDocumentID PMC4824000
25452434
10_1177_0161734614561128
10.1177_0161734614561128
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R15-CA179409
– fundername: NCI NIH HHS
  grantid: R15 CA179409
– fundername: NCI NIH HHS
  grantid: R01-CA112192
– fundername: NCI NIH HHS
  grantid: R01 CA112192
GroupedDBID ---
--K
-TM
-TN
.2G
.2I
.2J
.2N
.2O
.GJ
01A
0R~
123
1B1
1RT
1~5
29Q
4.4
4G.
53G
54M
5RE
5VS
6PF
7-5
AABMB
AACKU
AACMV
AACTG
AADUE
AAEDT
AAEWN
AAGGD
AAGLT
AAGMC
AAJIQ
AAJOX
AAKGS
AALRI
AANSI
AAPEO
AAQDB
AAQFI
AAQXH
AAQXI
AAQXK
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAWTL
AAXUO
AAYTG
AAYWO
ABAWP
ABCCA
ABCJG
ABDPE
ABDWY
ABEIX
ABFWQ
ABHKI
ABIDT
ABJNI
ABJZC
ABKRH
ABLUO
ABMAC
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABUJY
ABVFX
ABWVN
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEIA
ADMUD
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
ADZZY
AECGH
AECVZ
AEDFJ
AEDTQ
AEKYL
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGHKR
AGKLV
AGNHF
AGPXR
AGQPQ
AGWFA
AHDMH
AHHFK
AHHHB
AIIQI
AITUG
AIZZC
AJEFB
AJMMQ
AJUZI
AJXAJ
AKRWK
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
C45
CAG
CBRKF
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DC.
DD-
DD0
DE-
DF0
DH.
DM4
DO-
DOPDO
DU5
DV7
D~Y
EBS
EJD
EMOBN
F5P
FDB
FEDTE
FGOYB
FHBDP
FIRID
G-2
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HEI
HME
HMK
HMO
HVGLF
HZ~
IHE
J8X
K.F
K.J
LG5
LZ3
M29
O-L
O9-
OVD
P.B
P2P
Q1R
R2-
RIG
ROL
RPZ
S01
SAE
SASJQ
SAUOL
SCNPE
SFC
SHG
SHN
SPQ
SPV
SSZ
TEORI
TN5
UHS
WUQ
XPP
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZY4
AAEJI
AAPII
AAYXX
ADEBD
AJGYC
AJHME
AJVBE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
5PM
ID FETCH-LOGICAL-c425t-90dcaec12e3d7eeeeed4734bedbb6c1c0fd035ddd581bd7f71544da2adcdc4fe3
ISSN 0161-7346
1096-0910
IngestDate Tue Sep 30 16:57:18 EDT 2025
Sun Sep 28 12:19:22 EDT 2025
Sat Sep 27 23:42:23 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Wed Oct 01 06:45:06 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Tue Jun 17 22:36:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords speckle tracking
elastography
de-noising
strain imaging
ultrasound
Language English
License The Author(s) 2014.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-90dcaec12e3d7eeeeed4734bedbb6c1c0fd035ddd581bd7f71544da2adcdc4fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25452434
PQID 1715916488
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4824000
proquest_miscellaneous_1793293690
proquest_miscellaneous_1715916488
pubmed_primary_25452434
crossref_citationtrail_10_1177_0161734614561128
crossref_primary_10_1177_0161734614561128
sage_journals_10_1177_0161734614561128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: England
PublicationTitle Ultrasonic imaging
PublicationTitleAlternate Ultrason Imaging
PublicationYear 2015
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References O’Donnell, Skovoroda, Shapo, Emelianov 1994; 41
Jensen, Munk 1998; 45
Ebbini 2006; 53
Oberai, Gokhale, Goenezen, Barbone, Hall, Sommer 2009; 54
Zhu, Hall 2002; 24
Walker, Trahey 1995; 42
Regner, Hesley, Hangiandreou, Morton, Nordland, Meixner 2006; 238
Miller, Bamber, ter Haar 2004; 30
Thitaikumar, Mobbs, Kraemer-Chant, Garra, Ophir 2008; 53
Oberai, Gokhale, Doyley, Bamber 2004; 49
Brusseau, Kybic, Deprez, Basset 2008; 27
Meunier, Bertrand 1995; 14
Lubinski, Emelianov, Raghavan, Yagle, Skovoroda, O’Donnell 1996; 43
Bae, Dighe, Dubinsky, Minoshima, Shamdasani, Kim 2007; 26
Kolokythas, Gauthier, Fernandez, Xie, Timm, Cuevas 2008; 27
Techavipoo, Chen, Varghese, Zagzebski 2004; 23
Cespedes, de Korte, van der Steen, von Birgelen, Lancee 1997; 2
Konofagou, Ophir 1998; 24
Chen, Zohdy, Emelianov, O’Donell 2004; 51
Song, Pogue, Jiang, Doyley, Dehghani, Tosteson 2004; 43
Bilgen, Insana 1997; 101
Viola, Coe, Owen, Guenther, Walker 2008; 36
Brunke, Insana, Dahl, Hansen, Ashfaq, Ermert 2007; 54
Itoh, Ueno, Tohno, Kamma, Takahashi, Shiina 2006; 239
Burnside, Hall, Sommer, Hesley, Sisney, Svensson 2007; 245
Simon, Vanbaren, Ebbini 1998; 45
Chartrand 2011; 2011
Barbone, Bamber 2002; 47
Rago, Santini, Scutari, Pinchera, Vitti 2007; 92
Rao, Varghese, Madsen 2008; 35
Pavan, Madsen, Frank, Jiang, Carneiro, Hall 2012; 57
Rubert, Bharat, DeWall, Andreano, Brace, Jiang 2010; 37
Jiang, Hall 2009; 35
Ophir, Cespedes, Ponnekanti, Yazdi, Li 1991; 13
Kallel, Bertrand 1996; 15
Viola, Walker 2005; 52
Techavipoo, Varghese 2004; 30
Zervantonakis, Fung-Kee-Fung, Lee, Konofagou 2007; 52
Xie, Kim, Aglyamov, Emelianov, Chen, O’Donnell 2004; 30
Anderson 1998; 45
Hall, Zhu, Spalding 2003; 29
Zhu, Hall, Jiang 2003; 22
bibr19-0161734614561128
bibr44-0161734614561128
bibr31-0161734614561128
bibr1-0161734614561128
bibr22-0161734614561128
bibr36-0161734614561128
bibr35-0161734614561128
bibr23-0161734614561128
bibr5-0161734614561128
bibr10-0161734614561128
bibr27-0161734614561128
bibr14-0161734614561128
bibr40-0161734614561128
bibr32-0161734614561128
bibr2-0161734614561128
bibr45-0161734614561128
bibr24-0161734614561128
bibr15-0161734614561128
bibr6-0161734614561128
bibr28-0161734614561128
bibr41-0161734614561128
bibr38-0161734614561128
bibr33-0161734614561128
bibr25-0161734614561128
bibr3-0161734614561128
Chartrand R (bibr37-0161734614561128) 2011; 2011
bibr46-0161734614561128
bibr20-0161734614561128
Cespedes EI (bibr11-0161734614561128) 1997; 2
bibr16-0161734614561128
bibr12-0161734614561128
bibr9-0161734614561128
bibr7-0161734614561128
bibr29-0161734614561128
bibr26-0161734614561128
bibr18-0161734614561128
bibr39-0161734614561128
bibr34-0161734614561128
bibr21-0161734614561128
bibr17-0161734614561128
bibr47-0161734614561128
bibr30-0161734614561128
bibr4-0161734614561128
bibr43-0161734614561128
bibr8-0161734614561128
bibr13-0161734614561128
Wang Y (bibr42-0161734614561128)
References_xml – volume: 35
  start-page: 1863
  year: 2009
  end-page: 79
  article-title: A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming
  publication-title: Ultrasound Med Biol
– volume: 45
  start-page: 852
  year: 1998
  end-page: 61
  article-title: Multi-dimensional velocity estimation with ultrasound using spatial quadrature
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 53
  start-page: 4809
  year: 2008
  end-page: 23
  article-title: Breast tumor classification using axial shear strain elastography: a feasibility study
  publication-title: Phys Med Biol
– volume: 53
  start-page: 972
  year: 2006
  end-page: 90
  article-title: Phase-coupled two-dimensional speckle tracking algorithm
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 15
  start-page: 299
  year: 1996
  end-page: 313
  article-title: Tissue elasticity reconstruction using linear perturbation method
  publication-title: IEEE Trans Med Imaging
– volume: 41
  start-page: 314
  year: 1994
  end-page: 25
  article-title: Internal displacement and strain imaging using ultrasonic speckle tracking
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 52
  start-page: 4063
  year: 2007
  end-page: 80
  article-title: A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence
  publication-title: Phys Med Biol
– volume: 52
  start-page: 80
  year: 2005
  end-page: 93
  article-title: A spline-based algorithm for continuous time-delay estimation using sampled data
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 2011
  start-page: 164564
  year: 2011
  article-title: Numerical differentiation of noisy, nonsmooth data
  publication-title: Int Sch Res Netw
– volume: 30
  start-page: 477
  year: 2004
  end-page: 91
  article-title: Wavelet denoising of displacement estimates in elastography
  publication-title: Ultrasound Med Biol
– volume: 23
  start-page: 1479
  year: 2004
  end-page: 89
  article-title: Estimation of displacement vectors and strain tensors in elastography using angular insonifications
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 412
  year: 2008
  end-page: 23
  article-title: Shear strain imaging using shear deformations
  publication-title: Med Phys
– volume: 54
  start-page: 198
  year: 2007
  end-page: 210
  article-title: An ultrasound research interface for a clinical system
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 57
  start-page: 4787
  year: 2012
  end-page: 804
  article-title: A nonlinear elasticity phantom containing spherical inclusions
  publication-title: Phys Med Biol
– volume: 24
  start-page: 1183
  year: 1998
  end-page: 99
  article-title: A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues
  publication-title: Ultrasound Med Biol
– volume: 101
  start-page: 1139
  year: 1997
  end-page: 46
  article-title: Error analysis in acoustic elastography. I. Displacement estimation
  publication-title: J Acoust Soc Am
– volume: 239
  start-page: 341
  year: 2006
  end-page: 50
  article-title: Breast disease: clinical application of US elastography for diagnosis
  publication-title: Radiology
– volume: 36
  start-page: 1942
  year: 2008
  end-page: 60
  article-title: MUlti-dimensional Spline-based Estimator (MUSE) for motion estimation: algorithm development and initial results
  publication-title: Ann Biomed Eng
– volume: 24
  start-page: 161
  year: 2002
  end-page: 76
  article-title: A modified block matching method for real-time freehand strain imaging
  publication-title: Ultrason Imaging
– volume: 30
  start-page: 1385
  year: 2004
  end-page: 96
  article-title: Staging deep venous thrombosis using ultrasound elasticity imaging: animal model
  publication-title: Ultrasound Med Biol
– volume: 13
  start-page: 111
  year: 1991
  end-page: 34
  article-title: Elastography: a quantitative method for imaging the elasticity of biological tissues
  publication-title: Ultrason Imaging
– volume: 14
  start-page: 293
  year: 1995
  end-page: 300
  article-title: Ultrasonic texture motion analysis: theory and simulation
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 301
  year: 1995
  end-page: 8
  article-title: Fundamental limit on delay estimation using partially correlated speckle signals
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 45
  start-page: 1088
  year: 1998
  end-page: 99
  article-title: Two-dimensional temperature estimation using diagnostic ultrasound
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 245
  start-page: 401
  year: 2007
  end-page: 10
  article-title: Differentiating benign from malignant solid breast masses with US strain imaging
  publication-title: Radiology
– volume: 92
  start-page: 2917
  year: 2007
  end-page: 22
  article-title: Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules
  publication-title: J Clin Endocrinol Metab
– volume: 49
  start-page: 2955
  year: 2004
  end-page: 74
  article-title: Evaluation of the adjoint equation based algorithm for elasticity imaging
  publication-title: Phys Med Biol
– volume: 29
  start-page: 427
  year: 2003
  end-page: 35
  article-title: In vivo real-time freehand palpation imaging
  publication-title: Ultrasound Med Biol
– volume: 2
  start-page: 55
  year: 1997
  end-page: 62
  article-title: Intravascular elastography: principles and potentials
  publication-title: Semin Interv Cardiol
– volume: 51
  start-page: 540
  year: 2004
  end-page: 50
  article-title: Lateral speckle tracking using synthetic lateral phase
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 26
  start-page: 797
  year: 2007
  end-page: 805
  article-title: Ultrasound thyroid elastography using carotid artery pulsation: preliminary study
  publication-title: J Ultrasound Med
– volume: 22
  start-page: 890
  year: 2003
  end-page: 901
  article-title: A finite-element approach for Young’s modulus reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 238
  start-page: 425
  year: 2006
  end-page: 37
  article-title: Breast lesions: evaluation with US strain imaging—clinical experience of multiple observers
  publication-title: Radiology
– volume: 45
  start-page: 837
  year: 1998
  end-page: 51
  article-title: A new method for estimation of velocity vectors
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 43
  start-page: 247
  year: 1996
  end-page: 56
  article-title: Lateral displacement estimation using tissue incompressibility
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 54
  start-page: 1191
  year: 2009
  end-page: 207
  article-title: Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility
  publication-title: Phys Med Biol
– volume: 27
  start-page: 145
  year: 2008
  end-page: 60
  article-title: 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data
  publication-title: IEEE Trans Med Imaging
– volume: 27
  start-page: 935
  year: 2008
  end-page: 46
  article-title: Ultrasound-based elastography: a novel approach to assess radio frequency ablation of liver masses performed with expandable ablation probes: a feasibility study
  publication-title: J Ultrasound Med
– volume: 30
  start-page: 345
  year: 2004
  end-page: 56
  article-title: Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery
  publication-title: Ultrasound Med Biol
– volume: 47
  start-page: 2147
  year: 2002
  end-page: 64
  article-title: Quantitative elasticity imaging: what can and cannot be inferred from strain images
  publication-title: Phys Med Biol
– volume: 37
  start-page: 1075
  year: 2010
  end-page: 82
  article-title: Electrode displacement strain imaging of thermally-ablated liver tissue in an in vivo animal model
  publication-title: Med Phys
– volume: 43
  start-page: 1053
  year: 2004
  end-page: 62
  article-title: Automated region detection based on the contrast-to-noise ratio in near-infrared tomography
  publication-title: Appl Opt
– ident: bibr23-0161734614561128
  doi: 10.1109/58.677757
– ident: bibr39-0161734614561128
  doi: 10.1016/j.ultrasmedbio.2003.11.010
– ident: bibr33-0161734614561128
  doi: 10.1007/978-1-4757-2257-4
– ident: bibr13-0161734614561128
  doi: 10.1088/0031-9155/52/14/004
– ident: bibr25-0161734614561128
  doi: 10.1109/TUFFC.2004.1320827
– ident: bibr8-0161734614561128
  doi: 10.1118/1.3301603
– ident: bibr19-0161734614561128
  doi: 10.1109/TMI.2003.815065
– ident: bibr27-0161734614561128
  doi: 10.1109/TMI.2007.897408
– ident: bibr34-0161734614561128
– ident: bibr2-0161734614561128
  doi: 10.1109/58.285465
– ident: bibr9-0161734614561128
  doi: 10.1210/jc.2007-0641
– ident: bibr28-0161734614561128
  doi: 10.1109/TUFFC.2005.1397352
– ident: bibr36-0161734614561128
  doi: 10.1137/1.9780898717570
– ident: bibr20-0161734614561128
  doi: 10.1088/0031-9155/49/13/013
– ident: bibr7-0161734614561128
  doi: 10.7863/jum.2008.27.6.935
– ident: bibr24-0161734614561128
  doi: 10.1109/58.485950
– ident: bibr40-0161734614561128
  doi: 10.1109/TUFFC.2007.226
– ident: bibr5-0161734614561128
  doi: 10.1148/radiol.2381041336
– ident: bibr38-0161734614561128
  doi: 10.1121/1.418018
– ident: bibr47-0161734614561128
– ident: bibr41-0161734614561128
  doi: 10.1364/AO.43.001053
– ident: bibr22-0161734614561128
  doi: 10.1109/58.677749
– ident: bibr1-0161734614561128
  doi: 10.1177/016173469101300201
– ident: bibr35-0161734614561128
  doi: 10.1177/016173460202400303
– ident: bibr10-0161734614561128
  doi: 10.7863/jum.2007.26.6.797
– ident: bibr44-0161734614561128
  doi: 10.1088/0031-9155/53/17/022
– ident: bibr14-0161734614561128
  doi: 10.1016/S0301-5629(98)00109-4
– volume: 2011
  start-page: 164564
  year: 2011
  ident: bibr37-0161734614561128
  publication-title: Int Sch Res Netw
– ident: bibr26-0161734614561128
  doi: 10.1109/TUFFC.2006.1632687
– ident: bibr16-0161734614561128
  doi: 10.1109/58.710592
– ident: bibr43-0161734614561128
  doi: 10.1109/58.365243
– ident: bibr3-0161734614561128
  doi: 10.1016/S0301-5629(02)00733-0
– ident: bibr17-0161734614561128
  doi: 10.1016/j.ultrasmedbio.2003.11.016
– ident: bibr21-0161734614561128
  doi: 10.1109/TMI.2004.835604
– ident: bibr31-0161734614561128
  doi: 10.1109/42.387711
– ident: bibr46-0161734614561128
  doi: 10.1088/0031-9155/54/5/006
– ident: bibr4-0161734614561128
  doi: 10.1148/radiol.2391041676
– ident: bibr18-0161734614561128
  doi: 10.1109/42.500139
– ident: bibr45-0161734614561128
  doi: 10.1088/0031-9155/47/12/310
– ident: bibr29-0161734614561128
  doi: 10.1007/s10439-008-9564-2
– start-page: 1841
  volume-title: IEEE Ultrasonic Symposium
  ident: bibr42-0161734614561128
– ident: bibr15-0161734614561128
  doi: 10.1118/1.2825621
– ident: bibr6-0161734614561128
  doi: 10.1148/radiol.2452061805
– ident: bibr30-0161734614561128
  doi: 10.1016/j.ultrasmedbio.2009.05.016
– ident: bibr12-0161734614561128
  doi: 10.1016/j.ultrasmedbio.2004.08.015
– volume: 2
  start-page: 55
  year: 1997
  ident: bibr11-0161734614561128
  publication-title: Semin Interv Cardiol
– ident: bibr32-0161734614561128
  doi: 10.1088/0031-9155/57/15/4787
SSID ssj0011647
Score 2.1622674
Snippet Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions...
Obtaining accurate ultrasonically-estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Algorithms
Beams (radiation)
Breast
Breast Neoplasms - diagnostic imaging
Computer Simulation
Elasticity Imaging Techniques
Feasibility Studies
Female
Humans
Image Interpretation, Computer-Assisted - methods
Image quality
Imaging
Mathematical analysis
Phantoms, Imaging
Regularization
Reproducibility of Results
Tracking
Ultrasonography, Mammary
Subtitle A Feasibility Study for Ultrasound Breast Elastography
Title A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise
URI https://journals.sagepub.com/doi/full/10.1177/0161734614561128
https://www.ncbi.nlm.nih.gov/pubmed/25452434
https://www.proquest.com/docview/1715916488
https://www.proquest.com/docview/1793293690
https://pubmed.ncbi.nlm.nih.gov/PMC4824000
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0910
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011647
  issn: 0161-7346
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVCAuCAqU8NIioUooMvUzjrkZSFX1ERBKRMTF8j7cRErtkNgHuCH-ODPrteM0pSrkYEXrzfoxX2Zndr6dIeQ1E57Fbe4bdj8BB8W3bCM2pWfYIrF5EHiOULn0zoa9o7F7PPEmrdav5u6SnL3lP6_cV_I_UoU2kCvukv0HydaDQgN8B_nCESQMxxvJOOx-_jgw3sNEhJsMsaj8Um-r7Ibz8wz8_ulFd6SIsXBeFFyl315IDOdiWnOO6-TdYTardqiDQajpsj8Uw7Bkc47n-TJeYf0lgALW-ukOwObOm8mutXmre2JRndmFqn9U83uKrFwCqBomhdL-a3CWDd-mMj1PiprYM9Pr2ccwViL1eHqVwvJqvlulWE0kOweawiqvaNPauEwBo1HnNlVrWe5lW-WroDNarr7jgrEBBqGl95tvZNcefooOx6en0WgwGe0vvhtYeAwD9LoKyy2yY8PEYLbJTnjy5etJHYrChGsqZK5vdh3rPrh80U3bZsth2ebdNsiDyp4Z3Sf3tCNCwxJVD0hLprvkzpmmWuyS24obzFcPye-Q1jCjmzCjNcxoCTNawYxqmNEKZlTB7B0NaQNkVIGMAsjoGmS0BBltguwRGR8ORh-ODF27w-AwC-RGYAoeS27Z0hG-xI9w4VUxKRjrcYubiTAdTwjhgd8k_MTHrFAitmPBBXcT6Twm7TRL5RNCk9jtB2g1McZcGJ3BBN53oGOPMY_HvEMOqrcecZ3YHuurzCOrymV_SU4d8qb-xaJM6nJN31eVICPQvBhOi1OZFavIgnsG5wpmwOv6gH-ENTPNDtkrhV9f0QbnxXYdt0P8DVjUHTDz--aZdDZVGeDdPlK_Ycx9BFCkVdLqrw_x9AYP8YzcXf9xn5N2vizkCzC4c_ZS_yX-AGYC1zM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PDE-Based+Regularization+Algorithm+Toward+Reducing+Speckle+Tracking+Noise%3A+A+Feasibility+Study+for+Ultrasound+Breast+Elastography&rft.jtitle=Ultrasonic+imaging&rft.au=Guo%2C+Li&rft.au=Xu%2C+Yan&rft.au=Xu%2C+Zhengfu&rft.au=Jiang%2C+Jingfeng&rft.date=2015-10-01&rft.issn=1096-0910&rft.eissn=1096-0910&rft.volume=37&rft.issue=4&rft.spage=277&rft_id=info:doi/10.1177%2F0161734614561128&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-7346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-7346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-7346&client=summon