Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things

New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of i...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2018; no. 1; pp. 1 - 10
Main Authors Hu, Guoxiong, Yang, Zhong, Zhu, Maohu, Huang, Li, Xiong, Naixue
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 16.07.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1499
1687-1472
1687-1499
DOI10.1186/s13638-018-1195-1

Cover

Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k -nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance.
AbstractList New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance.
Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance.
New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k -nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance.
ArticleNumber 177
Author Xiong, Naixue
Hu, Guoxiong
Huang, Li
Yang, Zhong
Zhu, Maohu
Author_xml – sequence: 1
  givenname: Guoxiong
  orcidid: 0000-0002-7780-5646
  surname: Hu
  fullname: Hu, Guoxiong
  organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, College of Software, Jiangxi Normal University
– sequence: 2
  givenname: Zhong
  surname: Yang
  fullname: Yang, Zhong
  email: YZ.NUAA@163.com
  organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Maohu
  surname: Zhu
  fullname: Zhu, Maohu
  organization: Elementary Education College, Jiangxi Normal University
– sequence: 4
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: Elementary Education College, Jiangxi Normal University
– sequence: 5
  givenname: Naixue
  surname: Xiong
  fullname: Xiong, Naixue
  organization: Department of Mathematics and Computer Science, Northeastern State University
BookMark eNp9UU1v1DAUtFCRaAs_gJslzgZ_xIlzrCqgK1XqpZwtf2a9JPZiO0J75ZfjbRAgpHLxs_3ezBvNXIGLmKID4C3B7wkR_YdCWM8EwkQgQkaOyAtwSXoxINKN48Vf91fgqpQDxox1I70EP27WmhZVg4FmVqUEH0x7pQiThyGWdVY1ZahP0KRFhxjiBL-i6FR2pcLowrTXra_mKeVQ9wv83k64rHMNqJ6ODnqn6ppbbVN17-AuVpejq2f-x32jK6_BS6_m4t78qtfgy6ePj7d36P7h8-725h6ZjvKKBKPOjoOiQnCLMR8N9V0nyEBwc4CxnmuCtdDGWttr1rrW25F5QS1n3cDYNdhtvDapgzzmsKh8kkkF-fSR8iRVbkbMTgqOFedUuV6YzmilLO8IE9pb7eioRON6t3Edc_q2NivkIa05NvmS4gH3I28q2xTZpkxOpWTnf28lWJ5jk1tsssUmz7FJ0jDDPxgT6lMiNasw_xdJN2RpW-Lk8h9Nz4N-Au_MsDw
CitedBy_id crossref_primary_10_1016_j_comcom_2021_04_002
crossref_primary_10_1007_s00500_022_07441_w
crossref_primary_10_1108_LHT_12_2017_0274
Cites_doi 10.1134/S1054661814030122
10.1109/TSMC.1976.5408777
10.14257/ijsip.2016.9.5.27
10.1016/j.patcog.2008.09.031
10.1007/BF00130487
10.3390/s17010174
10.1016/j.patcog.2011.03.005
10.1016/j.compeleceng.2017.04.009
10.1109/83.817602
10.1007/s11760-014-0615-x
10.1145/244130.244148
10.1109/34.955109
10.1049/iet-cvi.2015.0020
10.1117/12.205308
10.1016/j.jvcir.2005.10.003
10.1109/ICIP.1996.560536
10.1109/TIT.1962.1057692
10.1145/3065386
10.1109/CVPR.1996.517107
10.1007/s11042-014-2381-8
10.1109/TDEI.2013.6508770
10.1007/s11042-017-4478-3
10.1016/S0146-664X(75)80008-6
10.1016/j.ins.2016.12.030
10.1007/s11042-013-1511-z
10.1007/s10586-015-0499-8
10.1109/TSMC.1973.4309314
10.1109/TSMC.2016.2557225
10.1007/s00521-016-2504-4
10.16383/j.aas.1984.01.005
10.6138/JIT.2017.18.6.20170509
10.1186/s13638-018-1022-8
10.5772/58692
10.1109/TIT.1967.1053964
10.1007/s13042-013-0187-z
ContentType Journal Article
Copyright The Author(s). 2018
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s). 2018
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13638-018-1195-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 10
ExternalDocumentID oai_doaj_org_article_850a552ae68c4cbaad54138bfdbe29a8
10_1186_s13638_018_1195_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473144; 61602222; 41661083
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: The special scientific instrument development of Ministry of science and technology of China
  grantid: 2016YFF0103702
– fundername: Aeronautical Science Foundation of China
  grantid: 20162852031
  funderid: http://dx.doi.org/10.13039/501100004750
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-832ed97a2885d0059c2f44817101183365b10b8bcddd6b3c2fdfd93f82d534733
IEDL.DBID 40G
ISSN 1687-1499
1687-1472
IngestDate Wed Aug 27 00:43:59 EDT 2025
Sat Jul 26 02:42:24 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Tue Jul 01 00:40:53 EDT 2025
Fri Feb 21 02:35:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Complicated background
Sensor networks
Insulator inspection
Internet of Things
Multi-type feature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-832ed97a2885d0059c2f44817101183365b10b8bcddd6b3c2fdfd93f82d534733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7780-5646
OpenAccessLink https://link.springer.com/10.1186/s13638-018-1195-1
PQID 2070695885
PQPubID 237293
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_850a552ae68c4cbaad54138bfdbe29a8
proquest_journals_2070695885
crossref_primary_10_1186_s13638_018_1195_1
crossref_citationtrail_10_1186_s13638_018_1195_1
springer_journals_10_1186_s13638_018_1195_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-16
PublicationDateYYYYMMDD 2018-07-16
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-16
  day: 16
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References PrasadJRKulKarniUGujrati character recognition using weighted k-NN and Mean chi(2) distance measureInt. J. Mach. Learn. Cybern.201561698210.1007/s13042-013-0187-z
M Benčo, R Hudec, P Kamencay, M Zachariasova, S Matuska, An advanced approach to extraction of colour texture features based on GLCM. Int. J. Adv. Robot. Syst., 1–8 (2014). https://doi.org/10.5772/58692
KimJSHongKSColor–texture segmentation using unsupervised graph cutsPattern Recogn.200942573575010.1016/j.patcog.2008.09.0311162.68613
WeszkaJSDyerCRRosenfeldAA comparative study of texture measures for terrain classificationIEEE Trans. Syst., Man Cybern.1976SMC-6426928510.1109/TSMC.1976.54087770322.68061
PassGZabihRMillerJIn proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors1997BostonACM6573
XiaZHWangXHSunXMLiuQSXiongNXSteganalysis of LSB matching using differences between nonadjacent pixelsMultimed. Tools Appl.20167541947196210.1007/s11042-014-2381-8
XiaZHXiongNNVasilakosAVSunXMEPCBIR: an efficient and privacy-preserving content-based image retrieval scheme in cloud computingInf. Sci.201738719520410.1016/j.ins.2016.12.030
K Sobottka, I Pitas, In proc. of 3rd IEEE International Conference on Image Processing. Face localization and facial feature extraction based on shape and color information (IEEE, Switzerland, 1996), 483–486. DOI: https://doi.org/10.1109/ICIP.1996.560536
GeversTSmeuldersAWMPicToSeek: combining color and shape invariant features for image retrievalIEEE Trans. Image Process.20009110211910.1109/83.817602
GaoXWPodladchikovaLShaposhnikovDHongKShevtsovaNRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ. Vis. Comun. Image Represent..200617467568510.1016/j.jvcir.2005.10.003
IleaDEWhelanPFImage segmentation based on the integration of colour–texture descriptors—a reviewPattern Recogn.201144102479250110.1016/j.patcog.2011.03.0051218.68187
StrickerMOrengoMSimilarity of color imagesSPIE Proc., Storage Retr. Image Video Databases III1995242038139210.1117/12.205308
ChandyDAJohnsonJSSelvanSETexture feature extraction using gray level statistical matrix for content-based mammogram retrievalMultimedia Tools Appl.20147222011202410.1007/s11042-013-1511-z
SunJDFeature Extracted and Retrieval Technique of Image2015Beijingpublishing house of electronics industry
HaralickRMShanmugamKTexture features for image classificationIEEE Trans. Syst. Man Cybern.1973SMC-3661062110.1109/TSMC.1973.4309314
MKHVisual pattern recognition by moment invariantsIRE Trans. Inf. Theory.19628217918710.1109/TIT.1962.1057692
LP GaoFYYChenQKXiongNXConsistency maintenance of Do and Undo/Redo operations in real-time collaborative bitmap editing systemsClust. Comput.201619125526710.1007/s10586-015-0499-8
HuGXYangZHanJMHuangLGongJXiongNXAircraft detection in remote sensing images based on saliency and convolution neural networkEURASIP J. Wirel. Commun. Netw.20181-162610.1186/s13638-018-1022-8
BenčoMHudecRNovel method for color textures features extraction based on GLCMRadioeng.20071646467
HongJGGray level-gradient cooccurrence matrix texture analysis methodActa Automat. Sin.19841012225
ZhangYDZhangYLvYDHouXXLiuFYJiaWJYangMMPhillipsPWangSHComp. Electr. Eng.20176312613810.1016/j.compeleceng.2017.04.009
LangeMMStepanovDYRecognition of objects given by collections of multichannel imagesPattern Recognit. Image Anal.201424343144210.1134/S1054661814030122
SwainMJBallardDHColor indexingInt. J. Comput. Vis.199171113210.1007/BF00130487
CuiXTKanJMLiWBRegion matching based on colour invariants in rgb orthogonal spaceIET Comput. Vis.201610654555010.1049/iet-cvi.2015.0020
GallowayMMTexture analysis using gray level run lengthsComput. Graphics Image Process.19754217217910.1016/S0146-664X(75)80008-6
ReddyMJBChandraBKMohantaDKCondition monitoring of 11kv distribution system insulators incorporating complex imagery using combined DOST-SVM approachIEEE Trans. Dielectr. Electr. Insul.201320266467410.1109/TDEI.2013.6508770
CoverTHarPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505
FangYMFangZJYuanFNYangYYangSYXiongNNOptimized multioperator image retargeting based on perceptual similarity measureIEEE Trans. Syst. Man Cybern-Syst.201747112956296610.1109/TSMC.2016.2557225
RaitoharjuJKiranyazSGabboujMFeature synthesis for image classification and retrieval via one-against-all perceptronsNeural Comput. Applic.201829494395710.1007/s00521-016-2504-4
HuangLSHXGXHZhangCXiongNNDesign and analysis of a weight-LDA model to extract implicit topic of database in social networksJ. Internet Technol.201718613931406
RawatJSinghABhadauriaHSVirmaniJDevgunJSClassification of acute lymphoblastic leukaemia using hybrid hierarchical classifiersMultimedia Tools Appl.20177618190571908510.1007/s11042-017-4478-3
KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun. ACM2017606849010.1145/3065386
NX Xiong, RW Liu, DW MH Liang, Z Liu, W HS, Effective alternating direction optimization methods for sparsity-constrained blind image deblurring. Sens. 17(1) (2017). https://doi.org/10.3390/s17010174
WY Ma, BS Marijunath, in proc. of 1996 IEEE conference on computer vision and pattern recognition (CVPR). Texture features and learning similarity (IEEE, San Francisco, 1996). 425–430. DOI: https://doi.org/10.1109/CVPR.1996.517107
HuangJColor-Spatial Image Indexing and Applications1998New YorkCornell University
WangJZLiJWiederholdGSIMPLIcity: semantics-sensitive integrated matching for picture librariesIEEE Trans. Pattern Anal. Mach. Intell.200123994796310.1109/34.955109
GritzmanADRubinDMPantanowitzAComparison of colour transforms used in lip segmentation algorithmsSIViP20159494795710.1007/s11760-014-0615-x
ShuLFangYMFangZJYangYFeiFCXiongNXA novel objective quality assessment for super- resolution imagesInt. J. Signal Process., Image Process. Pattern Recognit.201695297308
J Rawat (1195_CR28) 2017; 76
JS Kim (1195_CR18) 2009; 42
DA Chandy (1195_CR27) 2014; 72
M Benčo (1195_CR15) 2007; 16
L Shu (1195_CR5) 2016; 9
AD Gritzman (1195_CR21) 2015; 9
YM Fang (1195_CR7) 2017; 47
MJB Reddy (1195_CR9) 2013; 20
GX Hu (1195_CR6) 2018; 1-16
(1195_CR10) 2015
ZH Xia (1195_CR2) 2016; 75
MJ Swain (1195_CR23) 1991; 7
YD Zhang (1195_CR34) 2017; 63
A Krizhevsky (1195_CR38) 2017; 60
G Pass (1195_CR25) 1997
JR Prasad (1195_CR36) 2015; 6
T Gevers (1195_CR12) 2000; 9
RM Haralick (1195_CR30) 1973; SMC-3
MM Lange (1195_CR20) 2014; 24
MM Galloway (1195_CR33) 1975; 4
1195_CR29
1195_CR1
M Stricker (1195_CR24) 1995; 2420
ZH Xia (1195_CR4) 2017; 387
H MK (1195_CR35) 1962; 8
FYY LP Gao (1195_CR3) 2016; 19
XT Cui (1195_CR19) 2016; 10
JZ Wang (1195_CR11) 2001; 23
J Huang (1195_CR26) 1998
DE Ilea (1195_CR17) 2011; 44
T Cover (1195_CR37) 1967; 13
J Raitoharju (1195_CR22) 2018; 29
XW Gao (1195_CR8) 2006; 17
1195_CR14
1195_CR16
JG Hong (1195_CR31) 1984; 10
JS Weszka (1195_CR32) 1976; SMC-6
L Huang (1195_CR13) 2017; 18
References_xml – reference: StrickerMOrengoMSimilarity of color imagesSPIE Proc., Storage Retr. Image Video Databases III1995242038139210.1117/12.205308
– reference: HuangJColor-Spatial Image Indexing and Applications1998New YorkCornell University
– reference: ReddyMJBChandraBKMohantaDKCondition monitoring of 11kv distribution system insulators incorporating complex imagery using combined DOST-SVM approachIEEE Trans. Dielectr. Electr. Insul.201320266467410.1109/TDEI.2013.6508770
– reference: LangeMMStepanovDYRecognition of objects given by collections of multichannel imagesPattern Recognit. Image Anal.201424343144210.1134/S1054661814030122
– reference: XiaZHXiongNNVasilakosAVSunXMEPCBIR: an efficient and privacy-preserving content-based image retrieval scheme in cloud computingInf. Sci.201738719520410.1016/j.ins.2016.12.030
– reference: HuGXYangZHanJMHuangLGongJXiongNXAircraft detection in remote sensing images based on saliency and convolution neural networkEURASIP J. Wirel. Commun. Netw.20181-162610.1186/s13638-018-1022-8
– reference: SunJDFeature Extracted and Retrieval Technique of Image2015Beijingpublishing house of electronics industry
– reference: PassGZabihRMillerJIn proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors1997BostonACM6573
– reference: NX Xiong, RW Liu, DW MH Liang, Z Liu, W HS, Effective alternating direction optimization methods for sparsity-constrained blind image deblurring. Sens. 17(1) (2017). https://doi.org/10.3390/s17010174
– reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun. ACM2017606849010.1145/3065386
– reference: HongJGGray level-gradient cooccurrence matrix texture analysis methodActa Automat. Sin.19841012225
– reference: GritzmanADRubinDMPantanowitzAComparison of colour transforms used in lip segmentation algorithmsSIViP20159494795710.1007/s11760-014-0615-x
– reference: GaoXWPodladchikovaLShaposhnikovDHongKShevtsovaNRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ. Vis. Comun. Image Represent..200617467568510.1016/j.jvcir.2005.10.003
– reference: HuangLSHXGXHZhangCXiongNNDesign and analysis of a weight-LDA model to extract implicit topic of database in social networksJ. Internet Technol.201718613931406
– reference: RawatJSinghABhadauriaHSVirmaniJDevgunJSClassification of acute lymphoblastic leukaemia using hybrid hierarchical classifiersMultimedia Tools Appl.20177618190571908510.1007/s11042-017-4478-3
– reference: RaitoharjuJKiranyazSGabboujMFeature synthesis for image classification and retrieval via one-against-all perceptronsNeural Comput. Applic.201829494395710.1007/s00521-016-2504-4
– reference: PrasadJRKulKarniUGujrati character recognition using weighted k-NN and Mean chi(2) distance measureInt. J. Mach. Learn. Cybern.201561698210.1007/s13042-013-0187-z
– reference: ShuLFangYMFangZJYangYFeiFCXiongNXA novel objective quality assessment for super- resolution imagesInt. J. Signal Process., Image Process. Pattern Recognit.201695297308
– reference: FangYMFangZJYuanFNYangYYangSYXiongNNOptimized multioperator image retargeting based on perceptual similarity measureIEEE Trans. Syst. Man Cybern-Syst.201747112956296610.1109/TSMC.2016.2557225
– reference: BenčoMHudecRNovel method for color textures features extraction based on GLCMRadioeng.20071646467
– reference: ChandyDAJohnsonJSSelvanSETexture feature extraction using gray level statistical matrix for content-based mammogram retrievalMultimedia Tools Appl.20147222011202410.1007/s11042-013-1511-z
– reference: M Benčo, R Hudec, P Kamencay, M Zachariasova, S Matuska, An advanced approach to extraction of colour texture features based on GLCM. Int. J. Adv. Robot. Syst., 1–8 (2014). https://doi.org/10.5772/58692
– reference: HaralickRMShanmugamKTexture features for image classificationIEEE Trans. Syst. Man Cybern.1973SMC-3661062110.1109/TSMC.1973.4309314
– reference: CuiXTKanJMLiWBRegion matching based on colour invariants in rgb orthogonal spaceIET Comput. Vis.201610654555010.1049/iet-cvi.2015.0020
– reference: WY Ma, BS Marijunath, in proc. of 1996 IEEE conference on computer vision and pattern recognition (CVPR). Texture features and learning similarity (IEEE, San Francisco, 1996). 425–430. DOI: https://doi.org/10.1109/CVPR.1996.517107
– reference: IleaDEWhelanPFImage segmentation based on the integration of colour–texture descriptors—a reviewPattern Recogn.201144102479250110.1016/j.patcog.2011.03.0051218.68187
– reference: MKHVisual pattern recognition by moment invariantsIRE Trans. Inf. Theory.19628217918710.1109/TIT.1962.1057692
– reference: XiaZHWangXHSunXMLiuQSXiongNXSteganalysis of LSB matching using differences between nonadjacent pixelsMultimed. Tools Appl.20167541947196210.1007/s11042-014-2381-8
– reference: WangJZLiJWiederholdGSIMPLIcity: semantics-sensitive integrated matching for picture librariesIEEE Trans. Pattern Anal. Mach. Intell.200123994796310.1109/34.955109
– reference: GeversTSmeuldersAWMPicToSeek: combining color and shape invariant features for image retrievalIEEE Trans. Image Process.20009110211910.1109/83.817602
– reference: ZhangYDZhangYLvYDHouXXLiuFYJiaWJYangMMPhillipsPWangSHComp. Electr. Eng.20176312613810.1016/j.compeleceng.2017.04.009
– reference: CoverTHarPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505
– reference: LP GaoFYYChenQKXiongNXConsistency maintenance of Do and Undo/Redo operations in real-time collaborative bitmap editing systemsClust. Comput.201619125526710.1007/s10586-015-0499-8
– reference: GallowayMMTexture analysis using gray level run lengthsComput. Graphics Image Process.19754217217910.1016/S0146-664X(75)80008-6
– reference: KimJSHongKSColor–texture segmentation using unsupervised graph cutsPattern Recogn.200942573575010.1016/j.patcog.2008.09.0311162.68613
– reference: K Sobottka, I Pitas, In proc. of 3rd IEEE International Conference on Image Processing. Face localization and facial feature extraction based on shape and color information (IEEE, Switzerland, 1996), 483–486. DOI: https://doi.org/10.1109/ICIP.1996.560536
– reference: WeszkaJSDyerCRRosenfeldAA comparative study of texture measures for terrain classificationIEEE Trans. Syst., Man Cybern.1976SMC-6426928510.1109/TSMC.1976.54087770322.68061
– reference: SwainMJBallardDHColor indexingInt. J. Comput. Vis.199171113210.1007/BF00130487
– volume: 24
  start-page: 431
  issue: 3
  year: 2014
  ident: 1195_CR20
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661814030122
– volume: SMC-6
  start-page: 269
  issue: 4
  year: 1976
  ident: 1195_CR32
  publication-title: IEEE Trans. Syst., Man Cybern.
  doi: 10.1109/TSMC.1976.5408777
– volume: 9
  start-page: 297
  issue: 5
  year: 2016
  ident: 1195_CR5
  publication-title: Int. J. Signal Process., Image Process. Pattern Recognit.
  doi: 10.14257/ijsip.2016.9.5.27
– volume: 42
  start-page: 735
  issue: 5
  year: 2009
  ident: 1195_CR18
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.09.031
– volume-title: Color-Spatial Image Indexing and Applications
  year: 1998
  ident: 1195_CR26
– volume: 7
  start-page: 11
  issue: 1
  year: 1991
  ident: 1195_CR23
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00130487
– ident: 1195_CR1
  doi: 10.3390/s17010174
– volume: 44
  start-page: 2479
  issue: 10
  year: 2011
  ident: 1195_CR17
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.03.005
– volume: 63
  start-page: 126
  year: 2017
  ident: 1195_CR34
  publication-title: Comp. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.04.009
– volume: 9
  start-page: 102
  issue: 1
  year: 2000
  ident: 1195_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.817602
– volume: 9
  start-page: 947
  issue: 4
  year: 2015
  ident: 1195_CR21
  publication-title: SIViP
  doi: 10.1007/s11760-014-0615-x
– start-page: 65
  volume-title: In proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors
  year: 1997
  ident: 1195_CR25
  doi: 10.1145/244130.244148
– volume: 23
  start-page: 947
  issue: 9
  year: 2001
  ident: 1195_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.955109
– volume: 10
  start-page: 545
  issue: 6
  year: 2016
  ident: 1195_CR19
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2015.0020
– volume: 2420
  start-page: 381
  year: 1995
  ident: 1195_CR24
  publication-title: SPIE Proc., Storage Retr. Image Video Databases III
  doi: 10.1117/12.205308
– volume: 17
  start-page: 675
  issue: 4
  year: 2006
  ident: 1195_CR8
  publication-title: J. Vis. Comun. Image Represent..
  doi: 10.1016/j.jvcir.2005.10.003
– ident: 1195_CR14
  doi: 10.1109/ICIP.1996.560536
– volume: 8
  start-page: 179
  issue: 2
  year: 1962
  ident: 1195_CR35
  publication-title: IRE Trans. Inf. Theory.
  doi: 10.1109/TIT.1962.1057692
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 1195_CR38
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 1195_CR29
  doi: 10.1109/CVPR.1996.517107
– volume: 75
  start-page: 1947
  issue: 4
  year: 2016
  ident: 1195_CR2
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-2381-8
– volume: 20
  start-page: 664
  issue: 2
  year: 2013
  ident: 1195_CR9
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2013.6508770
– volume: 76
  start-page: 19057
  issue: 18
  year: 2017
  ident: 1195_CR28
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4478-3
– volume: 4
  start-page: 172
  issue: 2
  year: 1975
  ident: 1195_CR33
  publication-title: Comput. Graphics Image Process.
  doi: 10.1016/S0146-664X(75)80008-6
– volume: 387
  start-page: 195
  year: 2017
  ident: 1195_CR4
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.12.030
– volume: 72
  start-page: 2011
  issue: 2
  year: 2014
  ident: 1195_CR27
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-013-1511-z
– volume: 19
  start-page: 255
  issue: 1
  year: 2016
  ident: 1195_CR3
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-015-0499-8
– volume: SMC-3
  start-page: 610
  issue: 6
  year: 1973
  ident: 1195_CR30
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 47
  start-page: 2956
  issue: 11
  year: 2017
  ident: 1195_CR7
  publication-title: IEEE Trans. Syst. Man Cybern-Syst.
  doi: 10.1109/TSMC.2016.2557225
– volume: 29
  start-page: 943
  issue: 4
  year: 2018
  ident: 1195_CR22
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-016-2504-4
– volume: 10
  start-page: 22
  issue: 1
  year: 1984
  ident: 1195_CR31
  publication-title: Acta Automat. Sin.
  doi: 10.16383/j.aas.1984.01.005
– volume: 18
  start-page: 1393
  issue: 6
  year: 2017
  ident: 1195_CR13
  publication-title: J. Internet Technol.
  doi: 10.6138/JIT.2017.18.6.20170509
– volume: 1-16
  start-page: 26
  year: 2018
  ident: 1195_CR6
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-018-1022-8
– volume: 16
  start-page: 64
  issue: 4
  year: 2007
  ident: 1195_CR15
  publication-title: Radioeng.
– ident: 1195_CR16
  doi: 10.5772/58692
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 1195_CR37
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume-title: Feature Extracted and Retrieval Technique of Image
  year: 2015
  ident: 1195_CR10
– volume: 6
  start-page: 69
  issue: 1
  year: 2015
  ident: 1195_CR36
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-013-0187-z
SSID ssj0033492
Score 2.1557443
Snippet New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application...
Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms and Architectures for Industrial Wireless Sensor Networks
Color
Communications Engineering
Complicated background
Engineering
Feature extraction
Image classification
Image enhancement
Information Systems Applications (incl.Internet)
Insulator inspection
Insulators
Internet of Things
K-nearest neighbors algorithm
Monitoring
Multi-type feature
Networks
Object recognition
Robustness
Sensor networks
Signal,Image and Speech Processing
Smart grid
Texture
Water supply
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaqPdFDxaNVl5d84NTKIrFjxzkCAqFKcOpKe7P8bBHbbMWGA1d-OTNOdrsgUS5c4ySyZj57Hh5_Q8iRirJJnEcGgVrFqioGZnUQrE7JamxuzQNecL66VpeT6sdUTtdafWFNWE8P3AvuWMvCSsltVNpX3lkbJOy72qXgIm9svuYLZmwZTPV7sEDOveEMs9TqeFEKwBmEzRAxYXPC8pkVymT9zzzMF4ei2dZcbJJPg5NIT_rJbZEPsd0mH9eoA3fI48l9N890q9SjA4wVP1nIdJ5oLjDHaJq6BwqQcrkLBL1lLTLWLjraYkIUtE_t7Nf87qb7_YdiQpbm8kKGaVmaYqb8pODUUnASaZ86jB3-v2_2-ZlMLs5_nl2yoZ8C87AyOwaLN4amtlxrGfDWqecJorMSnAyQkhBKurJw2vkQgnICRkMKjUiaBymqWogvZNTO2_iV0CoolVKRpFNg3nh0vlGljXVd1LUXSY5JsZSv8QPZOPa8mJkcdGhlepUYUIlBlZhyTL6tPvnbM2387-VTVNrqRSTJzg8AOmaAjnkLOmOyv1S5GVbuwnDYA1UjQURj8n0Jg3_Dr85o9z1mtEc2OIIUiTvVPhl1d_fxAJyezh1mfD8BFV4AKw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27b9YwELegLDBU5SU-WpAHJpBFbMeOM1UF8VEhwUSlbpafRaIkpV86sPYv753jtBSJrrFjJffwPXz-HSFvdFJ9FiIxCNRa1rYpMmeiZF3OzmBzaxHxgvPXb_rwqP1yrI5rwm1TyyqXPbFs1HEMmCPHTEije2WM2j_7zbBrFJ6u1hYa98kDLkCS8Kb4-vOyE0tE3sOAS4Mi8bYT9VSTG_1-wyXMh0AaYihsV8hv2aUC33_L5_znmLRYn_UO2a5uIz2Y-fyY3EvDE_LoLzDBp-Ty4GIaCwArDegSYw1QITsdMy0l5xhfU_-Hwg_70heC_mQDYthuJjpgihTkgbrTE_jt6ccviilaWgoOGSZqaU4FBJSCm0vBbaRzMjFNuP7c_vMZOVp_-v7xkNUOCyyArk4M1DnFvnMCyBrxHmoQGeI1Dm4HUElKrTxvvPEhxqi9hNGYYy-zEVHJtpPyOdkaxiG9ILSNWufcZOU1GDyRfOg1d6nrmq4LMqsVaRb62lDhx7ELxqktYYjRdmaJBZZYZInlK_L2-pWzGXvjrskfkGnXExE2uzwYz09s1UJrVOOUEi5pE9rgnYsKjLjxOfokemdWZG9hua26vLE3krci7xYxuBn-7xe9vHuxXfJQoPghSKfeI1vT-UV6BQ7O5F8XKb4CG0P4XQ
  priority: 102
  providerName: ProQuest
Title Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things
URI https://link.springer.com/article/10.1186/s13638-018-1195-1
https://www.proquest.com/docview/2070695885
https://doaj.org/article/850a552ae68c4cbaad54138bfdbe29a8
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: ADMLS
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: AAJSJ
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: C6C
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe4ED4ikWSuUDJ5BF4lec43bVpUKiQoiVerP8LIg2QbvpgSu_nBknKRQBEpeREjtR4pmxZ8bjbwh5oZNqM-eJgaMmmZQpMmeiYE3OzmBxax7xgPO7U32ykW_P1Nl0jns3Z7vPW5Jlpi5qbfTrXS1AVsD1Ba8HCwyCy7OvwDpGwHxZvZmnX4Fwe9P25R8fu7EAFZz-G8blb_uhZZlZ3yN3J_uQLkeG3ie3UveA3PkFNfAh-b68GvqCtEoD2r6Y7FPGl_aZltxydKSp_0bhx3wpAEG_sA7BancD7TAWCoyn7uK8334ePl1SjMXSklnIMCJLcyponxTsWQr2IR2jhmnA9491Ph-Rzfr44-qETaUUWAClHBjobYpt47gxKuKB08AzOGY12BcwSkJo5evKGx9ijNoLaI05tiIbHpWQjRCPyV7Xd-kJoTJqnXOVldewsvHkQ6trl5qmapogslqQah5fGyaccSx3cWGLv2G0HVligSUWWWLrBXl5_cjXEWTjX52PkGnXHREfu9zot-d2UjdrVOWU4i5pE2TwzkUFq7XxOfrEW2cW5GBmuZ2Udmc5TH-6VTBEC_JqFoOfzX_9oqf_1fsZuc1RGhGcUx-QvWF7lZ6DYTP4wyLIQM0a6P7R8en7D3C14hKpXh2WgAHQDV_-AFM6-Ns
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwELWqsgAWiKe4UMAL2IAsEjt2nAVC5XG5pY9VK3Vn_CwSJSm9qVC3fBDfyIyTtBSJ7rqNEyvyHI9nxvY5hDxXUTaJ88ggUatYVcXArA6C1SlZjeLWPOAF5-0dtdirPu_L_RXye7oLg8cqJ5-YHXXoPNbIsRJSqEZqLd8e_WCoGoW7q5OExgCLzXj6E1K25ZuND2DfF5zPP-6-X7BRVYB5wGfPAMIxNLXl0FXAu5eeJ8hRSlhqIdgWQklXFk47H0JQTkBrSKERSfMgRVVjARRc_rVKCIFc_Xr-afL8Apn-MMFTMHHLqubjLmqp1etlKQDpkLhDzobyiOWFdTDLBVyIcf_Zls2r3fw2uTWGqXR9wNUdshLbu-TmX-SF98iv9ZO-y4Sv1GMIjmeOsplpl2g-4o75PHWnFAbYZR0K-o21yJm77GmLJVnAH7WHBzDM_dfvFEvCNB9wZFgYpilm0lEKYTWFMJUOxcvYY_-D3Oh9snclY_-ArLZdGx8SWgWlUiqSdAoWWB6db1RpY10Xde1FkjNSTONr_Eh3jqobhyanPVqZwSQGTGLQJKackZdnnxwNXB-XvfwOjXb2ItJ05wfd8YEZZ73RsrBSchuV9pV31gYJQYN2KbjIG6tnZG0yuRl9x9KcI31GXk0wOG_-7x89uryzZ-T6Ynd7y2xt7Gw-Jjc4QhEJQtUaWe2PT-ITCK569zQjmpIvVz2F_gAufDP0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKhQI-wAUUNXFixzlUqKVdtRRWFaJSb8bPVqIkpZsK9crP41cx4zgtRaK3XpNsNvLMeB6e-T5CXgnPm8CYzyBRq7Kq8i7T0pVZHYKWSG7NHA44f5qL7f3qwwE_WCK_x1kYbKsc98S4UbvOYo0cKyG5aLiUfDWktoi9zdm7kx8ZMkjhSetIp6ETzYJbi3Bjachj15__hHRusbazCbJ_zdhs68v77SwxDmQWdLfPQL29a2rN4G8czmVaFiB_KcANQyBeloKbIjfSWOecMCXcdcE1ZZDM8bKqsTgK7mC5xnnRCVne2JrvfR79Qok4gJj-CTDroqpZOmMtpFhdFCXYAaT1kNEheWJxxUtGMoErEfA_h7bRF87ukbspiKXrg9bdJ0u-fUDu_AVt-JD8Wj_ruwgHSy0G6NiRFJWAdoHGBnjM9qk5p7D8JrJU0G9Zi4i6i562WLAF7aT6-BAWvj_6TrFgTGP7Y4ZlYxp8hCSlEHRTCGLpUNr0Pb5_ICN9RPZvZPUfk0nbtf4JoZUTIoQ8cCPA_TJvbCMK7es6r2tbBj4l-bi-yiYwdOTkOFYxKZJCDSJRIBKFIlHFlLy5-MnJgARy3cMbKLSLBxHEO17oTg9V2hOU5LnmnGkvpK2s0dpxCCmkCc541mg5JSujyFXaWRbq0g6m5O2oBpe3__tFT69_2UtyC8xJfdyZ7z4jtxlqIqKHihUy6U_P_HOIvHrzIqk0JV9v2or-ABcLPs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+classification+of+insulator+by+combining+k-nearest+neighbor+algorithm+with+multi-type+feature+for+the+Internet+of+Things&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Hu%2C+Guoxiong&rft.au=Yang%2C+Zhong&rft.au=Zhu%2C+Maohu&rft.au=Huang%2C+Li&rft.date=2018-07-16&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-018-1195-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_018_1195_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon