Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization

Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 13; no. 2; pp. 398 - 417
Main Authors Qin, A.K., Huang, V.L., Suganthan, P.N.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
1941-0026
DOI10.1109/TEVC.2008.927706

Cover

More Information
Summary:Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1089-778X
1941-0026
1941-0026
DOI:10.1109/TEVC.2008.927706