A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis

Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution, population growth, mechanical systems and financial market. Furthermore, as many real-world phenomena are subject to perturbations or random noise,...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2019; no. 1; pp. 1 - 14
Main Authors Khan, Sami Ullah, Ali, Mushtaq, Ali, Ishtiaq
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 27.04.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1847
1687-1839
1687-1847
DOI10.1186/s13662-019-2096-2

Cover

Abstract Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution, population growth, mechanical systems and financial market. Furthermore, as many real-world phenomena are subject to perturbations or random noise, it is natural to move from deterministic models to stochastic models. Generally exact solutions of such models are not available and numerical methods are used to obtain the approximate solutions. Therefore the efficiency and long-term behavior of approximate solutions for these systems is an important area of investigation. This paper presents a new numerical approach for the approximate solution of stochastic Volterra integro-differential (SVID) equations based on the Legendre-spectral collocation method. In order to fully use the properties of orthogonal polynomials, we use some function and a variable transformation to change the given SVID equation into a new equation, which is defined on the standard interval [ − 1 , 1 ] . For the evaluation of the integral term efficiently a Legendre–Gauss quadrature formula will be used. A rigorous error analysis of the proposed scheme will be provided under the assumption that the solution of the given SVID is sufficiently smooth. For the illustration of our theoretical results a number of numerical experiments will be performed.
AbstractList Abstract Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution, population growth, mechanical systems and financial market. Furthermore, as many real-world phenomena are subject to perturbations or random noise, it is natural to move from deterministic models to stochastic models. Generally exact solutions of such models are not available and numerical methods are used to obtain the approximate solutions. Therefore the efficiency and long-term behavior of approximate solutions for these systems is an important area of investigation. This paper presents a new numerical approach for the approximate solution of stochastic Volterra integro-differential (SVID) equations based on the Legendre-spectral collocation method. In order to fully use the properties of orthogonal polynomials, we use some function and a variable transformation to change the given SVID equation into a new equation, which is defined on the standard interval [−1,1] $[-1,1]$. For the evaluation of the integral term efficiently a Legendre–Gauss quadrature formula will be used. A rigorous error analysis of the proposed scheme will be provided under the assumption that the solution of the given SVID is sufficiently smooth. For the illustration of our theoretical results a number of numerical experiments will be performed.
Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution, population growth, mechanical systems and financial market. Furthermore, as many real-world phenomena are subject to perturbations or random noise, it is natural to move from deterministic models to stochastic models. Generally exact solutions of such models are not available and numerical methods are used to obtain the approximate solutions. Therefore the efficiency and long-term behavior of approximate solutions for these systems is an important area of investigation. This paper presents a new numerical approach for the approximate solution of stochastic Volterra integro-differential (SVID) equations based on the Legendre-spectral collocation method. In order to fully use the properties of orthogonal polynomials, we use some function and a variable transformation to change the given SVID equation into a new equation, which is defined on the standard interval [ − 1 , 1 ] . For the evaluation of the integral term efficiently a Legendre–Gauss quadrature formula will be used. A rigorous error analysis of the proposed scheme will be provided under the assumption that the solution of the given SVID is sufficiently smooth. For the illustration of our theoretical results a number of numerical experiments will be performed.
Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution, population growth, mechanical systems and financial market. Furthermore, as many real-world phenomena are subject to perturbations or random noise, it is natural to move from deterministic models to stochastic models. Generally exact solutions of such models are not available and numerical methods are used to obtain the approximate solutions. Therefore the efficiency and long-term behavior of approximate solutions for these systems is an important area of investigation. This paper presents a new numerical approach for the approximate solution of stochastic Volterra integro-differential (SVID) equations based on the Legendre-spectral collocation method. In order to fully use the properties of orthogonal polynomials, we use some function and a variable transformation to change the given SVID equation into a new equation, which is defined on the standard interval [−1,1]\([-1,1]\). For the evaluation of the integral term efficiently a Legendre–Gauss quadrature formula will be used. A rigorous error analysis of the proposed scheme will be provided under the assumption that the solution of the given SVID is sufficiently smooth. For the illustration of our theoretical results a number of numerical experiments will be performed.
ArticleNumber 161
Author Ali, Ishtiaq
Khan, Sami Ullah
Ali, Mushtaq
Author_xml – sequence: 1
  givenname: Sami Ullah
  surname: Khan
  fullname: Khan, Sami Ullah
  organization: Department of Mathematics, COMSATS University
– sequence: 2
  givenname: Mushtaq
  surname: Ali
  fullname: Ali, Mushtaq
  organization: Department of Physics, COMSATS University
– sequence: 3
  givenname: Ishtiaq
  surname: Ali
  fullname: Ali, Ishtiaq
  email: ishtiaqali@comsats.edu.pk
  organization: Department of Mathematics, COMSATS University, Department of Mathematics and Statistics, College of Science, King Faisal University
BookMark eNqNkU1rFTEYhYNUsK3-AHcB16OTZPIxy1LUFgrdVLchH29uc00nt0kucv-96Z2iIiiuEsJ5zvuekzN0suQFEHpLxveEKPGhEiYEHUYyD3ScxUBfoFMilByImuTJb_dX6KzW7TjSeVLqFH27wHUHrhWTsMspZWdazAt-gHafPQ654Nqyuze1RYe_5tSgFIPj0mBT8uBjCFBgabHz8Lg_whWbxePYKu7abmAWkw411tfoZTCpwpvn8xx9-fTx7vJquLn9fH15cTO4ifI2qODdFJQAHpiSM1eCeTNzFrgDoNZaCh7czHwYQTIx-tkxK3ocx02wxrJzdL36-my2elfigykHnU3Ux4dcNtqUHieBnt0kA5FSTCJMigZLrLDe2T6UOzW57kVXr_2yM4fvJqWfhmTUT9XrtXrdq9dP1WvaoXcrtCv5cQ-16W3el95C1ZQSLgVTfO4qsqpcybUWCP_lLP9gXGzH0vsPxvRP8jlI7VOWDZRfO_0d-gH3GLlE
CitedBy_id crossref_primary_10_3390_sym15040847
crossref_primary_10_1177_1687814020922113
crossref_primary_10_3390_sym14091838
crossref_primary_10_1140_epjp_s13360_023_04286_6
crossref_primary_10_1007_s11075_023_01659_x
crossref_primary_10_3934_mmc_2024031
crossref_primary_10_1002_mma_8183
crossref_primary_10_3390_axioms12090888
crossref_primary_10_1016_j_amc_2021_126440
crossref_primary_10_1088_1757_899X_927_1_012077
crossref_primary_10_3390_axioms12070652
crossref_primary_10_3390_math10193639
crossref_primary_10_1080_07362994_2021_1967761
crossref_primary_10_3934_math_2024567
crossref_primary_10_1080_10255842_2021_1970143
crossref_primary_10_1142_S1793962320500221
crossref_primary_10_1016_j_eswa_2023_121626
crossref_primary_10_3934_math_2023210
crossref_primary_10_1038_s41598_024_57073_3
crossref_primary_10_3934_mbe_2021140
crossref_primary_10_1007_s11075_024_01898_6
crossref_primary_10_1080_27690911_2024_2338397
crossref_primary_10_1080_10255842_2024_2319276
Cites_doi 10.1063/1.5016680
10.1002/mma.2769
10.1080/00207160.2011.631530
10.1137/040602857
10.1016/j.camwa.2012.03.042
10.4208/nmtma.2016.m1425
10.3390/axioms7040091
10.3934/dcdsb.2018087
10.1016/j.camwa.2011.10.079
10.1016/j.mcm.2011.08.053
10.3934/dcdsb.2010.14.1029
10.1137/0114039
10.1016/j.apm.2011.07.061
10.1007/s10092-015-0169-5
10.1007/s11464-009-0010-z
10.1016/j.apnum.2017.02.004
10.1155/ADE/2006/73897
10.1016/j.apnum.2019.01.009
10.1016/S0168-9274(01)00034-4
10.1007/978-3-540-30726-6
10.1007/978-3-662-03620-4
ContentType Journal Article
Copyright The Author(s) 2019
Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s13662-019-2096-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 14
ExternalDocumentID oai_doaj_org_article_9c47f177646f482fb1b6bdcb5865c84c
10.1186/s13662-019-2096-2
10_1186_s13662_019_2096_2
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
-~9
2VQ
ADTOC
AHSBF
C1A
H13
HZ~
IL9
IPNFZ
LO0
O9-
RIG
UNPAY
ID FETCH-LOGICAL-c425t-8fdc4f86e5f38795863da953f5cee2bbb2edec93df0e7360d9c3b6948c5afbab3
IEDL.DBID UNPAY
ISSN 1687-1847
1687-1839
IngestDate Tue Oct 14 19:04:24 EDT 2025
Tue Aug 19 17:39:52 EDT 2025
Tue Sep 30 13:10:40 EDT 2025
Wed Oct 01 01:04:06 EDT 2025
Thu Apr 24 23:13:31 EDT 2025
Fri Feb 21 02:36:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spectral collocation method
Stochastic Volterra integro-differential equations
Legendre–Gauss–Lobatto points
Error analysis
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-8fdc4f86e5f38795863da953f5cee2bbb2edec93df0e7360d9c3b6948c5afbab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-019-2096-2
PQID 2215763859
PQPubID 237355
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9c47f177646f482fb1b6bdcb5865c84c
unpaywall_primary_10_1186_s13662_019_2096_2
proquest_journals_2215763859
crossref_primary_10_1186_s13662_019_2096_2
crossref_citationtrail_10_1186_s13662_019_2096_2
springer_journals_10_1186_s13662_019_2096_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-27
PublicationDateYYYYMMDD 2019-04-27
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-27
  day: 27
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Shen, Tang (CR25) 2006
Maleknejad, Khodabin, Rostami (CR30) 2012; 63
Cardone, D’Ambrosio, Paternoster (CR13) 2019; 139
Khan, Ali (CR12) 2018; 8
Cardone, Conte, D’Ambrosio, Paternoster (CR14) 2018; 7
Ali (CR23) 2011; 29
Golec, Sathannathan (CR21) 2001; 8
Miller (CR2) 1966; 14
Ali, Brunner, Tang (CR11) 2009; 4
Berger, Mizel (CR9) 1980; 2
Tian, Burrage (CR20) 2001; 38
Maleknejad, Khodabin, Rostami (CR6) 2012; 55
Khodabin, Maleknejad, Rostami, Nouri (CR4) 2012; 36
Canuto, Hussaini, Quarteroni, Zang (CR24) 2006
Ali, Brunner, Tang (CR10) 2009; 27
Shaikhet, Roberts (CR22) 2006; 2006
Oguztöreli (CR5) 1966
Mohammadi (CR29) 2016; 9
Levin, Nohel (CR1) 1960; 9
Khodabin, Maleknejad, Rostami, Nouri (CR7) 2012; 64
Cioica, Dahlke (CR3) 2012; 89
Guo, Wang (CR28) 2010; 14
Oksendal (CR17) 1998
Burrage, Cardone, D’Ambrosio, Paternoster (CR16) 2017; 116
Khodabin, Maleknejad, Rostami, Nouri (CR8) 2011; 53
Yi, Wang (CR27) 2015
Hu, Huang (CR18) 2014; 2014
Conte, D’Ambrosio, Paternoster (CR15) 2018
Li-jun, Zi-qiang, Zhong-qing (CR26) 2013; 36
Buckwar, Winkler (CR19) 2006; 44
P.A. Cioica (2096_CR3) 2012; 89
L. Yi (2096_CR27) 2015
M.N. Oguztöreli (2096_CR5) 1966
E. Buckwar (2096_CR19) 2006; 44
J. Golec (2096_CR21) 2001; 8
D. Conte (2096_CR15) 2018
B. Oksendal (2096_CR17) 1998
I. Ali (2096_CR11) 2009; 4
S.U. Khan (2096_CR12) 2018; 8
P. Hu (2096_CR18) 2014; 2014
K. Maleknejad (2096_CR30) 2012; 63
K. Maleknejad (2096_CR6) 2012; 55
I. Ali (2096_CR23) 2011; 29
R.K. Miller (2096_CR2) 1966; 14
A. Cardone (2096_CR13) 2019; 139
J.J. Levin (2096_CR1) 1960; 9
M. Khodabin (2096_CR7) 2012; 64
L.E. Shaikhet (2096_CR22) 2006; 2006
C. Canuto (2096_CR24) 2006
J. Shen (2096_CR25) 2006
B.Y. Guo (2096_CR28) 2010; 14
Y. Li-jun (2096_CR26) 2013; 36
M. Khodabin (2096_CR8) 2011; 53
M. Khodabin (2096_CR4) 2012; 36
A. Cardone (2096_CR14) 2018; 7
M. Berger (2096_CR9) 1980; 2
F. Mohammadi (2096_CR29) 2016; 9
K. Burrage (2096_CR16) 2017; 116
I. Ali (2096_CR10) 2009; 27
T.H. Tian (2096_CR20) 2001; 38
References_xml – volume: 8
  issue: 3
  year: 2018
  ident: CR12
  article-title: Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation
  publication-title: AIP Adv.
  doi: 10.1063/1.5016680
– volume: 2
  start-page: 187
  year: 1980
  end-page: 245
  ident: CR9
  article-title: Volterra equations with Itô integrals, I
  publication-title: J. Integral Equ.
– volume: 36
  start-page: 2476
  issue: 18
  year: 2013
  end-page: 2491
  ident: CR26
  article-title: Legendre–Gauss–Lobatto spectral collocation method for nonlinear delay differential equations
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2769
– volume: 53
  start-page: 1910
  year: 2011
  end-page: 1920
  ident: CR8
  article-title: Numerical solution of stochastic differential equations by second order Runge–Kutta methods
  publication-title: Appl. Math. Model.
– year: 2006
  ident: CR24
  publication-title: Spectral Methods: Fundamental in Single Domains
– volume: 89
  start-page: 2443
  issue: 18
  year: 2012
  end-page: 2459
  ident: CR3
  article-title: Spatial Besov regularity for semi linear stochastic partial differential equations on bounded Lipschitz domains
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2011.631530
– volume: 44
  start-page: 779
  issue: 2
  year: 2006
  end-page: 803
  ident: CR19
  article-title: Multistep method for SDEs and their application to problem with small noise
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040602857
– volume: 64
  start-page: 1903
  year: 2012
  end-page: 1913
  ident: CR7
  article-title: Numerical approach for solving stochastic Volterra–Fredholm integral equations by stochastic operational matrix
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.03.042
– volume: 9
  start-page: 416
  issue: 3
  year: 2016
  end-page: 431
  ident: CR29
  article-title: Numerical solution of stochastic Itô–Volterra integral equations using Haar wavelets
  publication-title: Numer. Math., Theory Methods Appl.
  doi: 10.4208/nmtma.2016.m1425
– volume: 27
  start-page: 254
  year: 2009
  end-page: 265
  ident: CR10
  article-title: A spectral method for pantograph-type delay differential equations and its convergence analysis
  publication-title: J. Comput. Math.
– volume: 7
  issue: 4
  year: 2018
  ident: CR14
  article-title: Stability issues for selected stochastic evolutionary problems: a review
  publication-title: Axioms
  doi: 10.3390/axioms7040091
– year: 2018
  ident: CR15
  article-title: On the stability of theta-methods for stochastic Volterra integral equations
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
  doi: 10.3934/dcdsb.2018087
– year: 2006
  ident: CR25
  publication-title: Spectral and High-Order Method with Applications
– volume: 63
  start-page: 133
  year: 2012
  end-page: 143
  ident: CR30
  article-title: A numerical method for solving m-dimensional stochastic Itô–Volterra integral equations by stochastic operational matrix
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.10.079
– volume: 55
  start-page: 791
  year: 2012
  end-page: 800
  ident: CR6
  article-title: Numerical solutions of stochastic Volterra integral equations by a stochastic operational matrix based on Bloch pulse functions
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.08.053
– volume: 14
  start-page: 1029
  year: 2010
  end-page: 1054
  ident: CR28
  article-title: A spectral collocation method for solving initial value problems of first order ordinary differential equations
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
  doi: 10.3934/dcdsb.2010.14.1029
– volume: 29
  start-page: 50
  issue: 1
  year: 2011
  end-page: 61
  ident: CR23
  article-title: Convergence analysis of spectral methods for integro-differential equations with vanishing proportional delays
  publication-title: J. Comput. Math.
– volume: 2014
  year: 2014
  ident: CR18
  article-title: The stochastic -method for nonlinear stochastic Volterra integro-differential equations
  publication-title: Abstr. Appl. Anal.
– volume: 14
  start-page: 446
  year: 1966
  end-page: 452
  ident: CR2
  article-title: On a system of integro-differential equations occurring in reactor dynamics
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0114039
– volume: 36
  start-page: 1023
  year: 2012
  end-page: 1033
  ident: CR4
  article-title: Interpolation solution in generalized stochastic exponential population growth model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.07.061
– year: 1998
  ident: CR17
  publication-title: Stochastic Differential Equations, an Introduction with Applications
– year: 2015
  ident: CR27
  article-title: A Legendre–Gauss–Radau spectral collocation method for first order nonlinear delay differential equations
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0169-5
– year: 1966
  ident: CR5
  publication-title: Time-Lag Control Systems
– volume: 4
  start-page: 49
  year: 2009
  end-page: 61
  ident: CR11
  article-title: Spectral methods for pantograph-type differential and integral equations with multiple delays
  publication-title: Front. Math. China
  doi: 10.1007/s11464-009-0010-z
– volume: 116
  start-page: 82
  year: 2017
  end-page: 94
  ident: CR16
  article-title: Numerical solution of time fractional diffusion systems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.02.004
– volume: 2006
  year: 2006
  ident: CR22
  article-title: Reliability of difference analogues to preserve the stability properties stochastic Volterra integro-differential equations
  publication-title: Adv. Differ. Equ.
  doi: 10.1155/ADE/2006/73897
– volume: 139
  start-page: 115
  year: 2019
  end-page: 119
  ident: CR13
  article-title: A spectral method for stochastic fractional differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.01.009
– volume: 38
  start-page: 167
  issue: 1–2
  year: 2001
  end-page: 185
  ident: CR20
  article-title: Implicit Taylor method for stiff stochastic differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(01)00034-4
– volume: 9
  start-page: 347
  year: 1960
  end-page: 368
  ident: CR1
  article-title: On a system of integro-differential equations occurring in reactor dynamics
  publication-title: J. Math. Mech.
– volume: 8
  start-page: 139
  issue: 1
  year: 2001
  end-page: 151
  ident: CR21
  article-title: Strong approximation of stochastic integro differential equations
  publication-title: Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms
– volume: 7
  issue: 4
  year: 2018
  ident: 2096_CR14
  publication-title: Axioms
  doi: 10.3390/axioms7040091
– volume-title: Time-Lag Control Systems
  year: 1966
  ident: 2096_CR5
– volume: 9
  start-page: 416
  issue: 3
  year: 2016
  ident: 2096_CR29
  publication-title: Numer. Math., Theory Methods Appl.
  doi: 10.4208/nmtma.2016.m1425
– volume: 64
  start-page: 1903
  year: 2012
  ident: 2096_CR7
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.03.042
– volume-title: Spectral Methods: Fundamental in Single Domains
  year: 2006
  ident: 2096_CR24
  doi: 10.1007/978-3-540-30726-6
– volume: 2014
  year: 2014
  ident: 2096_CR18
  publication-title: Abstr. Appl. Anal.
– volume: 139
  start-page: 115
  year: 2019
  ident: 2096_CR13
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.01.009
– volume: 116
  start-page: 82
  year: 2017
  ident: 2096_CR16
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.02.004
– volume: 27
  start-page: 254
  year: 2009
  ident: 2096_CR10
  publication-title: J. Comput. Math.
– volume: 53
  start-page: 1910
  year: 2011
  ident: 2096_CR8
  publication-title: Appl. Math. Model.
– volume: 55
  start-page: 791
  year: 2012
  ident: 2096_CR6
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.08.053
– year: 2018
  ident: 2096_CR15
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
  doi: 10.3934/dcdsb.2018087
– volume-title: Spectral and High-Order Method with Applications
  year: 2006
  ident: 2096_CR25
– volume: 36
  start-page: 1023
  year: 2012
  ident: 2096_CR4
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.07.061
– volume: 2
  start-page: 187
  year: 1980
  ident: 2096_CR9
  publication-title: J. Integral Equ.
– volume: 14
  start-page: 446
  year: 1966
  ident: 2096_CR2
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0114039
– volume: 4
  start-page: 49
  year: 2009
  ident: 2096_CR11
  publication-title: Front. Math. China
  doi: 10.1007/s11464-009-0010-z
– volume: 9
  start-page: 347
  year: 1960
  ident: 2096_CR1
  publication-title: J. Math. Mech.
– volume: 8
  issue: 3
  year: 2018
  ident: 2096_CR12
  publication-title: AIP Adv.
  doi: 10.1063/1.5016680
– volume: 38
  start-page: 167
  issue: 1–2
  year: 2001
  ident: 2096_CR20
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(01)00034-4
– volume: 2006
  year: 2006
  ident: 2096_CR22
  publication-title: Adv. Differ. Equ.
  doi: 10.1155/ADE/2006/73897
– volume: 44
  start-page: 779
  issue: 2
  year: 2006
  ident: 2096_CR19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040602857
– volume: 8
  start-page: 139
  issue: 1
  year: 2001
  ident: 2096_CR21
  publication-title: Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms
– volume: 36
  start-page: 2476
  issue: 18
  year: 2013
  ident: 2096_CR26
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2769
– volume: 29
  start-page: 50
  issue: 1
  year: 2011
  ident: 2096_CR23
  publication-title: J. Comput. Math.
– volume-title: Stochastic Differential Equations, an Introduction with Applications
  year: 1998
  ident: 2096_CR17
  doi: 10.1007/978-3-662-03620-4
– volume: 14
  start-page: 1029
  year: 2010
  ident: 2096_CR28
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
  doi: 10.3934/dcdsb.2010.14.1029
– volume: 89
  start-page: 2443
  issue: 18
  year: 2012
  ident: 2096_CR3
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2011.631530
– year: 2015
  ident: 2096_CR27
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0169-5
– volume: 63
  start-page: 133
  year: 2012
  ident: 2096_CR30
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.10.079
SSID ssj0029488
Score 2.285166
Snippet Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example pollution,...
Abstract Volterra integro-differential equations arise in the modeling of natural systems where the past influence the present and future, for example...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Approximation
Collocation methods
Difference and Functional Equations
Differential equations
Error analysis
Functional Analysis
Legendre–Gauss–Lobatto points
Mathematical models
Mathematics
Mathematics and Statistics
Mechanical systems
Numerical methods
Ordinary Differential Equations
Partial Differential Equations
Polynomials
Population growth
Random noise
Spectral collocation method
Stochastic Volterra integro-differential equations
Volterra integral equations
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF-BQldKqSwH50FORRR722D5SBEKV2lOpuFl-qlVXWdiHEP--4zhZlgtceouSSTSa-caesZ1vCPmswEFC8DAppGQ4SmrmLADDXNx6JSPUIa93fP8B1zf826243Wj1lc-EFXrgYrgz7blMtZTAIXHVJFc7cME7oUB4xX0efSulx2JqKLU04nLYw6wVnC3qFiAfQdCICg2seTYL9WT9zzLM9aboHtlZdXf28cFOpxvzztVb8mZIGOl5UXSfbMXuHdnboBE8IH_Paf_D5Bzlsl9nZRmOlu7QFNNSiime_20zJzP9Ncsb5HNLC1PEjI09UjDWpzTeF-7vBbVdoH-WC4qy-AE7kJe8JzdXlz8vrtnQRIF5DMclUyl4nhREkdrcWFxBG6wWbRI4PTbOuSaG6HUbUhVlC1XQvnWA9vPCJmdd-4Fsd7MufiQ0yjoA6Dqk2nHvg3K-sgFLLrwG4H5CqtGoxg8M47nRxdT0lYYCU_xg0A8m-8E0E_Jl_cpdodd4Sfhr9tRaMDNj9zcQL2bAi3kNLxNyNPrZDOG6MA0mPjjQKqEn5HT0_dPjFzQ6XcPjdf0P_4f-n8huk3FccdbII7K9nK_iMeZFS3fSh8A_ytoKCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbocmg5oD7VbaHyoaciizycsX2oECAQqtRVVZWKm-VnW3WVLLuLKv4947yAy_YWJZPEyTw89tjfR8hHCRYiGg8TlRAMo6Ri1gAwzMWNkyJA7tN8x9cZXFzyL1fV1RaZDXth0rLKISa2gdo3Ls2RHxbYN6EvyEodLa5ZYo1K1dWBQsP01Ar-cwsx9oRsFwkZa0K2T85m376PQzDFWybKHNC1Um7Q1zlzCYervARIyxQUWo4CVjzqqVpA_0dZ6Fg43SFPb-qFuf1n5vMHfdP5c7LbJ5X0uLOCF2Qr1C_JzgOowVfk7zFtN1UuUS7pvumm6mjHIE0xdaWYBrrfJuE2059NKqIvDe3QJBo28KhgPJjTcN3hg6-oqT39s15RlMUHmB7g5DW5PD_7cXrBeqIF5tBl10xG73iUEKpYJvJxCaU3qipjhV1oYa0tgg9OlT5mQZSQeeVKC_gvXWWiNbZ8QyZ1U4e3hAaRewCV-5hb7pyX1mXG47AMjwG4m5Js-Kna9SjkiQxjrtvRiATd6UGjHnTSgy6m5NN4y6KD4NgkfJI0NQom9Oz2RLP8pXtn1MpxEXMhgEPksog2t2C9s_jhlZOpkXuDnnXv0it9b4BTcjDo_v7yhhYdjObx__a_2_zq9-RZkSw046wQe2SyXt6EfcyK1vZDb-p3dmQJvA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  dbid: 40G
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTxYxEG8IHpCDEdT4CZIeOEka99FO2yMakZjACQy3pk81ftmFbz9i_O-Z7ktIDMbbPtpNt7-Z6bTT_oaQQwUOEgoPk0JKhlZSM2cBGPri1isZoQx5vePsHE4v-ZcrcTWe4-6m3e5TSLK31L1aK3jflTVA3kagEVkNDO3uE1HiAIdCzIvP8yxLo0iO4cu_VnswAPU8_Q-cyzkeuk22bptr-_uXXS7vDTknz8mz0VekxwO4O2QjNrtk-x6DIN6dzbSr3Qvy85j2JydXWCsD3A7rcXRIE03RP6Xo6_nvNpMz069tjpSvLB0oI1o2JUtBpV_SeDOQgHfUNoH-WHcUy-IH7Mhi8pJcnny6-HjKxmwKzKNerplKwfOkIIpU5wzjCupgtaiTwHGycs5VMUSv65CKKGsogva1A-xNL2xy1tWvyGbTNvE1oVGWAUCXIZWOex-U84UNOPfCawDuF6SYutj4kWo8Z7xYmn7KocAMqBhExWRUTLUg7-Yq1wPPxmOFP2Tc5oKZIrt_0K6-mVHjjPZcplJK4JC4qpIrHbjgHf648Co3cn9C3Yx625kKPSC0uEroBTmaJOHP60dadDQLy7_b_-a_vr1HnlZZfAvOKrlPNter2_gWPaG1O-gl_w4E0gI4
  priority: 102
  providerName: Springer Nature
Title A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis
URI https://link.springer.com/article/10.1186/s13662-019-2096-2
https://www.proquest.com/docview/2215763859
https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-019-2096-2
https://doaj.org/article/9c47f177646f482fb1b6bdcb5865c84c
UnpaywallVersion publishedVersion
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-1847
  dateEnd: 20220219
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKcoAeeCMCpfKBE5XbfXjH3mMaNVRIRBUiqHBZ-bEuKFE2bDZCwJ9nvK-2CBVx4GJtNpPV7OTz-LPHniHkpQQNDsHDRCIEQy-ZMq0AGHJxZaTIIbR-vePtDE7n_M15cr5DPnVnYdrI98YHbF174i3_um03tnSxSl9ZqnbjVanM4mhtXdP7JRxtwhjA7zZIEQApMHTPQ0iQpw_IcD47G3_0MzDAnuWpweU1F23I84_PuDZo1bn9rxHSPoa6S25vV2v1_ZtaLq8MU9N75Gf3gs3ulMXhttKH5sdvuR__jwXuk7stu6XjBo4PyE6-ekh2r-Q8fEQWY1qf7ixRzoOwaNYMaVPKmiKHpshHzWflE0jTD4WP5peKNmktCtZpi45pSXuFqVpZ-qXaUJTFB6g208pjMp-evJ-csrbiAzPoOyomnTXcScgTF_sq6BJiq9IkdgnaINJaR7nNTRpbF-QihsCmJtaQcmkS5bTS8RMyWBWr_CmhuQgtQBpaF2pujJXaBMri_BCvAbgZkaD7SzPTpkP3VTmWWT0tkpA1dszQjpm3YxaNyKv-J-smF8hNwsceJ72gT-Nd3yjKi6z1CllquHChEMDBcRk5HWrQ1mh88cRIr-Reh7Ks9S2bLEKWhqOCTNIROejwcPn1DRod9OD8u_7P_kn6ObkTecAFnEVijwyqcpu_QLZW6X1yiwevsZVTbIfHJ7Ozd_hpApP9ev0D23mEbdM5fwHzZkGt
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHCiHqk-xQFsf2kuRxSZxJvYBVdCClgKrqoKKm-tnW3W1WTaLEH-uv63jPBa4bE_comQ28WY-j2fs-PsIeSfAQEDwsCIvCoZRUjKjARjm4tqKwkPi4nzH6RAG5_zLRX6xRP52e2HiZ5VdTKwDtSttnCPfSXFswr4gcvlxcsmialRcXe0kNHQrreB2a4qxdmPHsb-5xhKu2j36jP5-n6aHB2efBqxVGWAW8TpjIjjLgwCfhywqbwvInJZ5FnIcP1JjTOqdtzJzoe-LDPpO2syA5MLmOhhtMrzvI7LCMy6x-FvZPxh-_TYv-dCs3owH2JVjLtKuqyYCdqokA4ifRUhEqgSW3hsZawGBe1nvfKF2jaxejSf65lqPRnfGwsOn5EmbxNK9BnXPyJIfPydrd6gNX5A_e7TexDlFu4i1spkapI1iNcVUmWLaaX_pyBNNv5dx0X6qacNeUbJOtwXjz4j6y4aPvKJ67OjvWUXRFm-gW0KVl-T8QV75K7I8Lsd-nVBfJA5AJi4khlvrhLF97bAMxGMAbnuk371UZVvW8yi-MVJ19SNANX5Q6AcV_aDSHvkw_8mkofxYZLwfPTU3jGzd9Yly-lO1nV9Jy4uQFAVwCFykwSQGjLMG_3huRWzkVudn1YaQSt0Cvke2O9_fXl7Qou05PP7f_o3Fj35LVgdnpyfq5Gh4vEkepxGtfc7SYossz6ZX_jVmZDPzpoU9JT8euqf9A1rsSVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEE-xUMAHuFBZmzjJ2DkgVChLS6HiQFFvrp-AWCXbzVZV_xq_jnEe2_aynHqLkonjeL4Zj1_fEPJKgoGA4GGiEIKhlyyZ0QAMY3FtpfCQujjf8fUAdg_zz0fF0Rr5O5yFidsqB5_YOmpX2zhHPubYN6EtyKIch35bxLedybvZCYsZpOJK65BOo4PIvj8_w-Fb83ZvB3X9mvPJx-8fdlmfYYBZxOqCyeBsHiT4ImQx67aEzOmyyEKBfQc3xnDvvC0zFxIvMkhcaTMDZS5toYPRJsNyb5CbIrK4x1Pqk0_LwR4KtcfwAI04RiH9imoqYdykGUDcEFEiRktg_Eqf2KYOuBLvLpdoN8jt02qmz8_0dHqpF5zcI3f78JVud3i7T9Z89YBsXCI1fEj-bNP2-OYc5SLK6m5SkHa5qikGyRQDTvtLR4Zo-qOOy_VzTTveipoNGVvQ80ypP-mYyBuqK0d_LxqKsliA7qlUHpHDa2nwx2S9qiv_hFAvUgdQpi6kJrfWSWMT7XAAiNcAuR2RZGhUZXu-85h2Y6racY8E1elBoR5U1IPiI_Jm-cqsI_tYJfw-amopGHm62xv1_KfqzV6VNhchFQJyCLnkwaQGjLMGf7ywMlZyc9Cz6p1Hoy6gPiJbg-4vHq-o0dYSHv-v_9PVn35JbqF9qS97B_vPyB0ewZrkjItNsr6Yn_rnGIotzIsW85QcX7eR_QNhokb0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq7QF64BuxUJAPnKjSbhJnbB8XRFUhUXFgUeES-ZOiXSVLNisE_HnGiZO2CBVx4BbtzkaT2efxc8Z-Q8hzARo8gifhBecJZkmZaAWQIBdXRnAHqQ3vO96ewsmCvTkrznbIp-EsTKx8b0LB1scTb-7rNm5sGWqVobNUl8bbRpnl0dr6fvQLONqkOUDYbSARABISTM-7UCBPn5Ddxem7-cewAgMcWYEaXFwzHkuef7zHlUmr0_a_QkjHGuoeubGt1ur7N7VaXZqmjm-Tn8MD9rtTlofbVh-aH79pP_6fCNwhtyK7pfMejnfJjqvukb1Lmof3yXJOu9OdDdoFENb9O0Pat7KmyKEp8lFzroKANP1Qh2p-o2gva1Eng7eYmFZ0dJiqytIv7YaiLd5ARaWVB2Rx_Pr9q5MkdnxIDOaONhHeGuYFuMLnoQu6gNwqWeS-wBhkWuvMWWdkbv3M8RxmVppcg2TCFMprpfOHZFLVlXtEqOOpBZCp9almxlihzUxZXB_iNQAzUzIb_tLSRDn00JVjVXbLIgFlH8cS41iGOJbZlLwYf7LutUCuM34ZcDIaBhnv7oO6-VzGrFBKw7hPOQcGnonM61SDtkbjgxdGBCf3B5SVMbdsygxZGs4KopBTcjDg4eLrazw6GMH5d_8f_5P1E3IzC4CbsSTj-2TSNlv3FNlaq5_FYfcLucw7pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spectral+collocation+method+for+stochastic+Volterra+integro-differential+equations+and+its+error+analysis&rft.jtitle=Advances+in+difference+equations&rft.au=Khan%2C+Sami+Ullah&rft.au=Mushtaq%2C+Ali&rft.au=Ali%2C+Ishtiaq&rft.date=2019-04-27&rft.pub=Springer+Nature+B.V&rft.issn=1687-1839&rft.eissn=1687-1847&rft.volume=2019&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs13662-019-2096-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon