Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things
New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of i...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2018; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
16.07.2018
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-1499 1687-1472 1687-1499 |
DOI | 10.1186/s13638-018-1195-1 |
Cover
Abstract | New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with
k
-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance. |
---|---|
AbstractList | New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance. Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance. New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k -nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance. |
ArticleNumber | 177 |
Author | Xiong, Naixue Hu, Guoxiong Huang, Li Yang, Zhong Zhu, Maohu |
Author_xml | – sequence: 1 givenname: Guoxiong orcidid: 0000-0002-7780-5646 surname: Hu fullname: Hu, Guoxiong organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, College of Software, Jiangxi Normal University – sequence: 2 givenname: Zhong surname: Yang fullname: Yang, Zhong email: YZ.NUAA@163.com organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Maohu surname: Zhu fullname: Zhu, Maohu organization: Elementary Education College, Jiangxi Normal University – sequence: 4 givenname: Li surname: Huang fullname: Huang, Li organization: Elementary Education College, Jiangxi Normal University – sequence: 5 givenname: Naixue surname: Xiong fullname: Xiong, Naixue organization: Department of Mathematics and Computer Science, Northeastern State University |
BookMark | eNp9UU1v1DAUtFCRaAs_gJslzgZ_xIlzrCqgK1XqpZwtf2a9JPZiO0J75ZfjbRAgpHLxs_3ezBvNXIGLmKID4C3B7wkR_YdCWM8EwkQgQkaOyAtwSXoxINKN48Vf91fgqpQDxox1I70EP27WmhZVg4FmVqUEH0x7pQiThyGWdVY1ZahP0KRFhxjiBL-i6FR2pcLowrTXra_mKeVQ9wv83k64rHMNqJ6ODnqn6ppbbVN17-AuVpejq2f-x32jK6_BS6_m4t78qtfgy6ePj7d36P7h8-725h6ZjvKKBKPOjoOiQnCLMR8N9V0nyEBwc4CxnmuCtdDGWttr1rrW25F5QS1n3cDYNdhtvDapgzzmsKh8kkkF-fSR8iRVbkbMTgqOFedUuV6YzmilLO8IE9pb7eioRON6t3Edc_q2NivkIa05NvmS4gH3I28q2xTZpkxOpWTnf28lWJ5jk1tsssUmz7FJ0jDDPxgT6lMiNasw_xdJN2RpW-Lk8h9Nz4N-Au_MsDw |
CitedBy_id | crossref_primary_10_1016_j_comcom_2021_04_002 crossref_primary_10_1007_s00500_022_07441_w crossref_primary_10_1108_LHT_12_2017_0274 |
Cites_doi | 10.1134/S1054661814030122 10.1109/TSMC.1976.5408777 10.14257/ijsip.2016.9.5.27 10.1016/j.patcog.2008.09.031 10.1007/BF00130487 10.3390/s17010174 10.1016/j.patcog.2011.03.005 10.1016/j.compeleceng.2017.04.009 10.1109/83.817602 10.1007/s11760-014-0615-x 10.1145/244130.244148 10.1109/34.955109 10.1049/iet-cvi.2015.0020 10.1117/12.205308 10.1016/j.jvcir.2005.10.003 10.1109/ICIP.1996.560536 10.1109/TIT.1962.1057692 10.1145/3065386 10.1109/CVPR.1996.517107 10.1007/s11042-014-2381-8 10.1109/TDEI.2013.6508770 10.1007/s11042-017-4478-3 10.1016/S0146-664X(75)80008-6 10.1016/j.ins.2016.12.030 10.1007/s11042-013-1511-z 10.1007/s10586-015-0499-8 10.1109/TSMC.1973.4309314 10.1109/TSMC.2016.2557225 10.1007/s00521-016-2504-4 10.16383/j.aas.1984.01.005 10.6138/JIT.2017.18.6.20170509 10.1186/s13638-018-1022-8 10.5772/58692 10.1109/TIT.1967.1053964 10.1007/s13042-013-0187-z |
ContentType | Journal Article |
Copyright | The Author(s). 2018 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Author(s). 2018 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved. |
DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s13638-018-1195-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_850a552ae68c4cbaad54138bfdbe29a8 10_1186_s13638_018_1195_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61473144; 61602222; 41661083 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: The special scientific instrument development of Ministry of science and technology of China grantid: 2016YFF0103702 – fundername: Aeronautical Science Foundation of China grantid: 20162852031 funderid: http://dx.doi.org/10.13039/501100004750 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c425t-832ed97a2885d0059c2f44817101183365b10b8bcddd6b3c2fdfd93f82d534733 |
IEDL.DBID | 40G |
ISSN | 1687-1499 1687-1472 |
IngestDate | Wed Aug 27 00:43:59 EDT 2025 Sat Jul 26 02:42:24 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Tue Jul 01 00:40:53 EDT 2025 Fri Feb 21 02:35:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Complicated background Sensor networks Insulator inspection Internet of Things Multi-type feature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-832ed97a2885d0059c2f44817101183365b10b8bcddd6b3c2fdfd93f82d534733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7780-5646 |
OpenAccessLink | https://link.springer.com/10.1186/s13638-018-1195-1 |
PQID | 2070695885 |
PQPubID | 237293 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_850a552ae68c4cbaad54138bfdbe29a8 proquest_journals_2070695885 crossref_primary_10_1186_s13638_018_1195_1 crossref_citationtrail_10_1186_s13638_018_1195_1 springer_journals_10_1186_s13638_018_1195_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-16 |
PublicationDateYYYYMMDD | 2018-07-16 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | PrasadJRKulKarniUGujrati character recognition using weighted k-NN and Mean chi(2) distance measureInt. J. Mach. Learn. Cybern.201561698210.1007/s13042-013-0187-z M Benčo, R Hudec, P Kamencay, M Zachariasova, S Matuska, An advanced approach to extraction of colour texture features based on GLCM. Int. J. Adv. Robot. Syst., 1–8 (2014). https://doi.org/10.5772/58692 KimJSHongKSColor–texture segmentation using unsupervised graph cutsPattern Recogn.200942573575010.1016/j.patcog.2008.09.0311162.68613 WeszkaJSDyerCRRosenfeldAA comparative study of texture measures for terrain classificationIEEE Trans. Syst., Man Cybern.1976SMC-6426928510.1109/TSMC.1976.54087770322.68061 PassGZabihRMillerJIn proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors1997BostonACM6573 XiaZHWangXHSunXMLiuQSXiongNXSteganalysis of LSB matching using differences between nonadjacent pixelsMultimed. Tools Appl.20167541947196210.1007/s11042-014-2381-8 XiaZHXiongNNVasilakosAVSunXMEPCBIR: an efficient and privacy-preserving content-based image retrieval scheme in cloud computingInf. Sci.201738719520410.1016/j.ins.2016.12.030 K Sobottka, I Pitas, In proc. of 3rd IEEE International Conference on Image Processing. Face localization and facial feature extraction based on shape and color information (IEEE, Switzerland, 1996), 483–486. DOI: https://doi.org/10.1109/ICIP.1996.560536 GeversTSmeuldersAWMPicToSeek: combining color and shape invariant features for image retrievalIEEE Trans. Image Process.20009110211910.1109/83.817602 GaoXWPodladchikovaLShaposhnikovDHongKShevtsovaNRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ. Vis. Comun. Image Represent..200617467568510.1016/j.jvcir.2005.10.003 IleaDEWhelanPFImage segmentation based on the integration of colour–texture descriptors—a reviewPattern Recogn.201144102479250110.1016/j.patcog.2011.03.0051218.68187 StrickerMOrengoMSimilarity of color imagesSPIE Proc., Storage Retr. Image Video Databases III1995242038139210.1117/12.205308 ChandyDAJohnsonJSSelvanSETexture feature extraction using gray level statistical matrix for content-based mammogram retrievalMultimedia Tools Appl.20147222011202410.1007/s11042-013-1511-z SunJDFeature Extracted and Retrieval Technique of Image2015Beijingpublishing house of electronics industry HaralickRMShanmugamKTexture features for image classificationIEEE Trans. Syst. Man Cybern.1973SMC-3661062110.1109/TSMC.1973.4309314 MKHVisual pattern recognition by moment invariantsIRE Trans. Inf. Theory.19628217918710.1109/TIT.1962.1057692 LP GaoFYYChenQKXiongNXConsistency maintenance of Do and Undo/Redo operations in real-time collaborative bitmap editing systemsClust. Comput.201619125526710.1007/s10586-015-0499-8 HuGXYangZHanJMHuangLGongJXiongNXAircraft detection in remote sensing images based on saliency and convolution neural networkEURASIP J. Wirel. Commun. Netw.20181-162610.1186/s13638-018-1022-8 BenčoMHudecRNovel method for color textures features extraction based on GLCMRadioeng.20071646467 HongJGGray level-gradient cooccurrence matrix texture analysis methodActa Automat. Sin.19841012225 ZhangYDZhangYLvYDHouXXLiuFYJiaWJYangMMPhillipsPWangSHComp. Electr. Eng.20176312613810.1016/j.compeleceng.2017.04.009 LangeMMStepanovDYRecognition of objects given by collections of multichannel imagesPattern Recognit. Image Anal.201424343144210.1134/S1054661814030122 SwainMJBallardDHColor indexingInt. J. Comput. Vis.199171113210.1007/BF00130487 CuiXTKanJMLiWBRegion matching based on colour invariants in rgb orthogonal spaceIET Comput. Vis.201610654555010.1049/iet-cvi.2015.0020 GallowayMMTexture analysis using gray level run lengthsComput. Graphics Image Process.19754217217910.1016/S0146-664X(75)80008-6 ReddyMJBChandraBKMohantaDKCondition monitoring of 11kv distribution system insulators incorporating complex imagery using combined DOST-SVM approachIEEE Trans. Dielectr. Electr. Insul.201320266467410.1109/TDEI.2013.6508770 CoverTHarPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505 FangYMFangZJYuanFNYangYYangSYXiongNNOptimized multioperator image retargeting based on perceptual similarity measureIEEE Trans. Syst. Man Cybern-Syst.201747112956296610.1109/TSMC.2016.2557225 RaitoharjuJKiranyazSGabboujMFeature synthesis for image classification and retrieval via one-against-all perceptronsNeural Comput. Applic.201829494395710.1007/s00521-016-2504-4 HuangLSHXGXHZhangCXiongNNDesign and analysis of a weight-LDA model to extract implicit topic of database in social networksJ. Internet Technol.201718613931406 RawatJSinghABhadauriaHSVirmaniJDevgunJSClassification of acute lymphoblastic leukaemia using hybrid hierarchical classifiersMultimedia Tools Appl.20177618190571908510.1007/s11042-017-4478-3 KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun. ACM2017606849010.1145/3065386 NX Xiong, RW Liu, DW MH Liang, Z Liu, W HS, Effective alternating direction optimization methods for sparsity-constrained blind image deblurring. Sens. 17(1) (2017). https://doi.org/10.3390/s17010174 WY Ma, BS Marijunath, in proc. of 1996 IEEE conference on computer vision and pattern recognition (CVPR). Texture features and learning similarity (IEEE, San Francisco, 1996). 425–430. DOI: https://doi.org/10.1109/CVPR.1996.517107 HuangJColor-Spatial Image Indexing and Applications1998New YorkCornell University WangJZLiJWiederholdGSIMPLIcity: semantics-sensitive integrated matching for picture librariesIEEE Trans. Pattern Anal. Mach. Intell.200123994796310.1109/34.955109 GritzmanADRubinDMPantanowitzAComparison of colour transforms used in lip segmentation algorithmsSIViP20159494795710.1007/s11760-014-0615-x ShuLFangYMFangZJYangYFeiFCXiongNXA novel objective quality assessment for super- resolution imagesInt. J. Signal Process., Image Process. Pattern Recognit.201695297308 J Rawat (1195_CR28) 2017; 76 JS Kim (1195_CR18) 2009; 42 DA Chandy (1195_CR27) 2014; 72 M Benčo (1195_CR15) 2007; 16 L Shu (1195_CR5) 2016; 9 AD Gritzman (1195_CR21) 2015; 9 YM Fang (1195_CR7) 2017; 47 MJB Reddy (1195_CR9) 2013; 20 GX Hu (1195_CR6) 2018; 1-16 (1195_CR10) 2015 ZH Xia (1195_CR2) 2016; 75 MJ Swain (1195_CR23) 1991; 7 YD Zhang (1195_CR34) 2017; 63 A Krizhevsky (1195_CR38) 2017; 60 G Pass (1195_CR25) 1997 JR Prasad (1195_CR36) 2015; 6 T Gevers (1195_CR12) 2000; 9 RM Haralick (1195_CR30) 1973; SMC-3 MM Lange (1195_CR20) 2014; 24 MM Galloway (1195_CR33) 1975; 4 1195_CR29 1195_CR1 M Stricker (1195_CR24) 1995; 2420 ZH Xia (1195_CR4) 2017; 387 H MK (1195_CR35) 1962; 8 FYY LP Gao (1195_CR3) 2016; 19 XT Cui (1195_CR19) 2016; 10 JZ Wang (1195_CR11) 2001; 23 J Huang (1195_CR26) 1998 DE Ilea (1195_CR17) 2011; 44 T Cover (1195_CR37) 1967; 13 J Raitoharju (1195_CR22) 2018; 29 XW Gao (1195_CR8) 2006; 17 1195_CR14 1195_CR16 JG Hong (1195_CR31) 1984; 10 JS Weszka (1195_CR32) 1976; SMC-6 L Huang (1195_CR13) 2017; 18 |
References_xml | – reference: StrickerMOrengoMSimilarity of color imagesSPIE Proc., Storage Retr. Image Video Databases III1995242038139210.1117/12.205308 – reference: HuangJColor-Spatial Image Indexing and Applications1998New YorkCornell University – reference: ReddyMJBChandraBKMohantaDKCondition monitoring of 11kv distribution system insulators incorporating complex imagery using combined DOST-SVM approachIEEE Trans. Dielectr. Electr. Insul.201320266467410.1109/TDEI.2013.6508770 – reference: LangeMMStepanovDYRecognition of objects given by collections of multichannel imagesPattern Recognit. Image Anal.201424343144210.1134/S1054661814030122 – reference: XiaZHXiongNNVasilakosAVSunXMEPCBIR: an efficient and privacy-preserving content-based image retrieval scheme in cloud computingInf. Sci.201738719520410.1016/j.ins.2016.12.030 – reference: HuGXYangZHanJMHuangLGongJXiongNXAircraft detection in remote sensing images based on saliency and convolution neural networkEURASIP J. Wirel. Commun. Netw.20181-162610.1186/s13638-018-1022-8 – reference: SunJDFeature Extracted and Retrieval Technique of Image2015Beijingpublishing house of electronics industry – reference: PassGZabihRMillerJIn proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors1997BostonACM6573 – reference: NX Xiong, RW Liu, DW MH Liang, Z Liu, W HS, Effective alternating direction optimization methods for sparsity-constrained blind image deblurring. Sens. 17(1) (2017). https://doi.org/10.3390/s17010174 – reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun. ACM2017606849010.1145/3065386 – reference: HongJGGray level-gradient cooccurrence matrix texture analysis methodActa Automat. Sin.19841012225 – reference: GritzmanADRubinDMPantanowitzAComparison of colour transforms used in lip segmentation algorithmsSIViP20159494795710.1007/s11760-014-0615-x – reference: GaoXWPodladchikovaLShaposhnikovDHongKShevtsovaNRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ. Vis. Comun. Image Represent..200617467568510.1016/j.jvcir.2005.10.003 – reference: HuangLSHXGXHZhangCXiongNNDesign and analysis of a weight-LDA model to extract implicit topic of database in social networksJ. Internet Technol.201718613931406 – reference: RawatJSinghABhadauriaHSVirmaniJDevgunJSClassification of acute lymphoblastic leukaemia using hybrid hierarchical classifiersMultimedia Tools Appl.20177618190571908510.1007/s11042-017-4478-3 – reference: RaitoharjuJKiranyazSGabboujMFeature synthesis for image classification and retrieval via one-against-all perceptronsNeural Comput. Applic.201829494395710.1007/s00521-016-2504-4 – reference: PrasadJRKulKarniUGujrati character recognition using weighted k-NN and Mean chi(2) distance measureInt. J. Mach. Learn. Cybern.201561698210.1007/s13042-013-0187-z – reference: ShuLFangYMFangZJYangYFeiFCXiongNXA novel objective quality assessment for super- resolution imagesInt. J. Signal Process., Image Process. Pattern Recognit.201695297308 – reference: FangYMFangZJYuanFNYangYYangSYXiongNNOptimized multioperator image retargeting based on perceptual similarity measureIEEE Trans. Syst. Man Cybern-Syst.201747112956296610.1109/TSMC.2016.2557225 – reference: BenčoMHudecRNovel method for color textures features extraction based on GLCMRadioeng.20071646467 – reference: ChandyDAJohnsonJSSelvanSETexture feature extraction using gray level statistical matrix for content-based mammogram retrievalMultimedia Tools Appl.20147222011202410.1007/s11042-013-1511-z – reference: M Benčo, R Hudec, P Kamencay, M Zachariasova, S Matuska, An advanced approach to extraction of colour texture features based on GLCM. Int. J. Adv. Robot. Syst., 1–8 (2014). https://doi.org/10.5772/58692 – reference: HaralickRMShanmugamKTexture features for image classificationIEEE Trans. Syst. Man Cybern.1973SMC-3661062110.1109/TSMC.1973.4309314 – reference: CuiXTKanJMLiWBRegion matching based on colour invariants in rgb orthogonal spaceIET Comput. Vis.201610654555010.1049/iet-cvi.2015.0020 – reference: WY Ma, BS Marijunath, in proc. of 1996 IEEE conference on computer vision and pattern recognition (CVPR). Texture features and learning similarity (IEEE, San Francisco, 1996). 425–430. DOI: https://doi.org/10.1109/CVPR.1996.517107 – reference: IleaDEWhelanPFImage segmentation based on the integration of colour–texture descriptors—a reviewPattern Recogn.201144102479250110.1016/j.patcog.2011.03.0051218.68187 – reference: MKHVisual pattern recognition by moment invariantsIRE Trans. Inf. Theory.19628217918710.1109/TIT.1962.1057692 – reference: XiaZHWangXHSunXMLiuQSXiongNXSteganalysis of LSB matching using differences between nonadjacent pixelsMultimed. Tools Appl.20167541947196210.1007/s11042-014-2381-8 – reference: WangJZLiJWiederholdGSIMPLIcity: semantics-sensitive integrated matching for picture librariesIEEE Trans. Pattern Anal. Mach. Intell.200123994796310.1109/34.955109 – reference: GeversTSmeuldersAWMPicToSeek: combining color and shape invariant features for image retrievalIEEE Trans. Image Process.20009110211910.1109/83.817602 – reference: ZhangYDZhangYLvYDHouXXLiuFYJiaWJYangMMPhillipsPWangSHComp. Electr. Eng.20176312613810.1016/j.compeleceng.2017.04.009 – reference: CoverTHarPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505 – reference: LP GaoFYYChenQKXiongNXConsistency maintenance of Do and Undo/Redo operations in real-time collaborative bitmap editing systemsClust. Comput.201619125526710.1007/s10586-015-0499-8 – reference: GallowayMMTexture analysis using gray level run lengthsComput. Graphics Image Process.19754217217910.1016/S0146-664X(75)80008-6 – reference: KimJSHongKSColor–texture segmentation using unsupervised graph cutsPattern Recogn.200942573575010.1016/j.patcog.2008.09.0311162.68613 – reference: K Sobottka, I Pitas, In proc. of 3rd IEEE International Conference on Image Processing. Face localization and facial feature extraction based on shape and color information (IEEE, Switzerland, 1996), 483–486. DOI: https://doi.org/10.1109/ICIP.1996.560536 – reference: WeszkaJSDyerCRRosenfeldAA comparative study of texture measures for terrain classificationIEEE Trans. Syst., Man Cybern.1976SMC-6426928510.1109/TSMC.1976.54087770322.68061 – reference: SwainMJBallardDHColor indexingInt. J. Comput. Vis.199171113210.1007/BF00130487 – volume: 24 start-page: 431 issue: 3 year: 2014 ident: 1195_CR20 publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661814030122 – volume: SMC-6 start-page: 269 issue: 4 year: 1976 ident: 1195_CR32 publication-title: IEEE Trans. Syst., Man Cybern. doi: 10.1109/TSMC.1976.5408777 – volume: 9 start-page: 297 issue: 5 year: 2016 ident: 1195_CR5 publication-title: Int. J. Signal Process., Image Process. Pattern Recognit. doi: 10.14257/ijsip.2016.9.5.27 – volume: 42 start-page: 735 issue: 5 year: 2009 ident: 1195_CR18 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.09.031 – volume-title: Color-Spatial Image Indexing and Applications year: 1998 ident: 1195_CR26 – volume: 7 start-page: 11 issue: 1 year: 1991 ident: 1195_CR23 publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00130487 – ident: 1195_CR1 doi: 10.3390/s17010174 – volume: 44 start-page: 2479 issue: 10 year: 2011 ident: 1195_CR17 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.03.005 – volume: 63 start-page: 126 year: 2017 ident: 1195_CR34 publication-title: Comp. Electr. Eng. doi: 10.1016/j.compeleceng.2017.04.009 – volume: 9 start-page: 102 issue: 1 year: 2000 ident: 1195_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.817602 – volume: 9 start-page: 947 issue: 4 year: 2015 ident: 1195_CR21 publication-title: SIViP doi: 10.1007/s11760-014-0615-x – start-page: 65 volume-title: In proc. of the fourth ACM international conference on Multimedia. Comparing images using color coherence vectors year: 1997 ident: 1195_CR25 doi: 10.1145/244130.244148 – volume: 23 start-page: 947 issue: 9 year: 2001 ident: 1195_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.955109 – volume: 10 start-page: 545 issue: 6 year: 2016 ident: 1195_CR19 publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2015.0020 – volume: 2420 start-page: 381 year: 1995 ident: 1195_CR24 publication-title: SPIE Proc., Storage Retr. Image Video Databases III doi: 10.1117/12.205308 – volume: 17 start-page: 675 issue: 4 year: 2006 ident: 1195_CR8 publication-title: J. Vis. Comun. Image Represent.. doi: 10.1016/j.jvcir.2005.10.003 – ident: 1195_CR14 doi: 10.1109/ICIP.1996.560536 – volume: 8 start-page: 179 issue: 2 year: 1962 ident: 1195_CR35 publication-title: IRE Trans. Inf. Theory. doi: 10.1109/TIT.1962.1057692 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 1195_CR38 publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 1195_CR29 doi: 10.1109/CVPR.1996.517107 – volume: 75 start-page: 1947 issue: 4 year: 2016 ident: 1195_CR2 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-2381-8 – volume: 20 start-page: 664 issue: 2 year: 2013 ident: 1195_CR9 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2013.6508770 – volume: 76 start-page: 19057 issue: 18 year: 2017 ident: 1195_CR28 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-017-4478-3 – volume: 4 start-page: 172 issue: 2 year: 1975 ident: 1195_CR33 publication-title: Comput. Graphics Image Process. doi: 10.1016/S0146-664X(75)80008-6 – volume: 387 start-page: 195 year: 2017 ident: 1195_CR4 publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.030 – volume: 72 start-page: 2011 issue: 2 year: 2014 ident: 1195_CR27 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-013-1511-z – volume: 19 start-page: 255 issue: 1 year: 2016 ident: 1195_CR3 publication-title: Clust. Comput. doi: 10.1007/s10586-015-0499-8 – volume: SMC-3 start-page: 610 issue: 6 year: 1973 ident: 1195_CR30 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 47 start-page: 2956 issue: 11 year: 2017 ident: 1195_CR7 publication-title: IEEE Trans. Syst. Man Cybern-Syst. doi: 10.1109/TSMC.2016.2557225 – volume: 29 start-page: 943 issue: 4 year: 2018 ident: 1195_CR22 publication-title: Neural Comput. Applic. doi: 10.1007/s00521-016-2504-4 – volume: 10 start-page: 22 issue: 1 year: 1984 ident: 1195_CR31 publication-title: Acta Automat. Sin. doi: 10.16383/j.aas.1984.01.005 – volume: 18 start-page: 1393 issue: 6 year: 2017 ident: 1195_CR13 publication-title: J. Internet Technol. doi: 10.6138/JIT.2017.18.6.20170509 – volume: 1-16 start-page: 26 year: 2018 ident: 1195_CR6 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-018-1022-8 – volume: 16 start-page: 64 issue: 4 year: 2007 ident: 1195_CR15 publication-title: Radioeng. – ident: 1195_CR16 doi: 10.5772/58692 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 1195_CR37 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume-title: Feature Extracted and Retrieval Technique of Image year: 2015 ident: 1195_CR10 – volume: 6 start-page: 69 issue: 1 year: 2015 ident: 1195_CR36 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-013-0187-z |
SSID | ssj0033492 |
Score | 2.1557443 |
Snippet | New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application... Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms and Architectures for Industrial Wireless Sensor Networks Color Communications Engineering Complicated background Engineering Feature extraction Image classification Image enhancement Information Systems Applications (incl.Internet) Insulator inspection Insulators Internet of Things K-nearest neighbors algorithm Monitoring Multi-type feature Networks Object recognition Robustness Sensor networks Signal,Image and Speech Processing Smart grid Texture Water supply |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaqPdFDxaNVl5d84NTKIrFjxzkCAqFKcOpKe7P8bBHbbMWGA1d-OTNOdrsgUS5c4ySyZj57Hh5_Q8iRirJJnEcGgVrFqioGZnUQrE7JamxuzQNecL66VpeT6sdUTtdafWFNWE8P3AvuWMvCSsltVNpX3lkbJOy72qXgIm9svuYLZmwZTPV7sEDOveEMs9TqeFEKwBmEzRAxYXPC8pkVymT9zzzMF4ei2dZcbJJPg5NIT_rJbZEPsd0mH9eoA3fI48l9N890q9SjA4wVP1nIdJ5oLjDHaJq6BwqQcrkLBL1lLTLWLjraYkIUtE_t7Nf87qb7_YdiQpbm8kKGaVmaYqb8pODUUnASaZ86jB3-v2_2-ZlMLs5_nl2yoZ8C87AyOwaLN4amtlxrGfDWqecJorMSnAyQkhBKurJw2vkQgnICRkMKjUiaBymqWogvZNTO2_iV0CoolVKRpFNg3nh0vlGljXVd1LUXSY5JsZSv8QPZOPa8mJkcdGhlepUYUIlBlZhyTL6tPvnbM2387-VTVNrqRSTJzg8AOmaAjnkLOmOyv1S5GVbuwnDYA1UjQURj8n0Jg3_Dr85o9z1mtEc2OIIUiTvVPhl1d_fxAJyezh1mfD8BFV4AKw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27b9YwELegLDBU5SU-WpAHJpBFbMeOM1UF8VEhwUSlbpafRaIkpV86sPYv753jtBSJrrFjJffwPXz-HSFvdFJ9FiIxCNRa1rYpMmeiZF3OzmBzaxHxgvPXb_rwqP1yrI5rwm1TyyqXPbFs1HEMmCPHTEije2WM2j_7zbBrFJ6u1hYa98kDLkCS8Kb4-vOyE0tE3sOAS4Mi8bYT9VSTG_1-wyXMh0AaYihsV8hv2aUC33_L5_znmLRYn_UO2a5uIz2Y-fyY3EvDE_LoLzDBp-Ty4GIaCwArDegSYw1QITsdMy0l5xhfU_-Hwg_70heC_mQDYthuJjpgihTkgbrTE_jt6ccviilaWgoOGSZqaU4FBJSCm0vBbaRzMjFNuP7c_vMZOVp_-v7xkNUOCyyArk4M1DnFvnMCyBrxHmoQGeI1Dm4HUElKrTxvvPEhxqi9hNGYYy-zEVHJtpPyOdkaxiG9ILSNWufcZOU1GDyRfOg1d6nrmq4LMqsVaRb62lDhx7ELxqktYYjRdmaJBZZYZInlK_L2-pWzGXvjrskfkGnXExE2uzwYz09s1UJrVOOUEi5pE9rgnYsKjLjxOfokemdWZG9hua26vLE3krci7xYxuBn-7xe9vHuxXfJQoPghSKfeI1vT-UV6BQ7O5F8XKb4CG0P4XQ priority: 102 providerName: ProQuest |
Title | Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things |
URI | https://link.springer.com/article/10.1186/s13638-018-1195-1 https://www.proquest.com/docview/2070695885 https://doaj.org/article/850a552ae68c4cbaad54138bfdbe29a8 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: ADMLS dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: AAJSJ dateStart: 20041201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C6C dateStart: 20041201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: U2A dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe4ED4ikWSuUDJ5BF4lec43bVpUKiQoiVerP8LIg2QbvpgSu_nBknKRQBEpeREjtR4pmxZ8bjbwh5oZNqM-eJgaMmmZQpMmeiYE3OzmBxax7xgPO7U32ykW_P1Nl0jns3Z7vPW5Jlpi5qbfTrXS1AVsD1Ba8HCwyCy7OvwDpGwHxZvZmnX4Fwe9P25R8fu7EAFZz-G8blb_uhZZlZ3yN3J_uQLkeG3ie3UveA3PkFNfAh-b68GvqCtEoD2r6Y7FPGl_aZltxydKSp_0bhx3wpAEG_sA7BancD7TAWCoyn7uK8334ePl1SjMXSklnIMCJLcyponxTsWQr2IR2jhmnA9491Ph-Rzfr44-qETaUUWAClHBjobYpt47gxKuKB08AzOGY12BcwSkJo5evKGx9ijNoLaI05tiIbHpWQjRCPyV7Xd-kJoTJqnXOVldewsvHkQ6trl5qmapogslqQah5fGyaccSx3cWGLv2G0HVligSUWWWLrBXl5_cjXEWTjX52PkGnXHREfu9zot-d2UjdrVOWU4i5pE2TwzkUFq7XxOfrEW2cW5GBmuZ2Udmc5TH-6VTBEC_JqFoOfzX_9oqf_1fsZuc1RGhGcUx-QvWF7lZ6DYTP4wyLIQM0a6P7R8en7D3C14hKpXh2WgAHQDV_-AFM6-Ns |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwELWqsgAWiKe4UMAL2IAsEjt2nAVC5XG5pY9VK3Vn_CwSJSm9qVC3fBDfyIyTtBSJ7rqNEyvyHI9nxvY5hDxXUTaJ88ggUatYVcXArA6C1SlZjeLWPOAF5-0dtdirPu_L_RXye7oLg8cqJ5-YHXXoPNbIsRJSqEZqLd8e_WCoGoW7q5OExgCLzXj6E1K25ZuND2DfF5zPP-6-X7BRVYB5wGfPAMIxNLXl0FXAu5eeJ8hRSlhqIdgWQklXFk47H0JQTkBrSKERSfMgRVVjARRc_rVKCIFc_Xr-afL8Apn-MMFTMHHLqubjLmqp1etlKQDpkLhDzobyiOWFdTDLBVyIcf_Zls2r3fw2uTWGqXR9wNUdshLbu-TmX-SF98iv9ZO-y4Sv1GMIjmeOsplpl2g-4o75PHWnFAbYZR0K-o21yJm77GmLJVnAH7WHBzDM_dfvFEvCNB9wZFgYpilm0lEKYTWFMJUOxcvYY_-D3Oh9snclY_-ArLZdGx8SWgWlUiqSdAoWWB6db1RpY10Xde1FkjNSTONr_Eh3jqobhyanPVqZwSQGTGLQJKackZdnnxwNXB-XvfwOjXb2ItJ05wfd8YEZZ73RsrBSchuV9pV31gYJQYN2KbjIG6tnZG0yuRl9x9KcI31GXk0wOG_-7x89uryzZ-T6Ynd7y2xt7Gw-Jjc4QhEJQtUaWe2PT-ITCK569zQjmpIvVz2F_gAufDP0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKhQI-wAUUNXFixzlUqKVdtRRWFaJSb8bPVqIkpZsK9crP41cx4zgtRaK3XpNsNvLMeB6e-T5CXgnPm8CYzyBRq7Kq8i7T0pVZHYKWSG7NHA44f5qL7f3qwwE_WCK_x1kYbKsc98S4UbvOYo0cKyG5aLiUfDWktoi9zdm7kx8ZMkjhSetIp6ETzYJbi3Bjachj15__hHRusbazCbJ_zdhs68v77SwxDmQWdLfPQL29a2rN4G8czmVaFiB_KcANQyBeloKbIjfSWOecMCXcdcE1ZZDM8bKqsTgK7mC5xnnRCVne2JrvfR79Qok4gJj-CTDroqpZOmMtpFhdFCXYAaT1kNEheWJxxUtGMoErEfA_h7bRF87ukbspiKXrg9bdJ0u-fUDu_AVt-JD8Wj_ruwgHSy0G6NiRFJWAdoHGBnjM9qk5p7D8JrJU0G9Zi4i6i562WLAF7aT6-BAWvj_6TrFgTGP7Y4ZlYxp8hCSlEHRTCGLpUNr0Pb5_ICN9RPZvZPUfk0nbtf4JoZUTIoQ8cCPA_TJvbCMK7es6r2tbBj4l-bi-yiYwdOTkOFYxKZJCDSJRIBKFIlHFlLy5-MnJgARy3cMbKLSLBxHEO17oTg9V2hOU5LnmnGkvpK2s0dpxCCmkCc541mg5JSujyFXaWRbq0g6m5O2oBpe3__tFT69_2UtyC8xJfdyZ7z4jtxlqIqKHihUy6U_P_HOIvHrzIqk0JV9v2or-ABcLPs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+classification+of+insulator+by+combining+k-nearest+neighbor+algorithm+with+multi-type+feature+for+the+Internet+of+Things&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Hu%2C+Guoxiong&rft.au=Yang%2C+Zhong&rft.au=Zhu%2C+Maohu&rft.au=Huang%2C+Li&rft.date=2018-07-16&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-018-1195-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_018_1195_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |