A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise A Feasibility Study for Ultrasound Breast Elastography
Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a p...
Saved in:
| Published in | Ultrasonic imaging Vol. 37; no. 4; pp. 277 - 293 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Los Angeles, CA
SAGE Publications
01.10.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0161-7346 1096-0910 1096-0910 |
| DOI | 10.1177/0161734614561128 |
Cover
| Abstract | Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)–based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool. |
|---|---|
| AbstractList | Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)–based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool. Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool.Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g., modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional (2D) displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, tissue incompressibility was the physical constraint used by the above-mentioned mathematical regularization. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results demonstrated that the method significantly improved the accuracy of lateral tracking (e.g., a factor of 17 at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared with the conventional method, higher quality axial and lateral strain images (e.g., at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful for improving the image quality of ultrasound elastography with current clinical equipment as a post-processing tool. Obtaining accurate ultrasonically-estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g. modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, the physical constraint used by the above-mentioned mathematical regularization was tissue incompressibility. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom and in vivo breast lesion data. Computer simulation results showed that the method significantly improved the accuracy of lateral tracking (e.g. 17X at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared to the conventional method, higher quality axial and lateral strain images (e.g. at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful to improve the image quality for ultrasound elastography with current clinical equipment as a post-processing tool. |
| Author | Guo, Li Xu, Yan Jiang, Jingfeng Xu, Zhengfu |
| AuthorAffiliation | 1 Department of Mathematical Sciences, Michigan Technological University 3 Department of Mathematical Sciences, University of Science and Technology of China 2 Department of Biomedical Engineering, Michigan Technological University |
| AuthorAffiliation_xml | – name: 1 Department of Mathematical Sciences, Michigan Technological University – name: 3 Department of Mathematical Sciences, University of Science and Technology of China – name: 2 Department of Biomedical Engineering, Michigan Technological University |
| Author_xml | – sequence: 1 givenname: Li surname: Guo fullname: Guo, Li – sequence: 2 givenname: Yan surname: Xu fullname: Xu, Yan – sequence: 3 givenname: Zhengfu surname: Xu fullname: Xu, Zhengfu – sequence: 4 givenname: Jingfeng surname: Jiang fullname: Jiang, Jingfeng email: jjiang1@mtu.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25452434$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctKxDAUDaLo-Ni7ki7dVHPb9LURxrcoKjquQ5rc1minGZNW0a-3dWZEBcVsLuQ8OJyzShZrUyMhm0B3AJJkl0IMSchiYFEMEKQLZAA0i32aAV0kgx72e3yFrDr3QClAzJJlshJELApYyAbkfOhdHx75-8Kh8m6wbCth9ZtotKm9YVUaq5v7sTcyL8L2uGqlrkvvdoLysUJvZIV87D8ujXa4TpYKUTncmN01cnd8NDo49S-uTs4Ohhe-ZEHU-BlVUqCEAEOVYP8U60LmqPI8liBpoWgYKaWiFHKVFAlEjCkRCCWVZAWGa2Rv6jtp8zEqiXVjRcUnVo-FfeVGaP4dqfU9L80zZ2nAKKWdwfbMwJqnFl3Dx9pJrCpRo2kdhyQLgyyMs_9QIcq6VtO0o259jfWZZ152R4inBGmNcxYLLnXzUXWXUlccKO9X5T9X7YT0h3Du_YfEn0qcKJE_mNbW3SS_898ByhCw_w |
| CitedBy_id | crossref_primary_10_1177_01617346231168982 crossref_primary_10_1016_j_media_2023_102923 crossref_primary_10_1109_TUFFC_2018_2885460 crossref_primary_10_1109_TMI_2024_3438564 crossref_primary_10_1109_TUFFC_2024_3449815 crossref_primary_10_1109_TMI_2023_3282542 crossref_primary_10_1155_2018_2053612 crossref_primary_10_1088_1361_6560_ab735f crossref_primary_10_1109_TMI_2022_3230635 crossref_primary_10_1109_TUFFC_2023_3243539 crossref_primary_10_1016_j_compbiomed_2021_104653 crossref_primary_10_1177_0161734620902527 crossref_primary_10_1109_TMI_2019_2913194 crossref_primary_10_1109_TUFFC_2020_2985060 |
| Cites_doi | 10.1109/58.677757 10.1016/j.ultrasmedbio.2003.11.010 10.1007/978-1-4757-2257-4 10.1088/0031-9155/52/14/004 10.1109/TUFFC.2004.1320827 10.1118/1.3301603 10.1109/TMI.2003.815065 10.1109/TMI.2007.897408 10.1109/58.285465 10.1210/jc.2007-0641 10.1109/TUFFC.2005.1397352 10.1137/1.9780898717570 10.1088/0031-9155/49/13/013 10.7863/jum.2008.27.6.935 10.1109/58.485950 10.1109/TUFFC.2007.226 10.1148/radiol.2381041336 10.1121/1.418018 10.1364/AO.43.001053 10.1109/58.677749 10.1177/016173469101300201 10.1177/016173460202400303 10.7863/jum.2007.26.6.797 10.1088/0031-9155/53/17/022 10.1016/S0301-5629(98)00109-4 10.1109/TUFFC.2006.1632687 10.1109/58.710592 10.1109/58.365243 10.1016/S0301-5629(02)00733-0 10.1016/j.ultrasmedbio.2003.11.016 10.1109/TMI.2004.835604 10.1109/42.387711 10.1088/0031-9155/54/5/006 10.1148/radiol.2391041676 10.1109/42.500139 10.1088/0031-9155/47/12/310 10.1007/s10439-008-9564-2 10.1118/1.2825621 10.1148/radiol.2452061805 10.1016/j.ultrasmedbio.2009.05.016 10.1016/j.ultrasmedbio.2004.08.015 10.1088/0031-9155/57/15/4787 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 The Author(s) 2014. |
| Copyright_xml | – notice: The Author(s) 2014 – notice: The Author(s) 2014. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD L7M 5PM |
| DOI | 10.1177/0161734614561128 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1096-0910 |
| EndPage | 293 |
| ExternalDocumentID | PMC4824000 25452434 10_1177_0161734614561128 10.1177_0161734614561128 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R15-CA179409 – fundername: NCI NIH HHS grantid: R15 CA179409 – fundername: NCI NIH HHS grantid: R01-CA112192 – fundername: NCI NIH HHS grantid: R01 CA112192 |
| GroupedDBID | --- --K -TM -TN .2G .2I .2J .2N .2O .GJ 01A 0R~ 123 1B1 1RT 1~5 29Q 4.4 4G. 53G 54M 5RE 5VS 6PF 7-5 AABMB AACKU AACMV AACTG AADUE AAEDT AAEWN AAGGD AAGLT AAGMC AAJIQ AAJOX AAKGS AALRI AANSI AAPEO AAQDB AAQFI AAQXH AAQXI AAQXK AARDL AARIX AATAA AATBZ AAUAS AAWTL AAXUO AAYTG AAYWO ABAWP ABCCA ABCJG ABDPE ABDWY ABEIX ABFWQ ABHKI ABIDT ABJNI ABJZC ABKRH ABLUO ABMAC ABPGX ABPNF ABQKF ABQXT ABRHV ABUJY ABVFX ABWVN ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEIA ADMUD ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS ADZZY AECGH AECVZ AEDFJ AEDTQ AEKYL AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGHKR AGKLV AGNHF AGPXR AGQPQ AGWFA AHDMH AHHFK AHHHB AIIQI AITUG AIZZC AJEFB AJMMQ AJUZI AJXAJ AKRWK ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8M BBRGL BDDNI BKIIM BKSCU BPACV BSEHC BWJAD C45 CAG CBRKF CDWPY CFDXU COF CORYS CQQTX CS3 DC- DC. DD- DD0 DE- DF0 DH. DM4 DO- DOPDO DU5 DV7 D~Y EBS EJD EMOBN F5P FDB FEDTE FGOYB FHBDP FIRID G-2 GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HEI HME HMK HMO HVGLF HZ~ IHE J8X K.F K.J LG5 LZ3 M29 O-L O9- OVD P.B P2P Q1R R2- RIG ROL RPZ S01 SAE SASJQ SAUOL SCNPE SFC SHG SHN SPQ SPV SSZ TEORI TN5 UHS WUQ XPP ZONMY ZPPRI ZRKOI ZSSAH ZY4 AAEJI AAPII AAYXX ADEBD AJGYC AJHME AJVBE CITATION CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD L7M 5PM |
| ID | FETCH-LOGICAL-c425t-90dcaec12e3d7eeeeed4734bedbb6c1c0fd035ddd581bd7f71544da2adcdc4fe3 |
| ISSN | 0161-7346 1096-0910 |
| IngestDate | Tue Sep 30 16:57:18 EDT 2025 Sun Sep 28 12:19:22 EDT 2025 Sat Sep 27 23:42:23 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Wed Oct 01 06:45:06 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Tue Jun 17 22:36:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | speckle tracking elastography de-noising strain imaging ultrasound |
| Language | English |
| License | The Author(s) 2014. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c425t-90dcaec12e3d7eeeeed4734bedbb6c1c0fd035ddd581bd7f71544da2adcdc4fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25452434 |
| PQID | 1715916488 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4824000 proquest_miscellaneous_1793293690 proquest_miscellaneous_1715916488 pubmed_primary_25452434 crossref_citationtrail_10_1177_0161734614561128 crossref_primary_10_1177_0161734614561128 sage_journals_10_1177_0161734614561128 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Angeles, CA |
| PublicationPlace_xml | – name: Los Angeles, CA – name: England |
| PublicationTitle | Ultrasonic imaging |
| PublicationTitleAlternate | Ultrason Imaging |
| PublicationYear | 2015 |
| Publisher | SAGE Publications |
| Publisher_xml | – name: SAGE Publications |
| References | O’Donnell, Skovoroda, Shapo, Emelianov 1994; 41 Jensen, Munk 1998; 45 Ebbini 2006; 53 Oberai, Gokhale, Goenezen, Barbone, Hall, Sommer 2009; 54 Zhu, Hall 2002; 24 Walker, Trahey 1995; 42 Regner, Hesley, Hangiandreou, Morton, Nordland, Meixner 2006; 238 Miller, Bamber, ter Haar 2004; 30 Thitaikumar, Mobbs, Kraemer-Chant, Garra, Ophir 2008; 53 Oberai, Gokhale, Doyley, Bamber 2004; 49 Brusseau, Kybic, Deprez, Basset 2008; 27 Meunier, Bertrand 1995; 14 Lubinski, Emelianov, Raghavan, Yagle, Skovoroda, O’Donnell 1996; 43 Bae, Dighe, Dubinsky, Minoshima, Shamdasani, Kim 2007; 26 Kolokythas, Gauthier, Fernandez, Xie, Timm, Cuevas 2008; 27 Techavipoo, Chen, Varghese, Zagzebski 2004; 23 Cespedes, de Korte, van der Steen, von Birgelen, Lancee 1997; 2 Konofagou, Ophir 1998; 24 Chen, Zohdy, Emelianov, O’Donell 2004; 51 Song, Pogue, Jiang, Doyley, Dehghani, Tosteson 2004; 43 Bilgen, Insana 1997; 101 Viola, Coe, Owen, Guenther, Walker 2008; 36 Brunke, Insana, Dahl, Hansen, Ashfaq, Ermert 2007; 54 Itoh, Ueno, Tohno, Kamma, Takahashi, Shiina 2006; 239 Burnside, Hall, Sommer, Hesley, Sisney, Svensson 2007; 245 Simon, Vanbaren, Ebbini 1998; 45 Chartrand 2011; 2011 Barbone, Bamber 2002; 47 Rago, Santini, Scutari, Pinchera, Vitti 2007; 92 Rao, Varghese, Madsen 2008; 35 Pavan, Madsen, Frank, Jiang, Carneiro, Hall 2012; 57 Rubert, Bharat, DeWall, Andreano, Brace, Jiang 2010; 37 Jiang, Hall 2009; 35 Ophir, Cespedes, Ponnekanti, Yazdi, Li 1991; 13 Kallel, Bertrand 1996; 15 Viola, Walker 2005; 52 Techavipoo, Varghese 2004; 30 Zervantonakis, Fung-Kee-Fung, Lee, Konofagou 2007; 52 Xie, Kim, Aglyamov, Emelianov, Chen, O’Donnell 2004; 30 Anderson 1998; 45 Hall, Zhu, Spalding 2003; 29 Zhu, Hall, Jiang 2003; 22 bibr19-0161734614561128 bibr44-0161734614561128 bibr31-0161734614561128 bibr1-0161734614561128 bibr22-0161734614561128 bibr36-0161734614561128 bibr35-0161734614561128 bibr23-0161734614561128 bibr5-0161734614561128 bibr10-0161734614561128 bibr27-0161734614561128 bibr14-0161734614561128 bibr40-0161734614561128 bibr32-0161734614561128 bibr2-0161734614561128 bibr45-0161734614561128 bibr24-0161734614561128 bibr15-0161734614561128 bibr6-0161734614561128 bibr28-0161734614561128 bibr41-0161734614561128 bibr38-0161734614561128 bibr33-0161734614561128 bibr25-0161734614561128 bibr3-0161734614561128 Chartrand R (bibr37-0161734614561128) 2011; 2011 bibr46-0161734614561128 bibr20-0161734614561128 Cespedes EI (bibr11-0161734614561128) 1997; 2 bibr16-0161734614561128 bibr12-0161734614561128 bibr9-0161734614561128 bibr7-0161734614561128 bibr29-0161734614561128 bibr26-0161734614561128 bibr18-0161734614561128 bibr39-0161734614561128 bibr34-0161734614561128 bibr21-0161734614561128 bibr17-0161734614561128 bibr47-0161734614561128 bibr30-0161734614561128 bibr4-0161734614561128 bibr43-0161734614561128 bibr8-0161734614561128 bibr13-0161734614561128 Wang Y (bibr42-0161734614561128) |
| References_xml | – volume: 35 start-page: 1863 year: 2009 end-page: 79 article-title: A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming publication-title: Ultrasound Med Biol – volume: 45 start-page: 852 year: 1998 end-page: 61 article-title: Multi-dimensional velocity estimation with ultrasound using spatial quadrature publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 53 start-page: 4809 year: 2008 end-page: 23 article-title: Breast tumor classification using axial shear strain elastography: a feasibility study publication-title: Phys Med Biol – volume: 53 start-page: 972 year: 2006 end-page: 90 article-title: Phase-coupled two-dimensional speckle tracking algorithm publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 15 start-page: 299 year: 1996 end-page: 313 article-title: Tissue elasticity reconstruction using linear perturbation method publication-title: IEEE Trans Med Imaging – volume: 41 start-page: 314 year: 1994 end-page: 25 article-title: Internal displacement and strain imaging using ultrasonic speckle tracking publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 52 start-page: 4063 year: 2007 end-page: 80 article-title: A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence publication-title: Phys Med Biol – volume: 52 start-page: 80 year: 2005 end-page: 93 article-title: A spline-based algorithm for continuous time-delay estimation using sampled data publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 2011 start-page: 164564 year: 2011 article-title: Numerical differentiation of noisy, nonsmooth data publication-title: Int Sch Res Netw – volume: 30 start-page: 477 year: 2004 end-page: 91 article-title: Wavelet denoising of displacement estimates in elastography publication-title: Ultrasound Med Biol – volume: 23 start-page: 1479 year: 2004 end-page: 89 article-title: Estimation of displacement vectors and strain tensors in elastography using angular insonifications publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 412 year: 2008 end-page: 23 article-title: Shear strain imaging using shear deformations publication-title: Med Phys – volume: 54 start-page: 198 year: 2007 end-page: 210 article-title: An ultrasound research interface for a clinical system publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 57 start-page: 4787 year: 2012 end-page: 804 article-title: A nonlinear elasticity phantom containing spherical inclusions publication-title: Phys Med Biol – volume: 24 start-page: 1183 year: 1998 end-page: 99 article-title: A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues publication-title: Ultrasound Med Biol – volume: 101 start-page: 1139 year: 1997 end-page: 46 article-title: Error analysis in acoustic elastography. I. Displacement estimation publication-title: J Acoust Soc Am – volume: 239 start-page: 341 year: 2006 end-page: 50 article-title: Breast disease: clinical application of US elastography for diagnosis publication-title: Radiology – volume: 36 start-page: 1942 year: 2008 end-page: 60 article-title: MUlti-dimensional Spline-based Estimator (MUSE) for motion estimation: algorithm development and initial results publication-title: Ann Biomed Eng – volume: 24 start-page: 161 year: 2002 end-page: 76 article-title: A modified block matching method for real-time freehand strain imaging publication-title: Ultrason Imaging – volume: 30 start-page: 1385 year: 2004 end-page: 96 article-title: Staging deep venous thrombosis using ultrasound elasticity imaging: animal model publication-title: Ultrasound Med Biol – volume: 13 start-page: 111 year: 1991 end-page: 34 article-title: Elastography: a quantitative method for imaging the elasticity of biological tissues publication-title: Ultrason Imaging – volume: 14 start-page: 293 year: 1995 end-page: 300 article-title: Ultrasonic texture motion analysis: theory and simulation publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 301 year: 1995 end-page: 8 article-title: Fundamental limit on delay estimation using partially correlated speckle signals publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 45 start-page: 1088 year: 1998 end-page: 99 article-title: Two-dimensional temperature estimation using diagnostic ultrasound publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 245 start-page: 401 year: 2007 end-page: 10 article-title: Differentiating benign from malignant solid breast masses with US strain imaging publication-title: Radiology – volume: 92 start-page: 2917 year: 2007 end-page: 22 article-title: Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules publication-title: J Clin Endocrinol Metab – volume: 49 start-page: 2955 year: 2004 end-page: 74 article-title: Evaluation of the adjoint equation based algorithm for elasticity imaging publication-title: Phys Med Biol – volume: 29 start-page: 427 year: 2003 end-page: 35 article-title: In vivo real-time freehand palpation imaging publication-title: Ultrasound Med Biol – volume: 2 start-page: 55 year: 1997 end-page: 62 article-title: Intravascular elastography: principles and potentials publication-title: Semin Interv Cardiol – volume: 51 start-page: 540 year: 2004 end-page: 50 article-title: Lateral speckle tracking using synthetic lateral phase publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 26 start-page: 797 year: 2007 end-page: 805 article-title: Ultrasound thyroid elastography using carotid artery pulsation: preliminary study publication-title: J Ultrasound Med – volume: 22 start-page: 890 year: 2003 end-page: 901 article-title: A finite-element approach for Young’s modulus reconstruction publication-title: IEEE Trans Med Imaging – volume: 238 start-page: 425 year: 2006 end-page: 37 article-title: Breast lesions: evaluation with US strain imaging—clinical experience of multiple observers publication-title: Radiology – volume: 45 start-page: 837 year: 1998 end-page: 51 article-title: A new method for estimation of velocity vectors publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 43 start-page: 247 year: 1996 end-page: 56 article-title: Lateral displacement estimation using tissue incompressibility publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 54 start-page: 1191 year: 2009 end-page: 207 article-title: Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility publication-title: Phys Med Biol – volume: 27 start-page: 145 year: 2008 end-page: 60 article-title: 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data publication-title: IEEE Trans Med Imaging – volume: 27 start-page: 935 year: 2008 end-page: 46 article-title: Ultrasound-based elastography: a novel approach to assess radio frequency ablation of liver masses performed with expandable ablation probes: a feasibility study publication-title: J Ultrasound Med – volume: 30 start-page: 345 year: 2004 end-page: 56 article-title: Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery publication-title: Ultrasound Med Biol – volume: 47 start-page: 2147 year: 2002 end-page: 64 article-title: Quantitative elasticity imaging: what can and cannot be inferred from strain images publication-title: Phys Med Biol – volume: 37 start-page: 1075 year: 2010 end-page: 82 article-title: Electrode displacement strain imaging of thermally-ablated liver tissue in an in vivo animal model publication-title: Med Phys – volume: 43 start-page: 1053 year: 2004 end-page: 62 article-title: Automated region detection based on the contrast-to-noise ratio in near-infrared tomography publication-title: Appl Opt – ident: bibr23-0161734614561128 doi: 10.1109/58.677757 – ident: bibr39-0161734614561128 doi: 10.1016/j.ultrasmedbio.2003.11.010 – ident: bibr33-0161734614561128 doi: 10.1007/978-1-4757-2257-4 – ident: bibr13-0161734614561128 doi: 10.1088/0031-9155/52/14/004 – ident: bibr25-0161734614561128 doi: 10.1109/TUFFC.2004.1320827 – ident: bibr8-0161734614561128 doi: 10.1118/1.3301603 – ident: bibr19-0161734614561128 doi: 10.1109/TMI.2003.815065 – ident: bibr27-0161734614561128 doi: 10.1109/TMI.2007.897408 – ident: bibr34-0161734614561128 – ident: bibr2-0161734614561128 doi: 10.1109/58.285465 – ident: bibr9-0161734614561128 doi: 10.1210/jc.2007-0641 – ident: bibr28-0161734614561128 doi: 10.1109/TUFFC.2005.1397352 – ident: bibr36-0161734614561128 doi: 10.1137/1.9780898717570 – ident: bibr20-0161734614561128 doi: 10.1088/0031-9155/49/13/013 – ident: bibr7-0161734614561128 doi: 10.7863/jum.2008.27.6.935 – ident: bibr24-0161734614561128 doi: 10.1109/58.485950 – ident: bibr40-0161734614561128 doi: 10.1109/TUFFC.2007.226 – ident: bibr5-0161734614561128 doi: 10.1148/radiol.2381041336 – ident: bibr38-0161734614561128 doi: 10.1121/1.418018 – ident: bibr47-0161734614561128 – ident: bibr41-0161734614561128 doi: 10.1364/AO.43.001053 – ident: bibr22-0161734614561128 doi: 10.1109/58.677749 – ident: bibr1-0161734614561128 doi: 10.1177/016173469101300201 – ident: bibr35-0161734614561128 doi: 10.1177/016173460202400303 – ident: bibr10-0161734614561128 doi: 10.7863/jum.2007.26.6.797 – ident: bibr44-0161734614561128 doi: 10.1088/0031-9155/53/17/022 – ident: bibr14-0161734614561128 doi: 10.1016/S0301-5629(98)00109-4 – volume: 2011 start-page: 164564 year: 2011 ident: bibr37-0161734614561128 publication-title: Int Sch Res Netw – ident: bibr26-0161734614561128 doi: 10.1109/TUFFC.2006.1632687 – ident: bibr16-0161734614561128 doi: 10.1109/58.710592 – ident: bibr43-0161734614561128 doi: 10.1109/58.365243 – ident: bibr3-0161734614561128 doi: 10.1016/S0301-5629(02)00733-0 – ident: bibr17-0161734614561128 doi: 10.1016/j.ultrasmedbio.2003.11.016 – ident: bibr21-0161734614561128 doi: 10.1109/TMI.2004.835604 – ident: bibr31-0161734614561128 doi: 10.1109/42.387711 – ident: bibr46-0161734614561128 doi: 10.1088/0031-9155/54/5/006 – ident: bibr4-0161734614561128 doi: 10.1148/radiol.2391041676 – ident: bibr18-0161734614561128 doi: 10.1109/42.500139 – ident: bibr45-0161734614561128 doi: 10.1088/0031-9155/47/12/310 – ident: bibr29-0161734614561128 doi: 10.1007/s10439-008-9564-2 – start-page: 1841 volume-title: IEEE Ultrasonic Symposium ident: bibr42-0161734614561128 – ident: bibr15-0161734614561128 doi: 10.1118/1.2825621 – ident: bibr6-0161734614561128 doi: 10.1148/radiol.2452061805 – ident: bibr30-0161734614561128 doi: 10.1016/j.ultrasmedbio.2009.05.016 – ident: bibr12-0161734614561128 doi: 10.1016/j.ultrasmedbio.2004.08.015 – volume: 2 start-page: 55 year: 1997 ident: bibr11-0161734614561128 publication-title: Semin Interv Cardiol – ident: bibr32-0161734614561128 doi: 10.1088/0031-9155/57/15/4787 |
| SSID | ssj0011647 |
| Score | 2.1622674 |
| Snippet | Obtaining accurate ultrasonically estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions... Obtaining accurate ultrasonically-estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions... |
| SourceID | pubmedcentral proquest pubmed crossref sage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 277 |
| SubjectTerms | Algorithms Beams (radiation) Breast Breast Neoplasms - diagnostic imaging Computer Simulation Elasticity Imaging Techniques Feasibility Studies Female Humans Image Interpretation, Computer-Assisted - methods Image quality Imaging Mathematical analysis Phantoms, Imaging Regularization Reproducibility of Results Tracking Ultrasonography, Mammary |
| Subtitle | A Feasibility Study for Ultrasound Breast Elastography |
| Title | A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise |
| URI | https://journals.sagepub.com/doi/full/10.1177/0161734614561128 https://www.ncbi.nlm.nih.gov/pubmed/25452434 https://www.proquest.com/docview/1715916488 https://www.proquest.com/docview/1793293690 https://pubmed.ncbi.nlm.nih.gov/PMC4824000 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011647 issn: 0161-7346 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVCAuCAqU8NIioUooMvUzjrkZSFX1ERBKRMTF8j7cRErtkNgHuCH-ODPrteM0pSrkYEXrzfoxX2Zndr6dIeQ1E57Fbe4bdj8BB8W3bCM2pWfYIrF5EHiOULn0zoa9o7F7PPEmrdav5u6SnL3lP6_cV_I_UoU2kCvukv0HydaDQgN8B_nCESQMxxvJOOx-_jgw3sNEhJsMsaj8Um-r7Ibz8wz8_ulFd6SIsXBeFFyl315IDOdiWnOO6-TdYTardqiDQajpsj8Uw7Bkc47n-TJeYf0lgALW-ukOwObOm8mutXmre2JRndmFqn9U83uKrFwCqBomhdL-a3CWDd-mMj1PiprYM9Pr2ccwViL1eHqVwvJqvlulWE0kOweawiqvaNPauEwBo1HnNlVrWe5lW-WroDNarr7jgrEBBqGl95tvZNcefooOx6en0WgwGe0vvhtYeAwD9LoKyy2yY8PEYLbJTnjy5etJHYrChGsqZK5vdh3rPrh80U3bZsth2ebdNsiDyp4Z3Sf3tCNCwxJVD0hLprvkzpmmWuyS24obzFcPye-Q1jCjmzCjNcxoCTNawYxqmNEKZlTB7B0NaQNkVIGMAsjoGmS0BBltguwRGR8ORh-ODF27w-AwC-RGYAoeS27Z0hG-xI9w4VUxKRjrcYubiTAdTwjhgd8k_MTHrFAitmPBBXcT6Twm7TRL5RNCk9jtB2g1McZcGJ3BBN53oGOPMY_HvEMOqrcecZ3YHuurzCOrymV_SU4d8qb-xaJM6nJN31eVICPQvBhOi1OZFavIgnsG5wpmwOv6gH-ENTPNDtkrhV9f0QbnxXYdt0P8DVjUHTDz--aZdDZVGeDdPlK_Ycx9BFCkVdLqrw_x9AYP8YzcXf9xn5N2vizkCzC4c_ZS_yX-AGYC1zM |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PDE-Based+Regularization+Algorithm+Toward+Reducing+Speckle+Tracking+Noise%3A+A+Feasibility+Study+for+Ultrasound+Breast+Elastography&rft.jtitle=Ultrasonic+imaging&rft.au=Guo%2C+Li&rft.au=Xu%2C+Yan&rft.au=Xu%2C+Zhengfu&rft.au=Jiang%2C+Jingfeng&rft.date=2015-10-01&rft.issn=1096-0910&rft.eissn=1096-0910&rft.volume=37&rft.issue=4&rft.spage=277&rft_id=info:doi/10.1177%2F0161734614561128&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-7346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-7346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-7346&client=summon |